1 Propositional Logic - Axioms and Inference Rules

Similar documents
def: An axiom is a statement that is assumed to be true, or in the case of a mathematical system, is used to specify the system.

Logic in general. Inference rules and theorem proving

Resolution. Informatics 1 School of Informatics, University of Edinburgh

Predicate logic Proofs Artificial intelligence. Predicate logic. SET07106 Mathematics for Software Engineering

Handout #1: Mathematical Reasoning

CHAPTER 3. Methods of Proofs. 1. Logical Arguments and Formal Proofs

Unit 3 Boolean Algebra (Continued)

Boolean Algebra Part 1

DISCRETE MATH: LECTURE 3

Likewise, we have contradictions: formulas that can only be false, e.g. (p p).

CHAPTER 7 GENERAL PROOF SYSTEMS

Lecture Notes in Discrete Mathematics. Marcel B. Finan Arkansas Tech University c All Rights Reserved

INTRODUCTORY SET THEORY

Predicate Logic. Example: All men are mortal. Socrates is a man. Socrates is mortal.

WOLLONGONG COLLEGE AUSTRALIA. Diploma in Information Technology

Rules of Inference Friday, January 18, 2013 Chittu Tripathy Lecture 05

Math 3000 Section 003 Intro to Abstract Math Homework 2

Formal Engineering for Industrial Software Development

Propositional Logic. A proposition is a declarative sentence (a sentence that declares a fact) that is either true or false, but not both.

3. Mathematical Induction

IAEA Training Course on Safety Assessment of NPPs to Assist Decision Making. System Analysis. Lecturer. Workshop Information IAEA Workshop

Switching Algebra and Logic Gates

The Mathematics of GIS. Wolfgang Kainz

Predicate Logic. For example, consider the following argument:

Computational Logic and Cognitive Science: An Overview

Elementary Number Theory and Methods of Proof. CSE 215, Foundations of Computer Science Stony Brook University

Lecture 13 of 41. More Propositional and Predicate Logic

196 Chapter 7. Logical Agents

(LMCS, p. 317) V.1. First Order Logic. This is the most powerful, most expressive logic that we will examine.

Gödel s Ontological Proof of the Existence of God

Undergraduate Notes in Mathematics. Arkansas Tech University Department of Mathematics

Basic Proof Techniques

The History of Logic. Aristotle ( BC) invented logic.

CSL105: Discrete Mathematical Structures. Ragesh Jaiswal, CSE, IIT Delhi

Chapter 3. Cartesian Products and Relations. 3.1 Cartesian Products

Introduction to Logic: Argumentation and Interpretation. Vysoká škola mezinárodních a veřejných vztahů PhDr. Peter Jan Kosmály, Ph.D

Logic in Computer Science: Logic Gates

Beyond Propositional Logic Lukasiewicz s System

Remarks on Non-Fregean Logic

Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 2

Course Outline Department of Computing Science Faculty of Science. COMP Applied Artificial Intelligence (3,1,0) Fall 2015

Today s Topics. Primes & Greatest Common Divisors

Discrete Mathematics For Computer Science

High School Geometry Test Sampler Math Common Core Sampler Test

COURSE DESCRIPTION FOR THE COMPUTER INFORMATION SYSTEMS CURRICULUM

6.080/6.089 GITCS Feb 12, Lecture 3

Quotient Rings and Field Extensions

p: I am elected q: I will lower the taxes

Logical Agents. Explorations in Artificial Intelligence. Knowledge-based Agents. Knowledge-base Agents. Outline. Knowledge bases

WHAT ARE MATHEMATICAL PROOFS AND WHY THEY ARE IMPORTANT?

CH3 Boolean Algebra (cont d)

DEDUCTIVE & INDUCTIVE REASONING

EQUATIONAL LOGIC AND ABSTRACT ALGEBRA * ABSTRACT

Boolean Design of Patterns

Research Note. Bi-intuitionistic Boolean Bunched Logic

Example: Backward Chaining. Inference Strategy: Backward Chaining. First-Order Logic. Knowledge Engineering. Example: Proof

Rigorous Software Development CSCI-GA

A Note on Context Logic

Degrees of Truth: the formal logic of classical and quantum probabilities as well as fuzzy sets.

Conjunction is true when both parts of the statement are true. (p is true, q is true. p^q is true)

Properties of Real Numbers

Schedule. Logic (master program) Literature & Online Material. gic. Time and Place. Literature. Exercises & Exam. Online Material

Incenter Circumcenter

Chapter 13: Basic ring theory

COMMUTATIVE RINGS. Definition: A domain is a commutative ring R that satisfies the cancellation law for multiplication:

Chapter II. Controlling Cars on a Bridge

Boolean Algebra. Boolean Algebra. Boolean Algebra. Boolean Algebra

Logic, Algebra and Truth Degrees Siena. A characterization of rst order rational Pavelka's logic

Factorization in Polynomial Rings

Practice with Proofs

Hypothetical Syllogisms 1

CODING TRUE ARITHMETIC IN THE MEDVEDEV AND MUCHNIK DEGREES

Introduction. Appendix D Mathematical Induction D1

ML for the Working Programmer

Formal Specifications of Security Policy Models

Mathematics for Computer Science/Software Engineering. Notes for the course MSM1F3 Dr. R. A. Wilson

Chapter 1. Use the following to answer questions 1-5: In the questions below determine whether the proposition is TRUE or FALSE

Understanding Logic Design

Trust but Verify: Authorization for Web Services. The University of Vermont

Database Design and Normal Forms

CHAPTER 2. Logic. 1. Logic Definitions. Notation: Variables are used to represent propositions. The most common variables used are p, q, and r.

Lecture 1: Systems of Linear Equations

Optimizing Description Logic Subsumption

2.3. Finding polynomial functions. An Introduction:

Mathematical Induction

Regular Languages and Finite Automata

ON FUNCTIONAL SYMBOL-FREE LOGIC PROGRAMS

minimal polyonomial Example

ALGEBRA 2 CRA 2 REVIEW - Chapters 1-6 Answer Section

Software Modeling and Verification

Solutions Q1, Q3, Q4.(a), Q5, Q6 to INTLOGS16 Test 1

Solutions to Homework 6 Mathematics 503 Foundations of Mathematics Spring 2014

A Tutorial Program for Propositional Logic with Human/Computer Interactive Learning

Foundational Proof Certificates

Transcription:

1 Propositional Logic - Axioms and Inference Rules Axioms Axiom 1.1 [Commutativity] (p q) (q p) (p q) (q p) (p q) (q p) Axiom 1.2 [Associativity] p (q r) (p q) r p (q r) (p q) r Axiom 1.3 [Distributivity] p (q r) (p q) (p r) p (q r) (p q) (p r) Axiom 1.4 [De Morgan] (p q) p q (p q) p q Axiom 1.5 [Negation] p p Axiom 1.6 [Excluded Middle] p p T 1

Axiom 1.7 [Contradiction] p p F Axiom 1.8 [Implication] p q p q Axiom 1.9 [Equality] (p q) (p q) (q p) Axiom 1.10 [or-simplification] p p p p T T p F p p (p q) p Axiom 1.11 [and-simplification] p p p p T p p F F p (p q) p Axiom 1.12 [Identity] p p 2

Inference Rules p 1 p 2, p 2 p 3 p 1 p 3 Transitivity p 1 p 2 E(p 1 ) E(p 2 ), E(p 2 ) E(p 1 ) Substitution q 1, q 2,..., q n, q 1 q 2... q n (p 1 p 2 ) E(p 1 ) E(p 2 ), E(p 2 ) E(p 1 ) Conditional Substitution 3

2 Propositional Logic - Derived Theorems Equivalence and Truth Theorem 2.1 [Associativity of ] ((p q) r) (p (q r)) Theorem 2.2 [Identity of ] (T p) p Theorem 2.3 [Truth] T Negation, Inequivalence, and False Theorem 2.4 [Definition of F] F T Theorem 2.5 [Distributivity of over ] (p q) ( p q) ( p q) (p q) Theorem 2.6 [Negation of F] F T 4

Theorem 2.7 [Definition of ] ( p p) F p (p F) Disjunction Theorem 2.8 [Distributivity of over ] (p (q r)) ((p q) (p r)) ((p (q r)) (p q)) (p r) Theorem 2.9 [Distributivity of over ] p (q r) (p q) (p r) Conjunction Theorem 2.10 [Mutual definition of and ] (p q) (p (q (p q))) (p q) ((p q) (p q)) ((p q) p) (q (p q)) ((p q) (p q)) (p q) (((p q) p) q) (p q) Theorem 2.11 [Distributivity of over ] p (q r) (p q) (p r) 5

Theorem 2.12 [Absorption] p ( p q) p q p ( p q) p q Theorem 2.13 [Distributivity of over ] (p q) ((p q) p) ((p q) (p q)) p p (q p) (p q) Theorem 2.14 [Replacement] (p q) (r p) (p q) (r q) Theorem 2.15 [Definition of ] (p q) (p q) ( p q) Theorem 2.16 [Exclusive or] (p q) ( p q) (p q) Implication Theorem 2.17 [Definition of Implication] (p q) ((p q) q) ((p q) (p q)) q (p q) ((p q) p) ((p q) (p q)) p 6

Theorem 2.18 [Contrapositive] (p q) ( q p) Theorem 2.19 [Distributivity of over ] p (q r) ((p q) (p r)) Theorem 2.20 [Shunting] p q r p (q r) Theorem 2.21 [Elimination/Introduction of ] p (p q) p q p (q p) p p (p q) T p (q p) q p (p q) (p q) (p q) p F p F p T Theorem 2.22 [Right Zero of ] (p T) T Theorem 2.23 [Left Identity of ] (T p) p 7

Theorem 2.24 [Weakening/Strengthening] p p q p q p p q p q p (q r) p q p q p (q r) Theorem 2.25 [Modus Ponens] p (p q) q Theorem 2.26 [Proof by Cases] (p r) (q r) (p q r) (p r) ( p r) r Theorem 2.27 [Mutual Implication] (p q) (q p) (p q) Theorem 2.28 [Antisymmetry] (p q) (q p) (p q) Theorem 2.29 [Transitivity] (p q) (q r) (p r) (p q) (q r) (p r) (p q) (q r) (p r) Theorem 2.30 [Monotonicity of ] (p q) (p r q r) 8

Theorem 2.31 [Monotonicity of ] (p q) (p r q r) Substitution Theorem 2.32 [Leibniz] (e f) (E(e) E(f)) Theorem 2.33 [Substitution] (e f) E(e) (e f) E(f) (e f) E(e) (e f) E(f) q (e f) E(e) q (e f) E(f) Theorem 2.34 [Replace by T] p E(p) p E(T) p E(p) p E(T) q p E(p) q p E(T) Theorem 2.35 [Replace by F] p E(p) p E(F) E(p) p E(F) p E(p) p q E(F) p q Theorem 2.36 [Shannon] E(p) (p E(T)) ( p E(F)) 9

3 Propositional Logic - Examples and Exercises 10

4 Predicate Logic - Axioms Axiom 4.1 [Definition of ] i : m i < n : p i (m n) F (m < n) i : m i < n : p i i : m i < n 1 : p i p n 1 Axiom 4.2 [Definition of ] i : m i < n : p i (m n) T (m < n) i : m i < n : p i i : m i < n 1 : p i p n 1 11

Axiom 4.3 [Range Split] (m 1 m 2 m 3 ) i : m 1 i < m 2 : p i i : m 2 i < m 3 : p i i : m 1 i < m 3 : p i (m 1 m 2 ) (n 1 n 2 ) i : m 1 i < n 1 : p i i : m 2 i < n 2 : p i i : m 1 i < n 1 : p i (m 1 m 2 m 3 ) i : m 1 i < m 2 : p i i : m 2 i < m 3 : p i i : m 1 i < m 3 : p i (m 1 m 2 ) (n 1 n 2 ) i : m 1 i < n 1 : p i i : m 2 i < n 2 : p i i : m 1 i < n 1 : p i Axiom 4.4 [Interchange of Dummies] i : m 1 i < n 1 : ( j : m 2 j < n 2 : p i,j ) j : m 2 j < n 2 : ( i : m 1 i < n 1 : p i,j ) i : m 1 i < n 1 : ( j : m 2 j < n 2 : p i,j ) j : m 2 j < n 2 : ( i : m 1 i < n 1 : p i,j ) 12

Axiom 4.5 [Dummy Renaming] i : m i < n : p i j : m j < n : p j Axiom 4.6 [Distributivity of over ] (p ( i : m i < n : q i )) i : m i < n : (p q i ) Axiom 4.7 [Distributivity of over ] p ( i : m i < n : q i ) (m < n) i : m i < n : p q i i : m i < n : p i i : m i < n : q i i : m i < n : (p i q i ) Axiom 4.8 [Distributivity of over ] (p ( i : m i < n : q i )) i : m i < n : (p q i ) Axiom 4.9 [Distributivity of over ] p ( i : m i < n : q i ) (m < n) i : m i < n : (p q i ) i : m i < n : p i i : m i < n : q i i : m i < n : (p i q i ) Axiom 4.10 [Universality of T] i : m i < n : T T 13

Axiom 4.11 [Existence of F] i : m i < n : F F Axiom 4.12 [Generalized De Morgan] ( i : m i < n : p i ) i : m i < n : p i ( i : m i < n : p i ) i : m i < n : p i Axiom 4.13 [Trading] (m i < n) p i i : m i < n : p i (m i < n) p i i : m i < n : p i Axiom 4.14 [Definition of Numerical Quantification] Ni : m i < n : p i (m n) 0 (m < n) p n 1 (m < n) p n 1 Ni : m i < n : p i Ni : m i < n 1 : p i Ni : m i < n : p i Ni : m i < n 1 : p i + 1 14

Axiom 4.15 [Definition of Σ] Σi : m i < n : e i (m n) 0 (m < n) Σi : m i < n : e i Σi : m i < n 1 : e i + e n 1 Axiom 4.16 [Definition of Π] Πi : m i < n : e i (m n) 1 (m < n) Πi : m i < n : e i Πi : m i < n 1 : e i e n 1 15

5 Predicate Logic - Derived Theorems Theorem 5.1 [Definition of ] i : m < i n : p i (m n) F (m < n) i : m < i n : p i i : m+1 < i n : p i p m+1 Theorem 5.2 [Definition of ] (m n) i : m < i n : p i T (m < n) i : m < i n : p i i : m+1 < i n : p i p m+1 16

Theorem 5.3 [Definition of Σ] Σi : m < i n : e i (m n) 0 (m < n) Σi : m < i n : e i Σi : m+1 < i n : e i + e m+1 Theorem 5.4 [Definition of Π] (m n) Πi : m < i n : e i 1 (m < n) Πi : m < i n : e i Πi : m+1 < i n : e i e m+1 17

6 Some Simple Laws of Arithmetic Throughout this compendium, we assume the validity of all simple arithmetic rules. Examples of such rules are all simplification rules, e.g. 2+3 5 x+x 2 x x+y y x (x/3) 3 x 0 x 0 1 x x x x x 2 0 x 0 1 x 1 (2 x+10 20) (x 5) (x+y < 2 y) (x < y) (x+y x+z) (y z) x (y +1) (x+z) (x y z) Following is a collection of theorems that might be used. The list is not exhaustive but intend to show the level of complexity that you can specify theorems on. 18

Theorems on < and (x < y) (y > x) (x < y) (y x) (y < x) (x < y) (x y) (x < y) (x y) (x y) (x < y) (y z) (x < z) (x y) (x > y) (x x) T (x y) (y z) (x z) (x y) (y < z) (x < z) (x y) (x < y) (x < y) (x y 1) (x < y) (x y) (y x) T (x y) (y < x) T (x y) (x < y) (x y) Theorems on properties about + and (x < y) (x < y +1) (x < y +1) (x y) (x < y) (z y < z x) (0 < x) ( x < 0) (x 1 < x) T (x y 1) (x < y) (x y) (x 1 < y) (x 1 < y 1 ) (x 2 < y 2 ) (x 1 +x 2 < y 1 +y 2 ) (x 1 y 1 ) (x 2 y 2 ) (x 1 +x 2 y 1 +y 2 ) 19

Theorems on properties about and / (0 < x) (0 < 2 x) (0 < x) (x < 2 x) (0 < x) (x 2 < x) (0 x/2) (0 x) (x 0) (x y 0) 2 (x/2) x Theorems on equivalence relation (x x) T (x y) (x y) (y x) Theorems about odd(n) and even(n) odd(x) ((x 1) 2 (x 1)/2) even(x) (x 2 x/2) odd(x+2 y) odd(x) even(x+2 y) even(x) odd(x) even(x) odd(x) ((x 1) (x 0)) odd(x) (x 0) F 20

7 Predicate Logic - Examples and Exercises 21

8 Arrays - Axioms 8.1 Axioms Axiom 8.1 [Assignment to Array Element] (i j) (e f) ((b; i : e)[j] f) (i j) (b[j] f) Axiom 8.2 [Definition of Arithmetic Relations] (b[i : j] x) ( k : i k < j +1 : b[k] x) (b[i : j] < x) ( k : i k < j +1 : b[k] < x) (b[i : j] > x) ( k : i k < j +1 : b[k] > x) (b[i : j] x) ( k : i k < j +1 : b[k] x) (b[i : j] x) ( k : i k < j +1 : b[k] x) (b[i : j] x) ( k : i k < j +1 : b[k] x) x b[i : j] ( k : i k < j +1 : x b[k]) 22