1. Photon Beam Damage and Charging at Solid Surfaces John H. Thomas III



Similar documents
Sputtering by Particle Bombardment I

Robert G. Hunsperger. Integrated Optics. Theory and Technology. Fourth Edition. With 195 Figures and 17 Tables. Springer

THIN FILM MATERIALS TECHNOLOGY

h e l p s y o u C O N T R O L

Secondary Ion Mass Spectrometry

Preface Light Microscopy X-ray Diffraction Methods

2. Deposition process

Chemical Sputtering. von Kohlenstoff durch Wasserstoff. W. Jacob

Vacuum Evaporation Recap

Scanning Probe Microscopy

GREEN NANOTECHNOLOGY. Geoffrey. Energy in the Built Environment. Solutions for Sustainability and. B. Smith Claes G. Granqvist.

PHYSICAL METHODS, INSTRUMENTS AND MEASUREMENTS Vol. III - Surface Characterization - Marie-Geneviève Barthés-Labrousse

Electron Microscopy 3. SEM. Image formation, detection, resolution, signal to noise ratio, interaction volume, contrasts

Conductivity of silicon can be changed several orders of magnitude by introducing impurity atoms in silicon crystal lattice.

Edited by. C'unter. and David S. Moore. Gauglitz. Handbook of Spectroscopy. Second, Enlarged Edition. Volume 4. WlLEY-VCH. VerlagCmbH & Co.

Nanometer-scale imaging and metrology, nano-fabrication with the Orion Helium Ion Microscope

BNG 331 Cell-Tissue Material Interactions. Biomaterial Surfaces

Ion Beam Sputtering: Practical Applications to Electron Microscopy

Nanoscience Course Descriptions

Lecture 12. Physical Vapor Deposition: Evaporation and Sputtering Reading: Chapter 12. ECE Dr. Alan Doolittle

UNIVERSITY OF SOUTHAMPTON. Scanning Near-Field Optical Microscope Characterisation of Microstructured Optical Fibre Devices.

Luminescence study of structural changes induced by laser cutting in diamond films

Solar Photovoltaic (PV) Cells

Coating Technology: Evaporation Vs Sputtering

XII. 3.2 Determining Bulk Material Properties Determining the Properties of Fluids 42

Types of Epitaxy. Homoepitaxy. Heteroepitaxy

Testing and characterization of anti-reflection coatings on glass

bulk 5. Surface Analysis Why surface Analysis? Introduction Methods: XPS, AES, RBS

A Study of Haze Generation as Thin Film Materials

Keywords: Planar waveguides, sol-gel technology, transmission electron microscopy

Near-field scanning optical microscopy (SNOM)

Introduction to Thin Film Technology LOT. Chair of Surface and Materials Technology

Graduate Student Presentations

STM, LEED and Mass spectrometry

CSCI 4974 / 6974 Hardware Reverse Engineering. Lecture 8: Microscopy and Imaging

How compact discs are made

CHEMISTRY STANDARDS BASED RUBRIC ATOMIC STRUCTURE AND BONDING

Coating Thickness and Composition Analysis by Micro-EDXRF

vii TABLE OF CONTENTS CHAPTER TITLE PAGE DECLARATION DEDICATION ACKNOWLEDGEMENT ABSTRACT ABSTRAK

Chemical Engineering - CHEN

Chemistry. The student will be able to identify and apply basic safety procedures and identify basic equipment.

Optics and Spectroscopy at Surfaces and Interfaces

The Focused Ion Beam Scanning Electron Microscope: A tool for sample preparation, two and three dimensional imaging. Jacob R.

NEAR FIELD OPTICAL MICROSCOPY AND SPECTROSCOPY WITH STM AND AFM PROBES

Heat and cold storage with PCM

DOE Solar Energy Technologies Program Peer Review. Denver, Colorado April 17-19, 2007

SPM 150 Aarhus with KolibriSensor

The Basics of Scanning Electron Microscopy

Surface Analysis with STM and AFM

Optical Methods of Surface Measurement

Decorative vacuum coating technologies Certottica Longarone. Thin Film Plasma Coating Technologies

Use the BET (after Brunauer, Emmett and Teller) equation is used to give specific surface area from the adsorption

Usage of Carbon Nanotubes in Scanning Probe Microscopes as Probe. Keywords: Carbon Nanotube, Scanning Probe Microscope

Deposition of Thin Metal Films " (on Polymer Substrates)!

TABLE OF CONTENTS CHAPTER NO. TITLE PAGE NO. ABSTRACT

MOS (metal-oxidesemiconductor) 李 2003/12/19

Adsorption at Surfaces

Fast Z-stacking 3D Microscopy Extended Depth of Field Autofocus Z Depth Measurement 3D Surface Analysis

Nanoelectronics 09. Atsufumi Hirohata Department of Electronics. Quick Review over the Last Lecture

State of the art in reactive magnetron sputtering

Physics 441/2: Transmission Electron Microscope

Basic principles and mechanisms of NSOM; Different scanning modes and systems of NSOM; General applications and advantages of NSOM.

1. INTRODUCTION ABSTRACT

Advancements in High Frequency, High Resolution Acoustic Micro Imaging for Thin Silicon Applications

MISCIBILITY AND INTERACTIONS IN CHITOSAN AND POLYACRYLAMIDE MIXTURES

Tableting Punch Performance Can Be Improved With Precision Coatings

Lecture 6 Scanning Tunneling Microscopy (STM) General components of STM; Tunneling current; Feedback system; Tip --- the probe.

Effect of the oxide film formed on the electrical properties of Cu-Zn alloy electric contact material

Scanning He + Ion Beam Microscopy and Metrology. David C Joy University of Tennessee, and Oak Ridge National Laboratory

PLASMA TECHNOLOGY OVERVIEW

J H Liao 1, Jianshe Tang 2,b, Ching Hwa Weng 2, Wei Lu 2, Han Wen Chen 2, John TC Lee 2

Introduction to VLSI Fabrication Technologies. Emanuele Baravelli

3D TOPOGRAPHY & IMAGE OVERLAY OF PRINTED CIRCUIT BOARD ASSEMBLY

Electron Microscopy 3. SEM. Image formation, detection, resolution, signal to noise ratio, interaction volume, contrasts

Metrology of silicon photovoltaic cells using coherence correlation interferometry

CHARACTERIZATION OF POLYMERS BY TMA. W.J. Sichina, National Marketing Manager

It has long been a goal to achieve higher spatial resolution in optical imaging and

4 Thermomechanical Analysis (TMA)

. Tutorial #3 Building Complex Targets

For Touch Panel and LCD Sputtering/PECVD/ Wet Processing

X-ray diffraction techniques for thin films

Contents. Contributors. 1 Quality control and regulation 1 C.J. MOORES

Reactive Fusion Cutting When gas used reacts with gas (usually oxygen) burn reaction adds energy to effect Steel typically 60% added energy Titanium

Excimer Laser Technology

Tecnologie convenzionali nell approccio top-down; I: metodi e problematiche per la deposizione di film sottili

Atomic Force Microscopy Observation and Characterization of a CD Stamper, Lycopodium Spores, and Step-Height Standard Diffraction Grating

Unit 12 Practice Test

Chapter Outline Dislocations and Strengthening Mechanisms

1 Introduction. 1.1 Historical Perspective

Defects Introduction. Bonding + Structure + Defects. Properties

T.M.M. TEKNIKER MICROMACHINING

X-ray Production. Target Interactions. Principles of Imaging Science I (RAD119) X-ray Production & Emission

Graphene a material for the future

Effects of Tg and CTE on Semiconductor Encapsulants

Plasma Cleaner: Physics of Plasma

Opening Note Report on Successful Short Courses Summary of Events in 2014/2015 Featured Article: Depth Profiling of OLED Materials Featured Students

Bending, Forming and Flexing Printed Circuits

Miniaturizing Flexible Circuits for use in Medical Electronics. Nate Kreutter 3M

INTRODUCTION TO SCANNING TUNNELING MICROSCOPY

Transcription:

1. Photon Beam Damage and Charging at Solid Surfaces John H. Thomas III 1. Introduction............................. 2. Electrostatic Charging of Samples in Photoemission Experiments............................ 2.1. Electrostatic Surface Charging...... 2.2. Differential Surface Charging................ 2.3. Lateral and In-Depth Charge Effects... 2.4. Small-Spot Analysis Charging Effects... 3. Energy Scale Calibration... 4. The Auger Parameter: Charge-Independent Chemical Identification........................... 5. Photon Damage... 5.1. Photon Absorption Processes... 5.2. Radiation Damage to Inorganic Materials... 5.3. Photon Damage to Polymers................ 6. Closing Comments... References............................... 1 2 2 8 10 13 13 18 20 20 25 29 34 35 2. Electron Beam Damage at Solid Surfaces Carlo G. Pantano, Andrew S. D Souza and Alan M. Then 1. Introduction............................. 2. Fundamentals... 2.1. Electronic Excitation Processes................ 2.1.1. Electron-Stimulated Desorption.... 2.1.2. Electron-Stimulated Adsorption........... 2.1.3. Decomposition of Surface Layers and Thin Films....................... xiii 39 41 41 41 45 49

xiv Contents 2.1.4. Oxidation of Surface Layers and Thin Films... 2.1.5. Thresholds for Sample Damage Resulting from Electronic Excitation..... 2.2. Charging Insulators... 2.3. Electromigration in Insulators... 2.4. Electron-Beam-Induced Heating... 3. Electron Beam Effects in Auger Surface Analyses..... 3.1. Physical Effects... 3.2. Contaminated, Oxidized, or Coated Surfaces... 3.3. Polymers... 3.4. Glasses... 3.5. Sputter Depth Profiles... 3.6. Microanalyses...... 4. Recommendations... 5. References... 5.1. Review of Beam Damage in Electron Microscopy... 5.2. General Discussions of Electron Beam Damage in Surface Analysis... 5.3. Fundamentals of Electron-Stimulated Desorption..... 5.4. Studies of Electron Beam Interactions at Solid Surfaces... 5.5. Charging of Insulators Resulting from Electron Beam Irradiation... 5.6. Electron Beam Damage in Glasses... 5.7. Electron Beam Damage during Surface Analysis... 53 54 58 60 64 65 65 69 74 74 80 83 85 88 92 93 94 3. Ion Beam Bombardment Effects on Solid Surfaces at Energies Used for Sputter Depth Profiling L. S. Dake, D. E. King, J. R. Pitts, and A. W. Czanderna 1. Introduction... 1.1. Overview... 1.2. Ion Beams and Solids: Topics Not Covered... 1.3. Definitions and Nomenclature... 1.4. Overview of Ion Surface and Ion Solid Interactions... 2. IonBeam Solid Interactions.... 2.1. Introduction...... 2.2. Ion Beam... 2.2.1. Reflection/Backscattering............. 2.2.2. Penetration and Trapping... 2.3. Ion Substrate Interactions...... 97 97 102 103 105 108 108 110 110 111 116

xv 2.4. Mixing and Implantation of Material... 2.4.1. Ballistic Mixing... 2.4.2. Diffusional Mixing Processes.... 2.5. Removal of Material..................... 2.5.1. Physical Sputtering.... 2.5.2. Sputter Yields... 2.5.3. Differential Sputtering... 2.6. Altered Layer (Zone of Mixing)... 3. Structural Changes Resulting from Ion Beam Bombardment.... 3.1. Bond Stretching, Bond Breaking, and Surface Reconstruction from Ion Beam Bombardment.... 3.2. Structural Changes as Nanotopography from Ion Beam Bombardment... 3.3. Surface Defect Formation from Ion Beam Bombardment... 3.4. Damage Depth and Defect Density from Ion Beam Bombardment... 3.5. Enhanced Diffusion and Changes in Electrical Properties from Ion Beam Bombardment... 4. Physical Effects: Ion-Beam-Induced Topography.... 4.1. Introduction... 4.2. Mechanisms for Topography Development..... 4.3. Microscopic and Macroscopic Roughness.... 4.4. Etch Pits... 4.5. Pyramids... 4.6. Cones... 4.7. Whiskers... 4.8. Ripples and Corrugation... 4.9. Sputter-Induced Recrystallization... 4.10. Coalescence to Form Islands... 4.11. Swelling... 4.12. Smoothing... 4.13. Miscellaneous Results...... 4.13.1. Topographical Differences in the Same Sample... 4.13.2. Topography of Kapton and Teflon after Atom Beam Bombardment... 4.13.3. Sputtering with Non-Noble-Gas Ions.... 4.13.4. Annealing Sputter Damage... 4.14. Concluding Remarks... 5. Compositional Changes and Chemical Effects...... 5.1. Introduction... 118 118 122 123 124 125 131 133 139 140 143 149 154 163 168 168 169 173 176 181 182 189 189 193 193 194 194 197 197 198 198

xvi Contents 5.2. Organic Materials... 5.3. Alloys... 5.3.1. Ternary Alloys... 5.4. Semiconductors... 5.5. Metal Oxides... 5.5.1. Simple Metal Oxides.... 5.5.2. Complex Oxides: Perovskites... 5.5.3. Complex Oxides: Glasses...... 5.6. Compounds... 5.7. Calculations and Simulations... 6. Depth Resolution: Sample, Beam, and Instrumental Effects... 6.1. Introduction... 6.2. Nature and Condition of the Sample... 6.3. Ion Beam Bombardment Effects... 6.4. Instrumental Effects... 6.5. Ultimate and Practical Limits on... 7. Combined Beam Effects... 8. Applications... 9. Summary and Concluding Remarks... References... Appendix 1. Acronyms and Abbreviations... 203 206 210 211 213 213 217 218 221 226 227 227 227 231 239 247 249 251 252 255 273 4. Characterization of Surface Topography T. V. Vorburger, J. A. Dagata, G. Wilkening, and K. Iizuka 1. Introduction... 2. Results Obtainable with Profiling Instruments........... 2.1. Profile Recordings and Dimensional Measurement... 2.2. Surface Statistics... 2.2.1. Surface Parameters... 2.2.2. Statistical Functions... 2.2.3. Other Statistical Descriptors... 2.3. Bandwidth Limits... 3. Stylus Instruments... 3.1. Height Resolution and Range... 3.2. Lateral Resolution and Range... 3.3. Stylus Load and Surface Deformation... 3.4. Other Distortions..... 3.5. Calibration... 275 279 279 281 282 285 290 290 291 291 293 296 297 299

xvii 3.6. Applications... 3.7. Area Profiling with Stylus Instruments.... 4. Optical Profiling Techniques...... 5. Scanned Probe Microscopy... 5.1. Short History of Scanned Probe Microscopy.... 5.2. Calibration and Characterization... 5.2.1. Instruments for Displacement Calibration... 5.2.2. Calibration Specimens for Displacement... 5.2.3. Instruments for Critical Dimensions and High Resolution................... 5.2.4. Specimens for Critical Dimensions... 5.3. Other Types of Scanned Probe Microscopes..... 5.3.1. Force-Based Methods (Mechanical).... 5.3.2. Methods Based on Other Probe-Sample Interactions... 5.4. Applications of SPM Measurements... 5.4.1. Data Storage Industries...... 5.4.2. Microelectronics Industries.... 5.4.3. Polymers and Coatings Industries... 5.4.4. Optical Element Industries..... 5.4.5. Mechanical Parts Industries and Materials Science... 5.4.6. Electrochemical Science... 5.5. Future Directions: Techniques and Instrumentation... 6. Intercomparisons......... 7. Conclusions... References... 300 300 302 307 307 311 311 314 315 318 319 321 323 325 325 326 327 327 328 329 330 334 339 341 5. Depth Profiling Using Sputtering Methods H. W. Werner and P. R. Boudewijn 1. Introduction... 1.1. Principle of Sputter Depth Profiling... 1.2. Methods for Sputter Depth Profiling... 1.3. Different Modes of Sputter Depth Profiling... 1.3.1. Planar Sputter Depth Profiling... 1.3.2. Crater-Wall, Tapered-Section, or Angular-Mapping Depth Profiling... 1.4. Comparison of Sputter Depth Profiling with Other Methods... 1.4.1. Consumptive Methods for Depth Profiling... 355 357 359 360 360 362 362 362

xviii Contents 1.4.2. Nonconsumptive Methods and Modes for Depth Profiling...... 2. Physical Basis of the Sputtering Process... 2.1. Introduction... 2.2. Theory of the Sputtering Process...... 2.2.1. Binary Collision Theory.............. 2.2.2. Classification of Sputtering Events... 2.2.3. Sputtering from Linear Collision Cascades... 2.3. Sputtering Yields (Experimental).............. 2.4. Information Depth... 2.5. Processes Related to Sputtering... 3. Experimental Aspects...... 3.1. Introduction.... 3.2. Ion Beam Sources..... 3.3. Time Needed to Obtain a Depth Profile.... 4. Analysis of Sputter Depth Profiles... 4.1. Introduction..... 4.2. Conversion of the Sputter Depth Profile of an Element X, I(X, t), into a Concentration Depth Profile c(z)... 4.2.1. Determination of the Depth Scale... 4.2.2. Conversion of the Measured Signal I into an Elemental Concentration c... 4.3. Artifacts in Sputter Depth Profiles... 4.3.1. Artifacts Related to the Interaction Process between Energetic Projectiles and the Solid... 4.3.2. Artifacts Related to the Properties of the Sample. 4.3.3. Artifacts Related to Instrumental Parameters... 4.4. Evaluation of a Measured Depth Profile.... 4.4.1. Depth Resolution... 4.4.2. Detection Limit for a Given Element... 5. Application of Sputter Depth Profiling to Various Thin-Film Materials... 5.1. Stable Isotope Tracers... 5.2. Thin-Film Interdiffusion and Multilayer Analysis.... 5.3. Corrosion and Oxidation...... 5.4. Catalysts... 5.5. Polymer Metal Interfaces.... 5.6. Insulating Materials... 5.7. Semiconductor Materials..... 5.8. Miscellaneous Applications..... 5.9. Newcomers to Sputter-Depth-Profiling Techniques... 363 367 367 371 373 376 378 378 378 381 383 386 386 389 391 394 394 396 397 397 398 398 402 402 403 405 409 411

xix 6. Summary and Future Prospects.... 412 Acknowledgment... 412 References... 412 Index... 421