II. SOLUTIONS TO HOMEWORK PROLEMS Unit Prolem Solutions 757.25. (). () 23.7 6 757.25 6 47 r5 6 6 2 r5= 6 (4). r2 757.25 = 25.4 6 =. 2 2 5 4 6 23.7 6 7 r 6 r7 (2).72 6 ().52 6 (8).32. () 6 356.89 6 22 r4 6 6 r6 (4).24 r 6 (3).84 6 (3).44 6 (7).4 356.89 = 64.E3 6 =. 2 6 4 E 3 23.7 = 7.2 6 =. 2 7 2. () 63.5 6 63.5 6 66 r7 6 6 4 r2 (8). r4 63.5 = 427.8 6 =. 2 4 2 7 8.2 () E.6 6 = E 6 2 + 6 + 6 + 6 6.2() 59. 6 = 5 6 2 + 9 6 + 6 + 6 = 4 256 + 6 + + 6/6 = 376.375.() 2 E 6 726.3 8 = 7 8 3 + 2 8 2 + 6 8 + + 3 8 = 7 52 + 2 64 + 6 8 + + 3/8 = 376.375. 8 7 2 6 3 = 5 256 + 9 6 + 3 + 2/6 = 437.75. 6 5 9 2635.6 8 = 2 8 3 + 6 8 2 + 3 8 + 5 8 + 6 8 = 2 52 + 6 64 + 3 8 + 5 + 6/8 = 437.75. 8 2 6 3 5 6.3 3.25 4 = 3 4 2 + 4 + 4 + 2 4.4 () 457. + 5 4 2 = 588 + 54 + +.684 = 752.684 6 752.684 6 25 r2 6 6 2 r5 ().4 6 3 r2 6 r3 ().624 6 ().3744 6 (2).2464 6 ().4784 3.25 4 = 752.684 = 3252.2 6 5 6 457. 6 9 r 6 6 5 r= 6 ().76 r5 6 (2).6 457. = 5. 6 5.4 () 5. 6 =. 2 =266.7 8 2 6 6 7.4 () 5. 6 = 23. 3 4 5.4 () E. 6 = 6 2 + E 6 + 6 + 6 = 3328 + 224 + 2 +.625 =3564.625
.5 () () (Su) + (Multiply).5 (, ) See L p. 625 for solution..6,.7,.8 See L p. 625 for solution.. (). () 35.375 6 35.375 6 8 r9 6 5 r (6). 35.375 = 59.6 6 =. 2 5 9 6 6 3.2 6 8 r3 6 r2 ().92 6 (4).72. ().33 6.33 6 r5 = 6 6 (5).28 6 (4).48.33 = 6.54 6 =. 2 6 5 4. () 644.875 6 644.875 6 2 r2 6 6 r6 (4). 3.2 = 2.E 8 =. 2 2 E 644.875 = 66.E 6 =. 2 6 6 E. (). 2 = 5724.5 8 = 5 8 3 + 7 8 2 + 2 8 + 4 8 + 5 8 = 5 52 + 7 64 + 2 8 + 4 + 5/8 = 328.625. (). 2 = 457.2 8 = 4 8 3 + 8 2 5 8 + 7 8 + 2 8 = 4 52 + 64 + 5 8 + 7 + 2/8 = 259.25. 2 = 4. 6 6 2 + 6 + 4 6 + 6 256 + 3 6 + 4 + /6 = 328.625. 2 = 86.4 6 = 8 6 2 + 6 6 + 6 4 6 = 8 256 + 6 6 + 5 + 4/6 = 259.25.2 () 375.54 8 = 3 64+ 7 8 + 5 + 5/8 + 4/64 = 253.6875 3 253.69 3 84 r 3 3 28 r (2).7 3 9 r 3 3 3 r ().2 3 r 3 r ().63 3 ().89 375.54 8 =.2 3 6.2 () 384.74 4 384.74 4 96 r 4 4 24 r (2).96 4 6 r 4 4 r2 (3).84 r 4 (3).36 384.74 = 2.2333 4...
.2 ().4 ().4 () 52.4 = 2 + 5 + 2 + / + 4/2 = 267.94 9 267.94 9 4 r7 9 9 5 r5 (8).46 9 r6 9 r (4).4 52.4 = 267.94 = 657.8427 9... 2983 63/64 = 8 2983.984 8 372 r7 8 8 46 r4 (7).872 9 5 r6 8 r5 (6).976 2983 63/64 = 5647.76 8 (or 5647.77 8 ) =. 2 (or. 2) 9 3/32 8 9.969 8 273 r4 8 8 29 r5 (7).752 9 3 r5 8 r3 (6).6.3 22.22 3 2 2.2 2 = 425.673 9 se 3 se 9 2 2 3 4 2 5 2 6 2 7 22 8.4 () 93.7 8 93.7 8 r5 8 8 r3 (5).6 r 8 (4).8 93.7 = 35.54 8 =. 2.4 () 9.3 8 9.3 8 3 r5 8 8 r5 (2).4 r 8 (3).2 9 3/32 = 3554.76 8 =. 2 9.3 = 55.23 8 =. 2.5 () () (Sutrt) (Multiply).5() () (Su) (Mult) 7
.5() () (Su) (Mult).6 () () ().7 () Quotient ) Reminer.7() Quotient ) Reminer.7().8 ().8() Quotient ) Reminer Quotient ) Reminer Quotient ) Reminer.8().9 Quotient ) Reminer 4 3 2 2 3 4 5 6 7 8 9 8 954 =
.2 5-3-- is possile, ut 6-4-- is not, euse there is no wy to represent 3 or 9. lternte Solutions:.2 5-4-- is not possile, euse there is no wy to represent 3 or 8. 6-3-2- is possile: 6 3 2.22 5 3 () 2 2 3 3 4 4 () 5 5 6 6 () 7 7 8 8 9 9 () 6 2 2 2 3 4 5 6 7 8 9 = 83 lternte Solutions: () () () ().23 lternte.24 lternte Solutions: Solutions: 5 2 2 2 3 4 5 6 7 8 9 = 94 () () () () 7 3 2 2 3 4 5 6 7 8 9 () () 49 = lt.: = " " " 6 222.22 6 3 r4 6 r3 (3).52 6 (8).32 222.22 = E.38 6 = E. 3 8 6 83.8 6 r7 6 r (2).96 6 (5).36 83.8 = 7. 6 = 7. 9
.26 () In 2 s omplement In s omplement ( ) + ( ) ( ) + ( ) () ( 2) ( 2).26 () In 2 s omplement In s omplement ( ) + ( 6) ( ) + ( 6) () ( 6) ( 6).26 () ( 8) + ( ) ( 8) + ( ) () ( 9) ( 9).26 () + 9 + 9 (2) (2).26 (e) ( ) + ( 4) ( ) + ( 4) () ( 5) ( 5).27 () In 2 s omplement In s omplement + +.27 () In 2 s omplement In s omplement + + ().27 () + + () overflow overflow.27 () + + ().27 (e) In 2 s omplement In s omplement + + ().28 () In 2 s omplement In s omplement + + ().28 () + +.28 () + + () overflow overflow.28 () + +
Unit 2 Prolem Solutions 2. See L p. 626 for solution. 2.2 () In oth ses, if =, the trnsmission is, n if =, the trnsmission is. 2.2 () In oth ses, if =, the trnsmission is YZ, n if =, the trnsmission is. Y Y Z Y Z 2.3 or the nswer to 2.3, refer to L p. 626 2.4 () = [( ) + ( )] + E + = + E + 2.4 () Y = (' + ( + )) + = (' + ) + = ( + ) + = + + = + 2.5 () ( + ) ( + ) (' + ) (' + E) = ( + ) (' + ) (' + E) y Th. 8 = (' + ) (' + E) y Th. 8 = ' + E y Th. 8 2.5 () (' + + ') (' + ' + ) (' + ') = (' + ' + ) (' + ') {y Th. 8 with = ' + '} = '' + '' + ' + '' + '' + ' = '' + '' + '' + '' 2.6 () + '' = ( + ') ( + ') 2.6 () W + WY' + ZY = (W + WY' + ZY) = ( + ') ( + ') ( + ') ( + ') = (W + ZY) {y Th. } = (W +Z) (W + Y) 2.6 () ' + E + E' = ' + E( +') = ' + E( +) = (' + E) (' + + ) = (' + E) ( + E) ( + E) (' + + ) ( + + ) ( + + ) 2.6 () YZ + W'Z + Q'Z = Z(Y + W' + Q') = Z[W' + (Y + Q')] = Z(W' + ) (W' + Y + Q') y Th. 8 2.6 (e) ' + '' + ' = ' ( + ') + ' = ' ( + ') + ' y Th. = (' + ') ( + ' + ') = (' + ') (' + ) ( + ' + ') y Th. = (' + ') ( + ') 2.6 (f) + + E = ( + + ) ( + + E) = ( + + ) ( + + ) ( + + E) ( + + E) 2.7 () ( + + + ) ( + + + E) ( + + + ) = + + + E pply seon istriutive lw (Th. 8) twie 2.7 () WYZ + VYZ + UYZ = YZ (W + V + U) y first istriutive lw (Th. 8) U V W E Y Z 2.8 () [()' + ']' = (')' = ( + ') 2.8 () [ + (' + )]' = '((' + ))' = + ' = '(' + (' + )') = '(' + ') = '' + '' 2.8 () (( + ') )' ( + ) ( + )' = (' + ') ( + )'' = (' + ')'' = ''
2.9 () = [( + )' + ( + ( + )')'] ( + ( + )')' 2.9 () G = {[(R + S + T)' PT(R + S)']' T}' = ( + ( + )')' y Th. with =(+(+)')' = (R + S + T)' PT(R + S)' + T' = '( + ) = ' = T' + (R'S'T') P(R'S')T = T' + PR'S'T'T = T' 2. () Y 2. () Y Y Y' Y' 2. () ' Y Z Y Z 2. () ' 2. (e) 2. (f) Y Z Y Z Y Y 2. () '' + ('')' = y Th. 5 2. () ( + ') + + ' = + ' y Th. 2. () + + '( + )' = + + ' y Th. 2. () (' + ')(' + E) = ' + 'E y Th. 8 2. (e) [' + ()' +E'] = ' + E' y Th. 8 2. (f) (' + )('E + )' + ('E + ) = 'E + + ' + y Th. 2.2 () ( + Y'Z)( + Y'Z)' = y Th. 5 2.2 () (W + ' + YZ)(W' + ' + YZ) = '+ YZ y Th. 9 2.2 () (V'W + )' ( + Y + Z + V'W) = (V'W + )' (Y + Z) y Th. 2.2 () (V' + W')(V' + W' + Y'Z) = V' + W' y Th. 2.2 (e) (W' + )YZ' + (W' + )'YZ' = YZ' y Th. 9 2.2 (f) (V' + U + W)(W + Y + UZ') + (W + UZ' + Y) = W + UZ' + Y y Th. 2.3 () = ' + + ( + ) = + + = 2.3 () 2 = '' + ' = ' + ' = ' + ' 2.3 () 3 = [( + )'][( + ) + ] = ( + )' ( + ) + ( + )' = ( + )' y Th. 5 & Th. 2 2.3 () Z = [( + )]' + ( + ) = [( + )]' + y Th. with Y = [( + ) ]' = '' + ' + ' 2.4 () ( + E + ) 2.4 () W + Y + Z + VU 2
2.5 () 2.5 () 2.5 () 2.5 () 2.5 (e) 2.5 (f) H'I' + JK = (H'I' + J)(H'I' + K) = (H' + J)(I' + J)(H' + K)(I' + K) + '' + ' = ( + '' + ') = [(' + )( + ') + '] = (' + + ')( + ' + ') ' + + E' = (' + + E') = [' + ( + E')] = (' + )(' + + E') ' + '' + E' = ' + '' + E' = ' ( + ') + E' = (' + E') ( + ' + E') = (' + E) (' + ') ( + E) ( + ' ) ( + ' + E) ( + ' + ') W'Y + W'' + W'Y' = '(WY + W') + W'Y' = '(W' + Y) + W'Y' = (' + W') (' + Y') (W' + Y + W') (W' + Y + Y') = (' + W') (' + Y') (W' + Y) ' + (' + E) = ' + ( + E)(' + E) = (' + + E)(' + ' + E) = ( + + E)(' + + E)( + ' + E)(' + ' + E) 2.6 () W + 'YZ = (W + ')(W + Y) (W + Z) 2.6 () VW + Y' + Z = (V++Z)(V+Y'+Z)(W++Z)(W+Y'+Z) 2.6 () '' + '' + 'E' = '(' + ' + E') 2.6 () = '[E' + (' + ')] = '(E' + )(E' + ' + ') + E' + ' = ( + E' + ') = [E' + ( + ')] = (E' + )(E' + + ') = ( + )( + E')( + ' + )( + ' + E') 2.7 () [(Y)' + (' + Y')'Z] = ' + Y' + (' + Y')'Z 2.7 () ( + (Y(Z + W)')')' = 'Y(Z + W)' = 'YZ'W' = ' + Y' + Z y Th. with Y = (' + Y') 2.7 () [(' + ')' + ('')' + '']' = (' + ')''( + ) = '' 2.7 () ( + ) ' + ( + )' = ' + ( + )' {y Th. with Y = ( + )'} = ' + '' 2.8 () = [(' + )']' + = [' + + '] + = + 2.8 () G = [()'( + )]' = ( + '') = 2.8 () H = [W''(Y' + Z')]' = W + + YZ 2.9 = (V + + W) (V + + Y) (V + Z) = (V + + WY)(V + Z) = V + Z ( + WY) y Th. 8 with = V W 2.2 () = + ' + ' + ' = + ' + ' (y Th. 9) = ( + ') + ' = (+ ) + ' (y Th. ) = + + ' = + ( + ') = + ( + ) = + + + 2.2 () Y + Z V eginning with the nswer to (): = ( + ) + + + lternte solutions: = + ( + ) + 3 = + ( + )
2.2 () W Y Z W'Y WZ W'Y+WZ W'+Z W+Y (W'+Z)(W+Y) 2.2 () + +' (+)(+') ' +' 2.2 () Y Z +Y '+Z (+Y)('+Z) Z 'Y Z+'Y 2-2 () Y Z Y YZ 'Z Y+YZ+'Z Y+'Z 4
2.2 (e) Y Z +Y Y+Z '+Z (+Y)(Y+Z)('+Z) (+Y)('+Z) 2.22 ( + ) =, = [(+Y')Y] = Y' + Y, (Y) = + Y Unit 3 Prolem Solutions 3.6 () (W + ' + Z') (W' + Y') (W' + + Z') (W + ') (W + Y + Z) = (W + ') (W' + Y') (W' + + Z') (W + Y + Z) = (W + ') [W' + Y' ( + Z')] (W + Y + Z ) = [W + ' (Y + Z)] [W' + Y'( + Z')] = WY' ( + Z') + W'' (Y + Z) {Using ( + Y) (' + Z) = 'Y +Z with =W} = WY' + WY'Z' + W''Y + W''Z 3.6 () ( + + + ) (' + ' + + ') (' + ) ( + ) ( + + ) = ( + + ) (' + ) ( + ) = ( + + ) (' + ) {Using ( + Y) (' + Z) = 'Y + Z with = } = ' + ' + ' + + + = ' + 3.7 () + '' + '' + = + '(' + ') = (' + ) [ + (' + ')] {Using ( + Y) (' + Z) = 'Y + Z with =} = (' + ) [ + (' + ') (' + )] = (' + ) ( + ' + ') 3.7 () ''' + ' + ' + ' 3.8 = ' ('' + ) + (' + ') = ' [(' + ) ( + ')] + [(' + ') (' + )] {Using Y + 'Z = (' + Y) ( + Z) twie insie the rkets} = [ + (' + ) ( + ')] [' + (' + ') (' + )] {Using Y + 'Z = (' + Y) ( + Z) with = } = ( + ' + ) ( + + ') (' + ' + ') ( ' + ' + ) {Using the istriutive Lw} = [( ) + ] = ( + '' + ) = ('' + ) = (' + ) = ()' (' + ) + (' + )' = (' + ') (' + ) + (') = ' + ' + ' {Using ( + Y) ( + Z) = + YZ} = ' + ' + ' {Using + 'Y = + Y} 3.9 = ( Β) (Α ) is not vli istriutive lw. PROO: Let =, =, =. LHS: = = =. RHS: ( ) ( ) = ( ) ( ) = =. 5
3. () ( + W) (Y Z) + W' = ( + W) (YZ' + Y'Z) + W' = YZ' + Y'Z + WYZ' + WY'Z + W' 3. () ( ) + + = ' + ()' + + = ' + (' + ') + + = ' + ' + ' + + Using onsensus Theorem WYZ' + WY'Z + W' = ' + ' + ' + + + ( onsensus term, eliminte ) = ' + ' + ' + (Remove onsensus term ) 3. () (' + ' + ') (' + + ') ( + + ) ( + + ) = (' + ' + ') ( + ' + ) (' + + ') ( + + ) ( + + ) onsensus term = (' + + ') ( + + ) = (' + ' + ') ( + ' + ) ( + + ) Removing onsensus terms 3. ( + ' + + E') ( + ' +' + E) (' + ' + ' + E') = [ + ' + ( + E') (' + E)] (' + ' + ' + E') = ( + ' + 'E' + E) (' + ' + ' + E') = ' + ( + 'E' + E) (' + ' + E') ' { onsensus term} = ' + ' + ' + E' + ''E' + 'E' + 'E' + 'E = ' + ' + ' + E' + ' +'E + 'E' = ' + ' + E' + ' + 'E' 3.2 ''E + ''' + E + = ''' + + 'E Proof: LHS: ''E + 'E + ''' + E + onsensus term to left-hn sie n use it to eliminte two onsensus terms = 'E + ''' + This yiels the right-hn sie. LHS = RHS 3.3 () (' + ' + ) (' + ) ( + ' + ') (' + + ) ( + ) = (' + + '') ( + ') = ( + '') + ('') {Using Y + 'Z = ( + Z)(' + Y) with = } = + '' + '' 3.3 () (' + ' + ') ( + + ') ( + ) (' + ) (' + + ) = [' + (' + ')] [ + ( + ')] = (' + ') + ' ( + ') = ' + ' + ' + '' 3.3 () (' + ' + ) ( + ') (' + + ') ( + ) ( + + ') = [' + (' + ) ( + ')] ( + ') = (' + + '') ( + ') {y Th. 4 with = } = ( + '') + '' {y Th. 4 with = } = + '' + '' 3.3 () 3.3 (e) ( + + ) (' + ' + ') (' + ' + ') ( + + ) = ( + + ) (' + ' + '') = ( ' + '') + '( + ) {y Th. 4 with = } = ' + '' + ' + ' ( + + ) ( + + ) (' + ' + ') (' + ' + ') = ( + + ) (' + ' + '') = (' + '') + '( + ) = ' + '' + ' + ' lt. soln's: ' + ' + '' + ' (or) ' + ' + ' + '' (or) ' + ' + '' + ' 3.4 () ' + '' + ' = '' + ' = ('' + ') = (' + '') {y Th. with Y = '} = ' + '' 6
3.4 () '' + ' + '' = '' + '( + ') = '' + '( + ) = '' + ' + ' 3.4 () 3.4 () 3.5 () 3.5 () 3.5 () ( + ') (' + ' + ) (' + + ') = ' + (' + ) ( + ') = ' + ( + ') = ' + (' + + ' + ) (' + ' + + E) (' +' + + E') = [' + ' + ( + ) ( + E) ( + E')] {y Th. 8 twie with = ' + '} = [' + ' + ( + )] = [' + ' + ] = '' + ' + + '' = ' ( + ') + ('' + ) = ' [( + ') ( + )] + [(' + ) ( + ')] {y Th. 4 twie with = n = } = [ + ( + ') ( + ) ] [' + (' + ) ( + ')] {y Th. 4 with = } = ( + + ') ( + + ) (' + ' + ) (' + + ') {y istriutive Lw} + '' + ''' + ' = ' (' + '') + ( + ') = ( + ' + '') (' + + ') {y Th. 4 with = } = ( + ' + ') ( + ' + ') (' + + ) (' + + ') + '' + '' + '' = ' [' + '] + [ + ''] = ' [( + ) (' + ')] + [( + ') ( + ')] = [ + ( + ) (' + ')][' + ( + ') ( + ')] = ( + + ) ( + ' + ') (' + + ') (' + + ') 3.5 () '' + '' + '' + = ('' + ) + ' (' + ') = ( + ') ( + ') + ' (' + ') ( + ) = [' + ( + ') ( + ')] [ + (' + ') ( + )] = (' + + ') (' + + ') ( + ' + ') ( + + ) 3.5 (e) WY + W'Y + WYZ + YZ' = WY ( + ' + Z) + YZ' = WY + YZ' = Y (W + Z') = Y (W + ) (W + Z') 3.6 () ( ) + '' = ()' + ' + '' = (' + ') + ' + '' = (' + ') + ' ( + ') = (' + ' + ') ( + ' + ) = (' + ' + ') ( + ' + ) ( + ' + ) 3.6 () ' ( ') + + ' = ' ['' + ] + + ' = ''' + ' + + ' = ''' + ( + ' + ') = ''' + ( + ' + ') = ''' + = + '' = (' + ) (' + ) 3.7 () 3.7 () ( Y) Z = (Y Z) Proof: LHS: Let Y =. Z = Z' + 'Z = ( Y) Z' + ( Y)' Z = ( Y ) Z' + ( Y) Z {y (3-8) on L p. 6) = ('Y + Y') Z' + (Y + 'Y') Z = 'YZ' + Y'Z' + YZ + 'Y'Z RHS: Let Y Z =. = ' + ' = (Y Z)' + ' (Y Z) = (Y Z) + ' (Y Z) = [YZ + Y'Z'] + ' [YZ' + Y'Z] = YZ + Y'Z' + 'YZ' + 'Y'Z LHS = RHS ( Y) Z = (Y Z) Proof: LHS: Let Y =. ( Z) = Z + 'Z' = ( Y) Z + ( Y)' Z' = ( Y ) Z + ( Y) Z' = (Y + 'Y') Z + (Y' + 'Y) Z' = YZ + 'Y'Z + Y'Z' + 'YZ' RHS: Let Y Z =. ( ) = + '' = (Y Z) + ' (Y Z)' = (Y Z) + ' (Y Z) = [YZ + Y'Z'] + ' [Y'Z + YZ'] = YZ + Y'Z' + 'Y'Z + 'YZ' LHS = RHS 3.8 () '' + ' + ' + ' + '' = '' + ' + ' + '' = ' + ' + '' 3.8 () W'Y' + WYZ + Y'Z + W'Y + WZ = W'Y' + WYZ + Y'Z + W'Y + WZ = W'Y' + WYZ + W'Y + WZ = W'Y' + W'Y + WZ 7
3.8 () ( + + ) ( + + ) (' + + ) (' + ' + ') = ( + + ) (' + + ) (' + ' + ') 3.8 () W'Y + WZ + WY'Z + W'Z' = W'Y + WZ + WY'Z +W'Z' + YZ = WY'Z + W'Z' + YZ YZ ( onsensus term) 3.8 (e) '' + '' + ' + ' + ' = '' + ' + ' 3.8 (f) ( + + ) ( + ' + ) ( + + ) (' + ' + ') = ( + + ) ( + ' + ) (' + ' + ') 3.9 Z = + E + + ' + 'E' = ( + + ' + 'E') + E = ( + E) (E + + + ' + 'E') {y Th. 8 with = E} = ( + ) ( + E) ( + + ' + E + 'E') = ( + ) ( + E) (' + E + ' + + ) {Sine E + 'E' = E + '} = ( + ) ( + E) (' + E + ' + + ) {Sine ' + = ' + } = ( + ) ( + E) (' + E + ' +) {Sine + = } = ( + E) (' + E + ' + ) = ' + E + ' + + E + E' + E {eliminte onsensus term E; use + Y = where = E} 3.2 = ' + ' + + E = ' + + '' + E + = ( + ) (' + ) + ('' + E + ) = [( + ) (' + ) + ] [( + ) (' + ) + '' + E + ] = ( + ) (' + + ) ( + + '' + E + ) (' + + '' + E + ) + + ' = ( + ) (' + + ) ( + ) ( + + '' + E + ) (' + + ' + E + ) = ( + ) ( + ) (' + + ' + E + ) = ( + ) ( + ) (' + + ' + + E) = ( + ) ( + ) (' + + ' + ) = ( + ) (' + + ' + ) = (' + + ' + + + ' + = ' + ' + + use onsensus, + Y = where = 3.2 'Y'Z' + YZ = ( + Y'Z') (' + YZ) = ( + Y') ( + Z') (' + Y) (' + Z) (Y + Z') = ( + Y') ( + Z') (' + Y) (' + Z) (Y + Z') = ( + Y') ( + Z') (' + Z) (Y + Z') = ( + Y') (' + Z) (Y + Z') lt.: (' + Y) (Y' + Z) ( + Z') y ing (Y' + Z) s onsensus in 3r step 3.22 () y + 'yz' + yz = y ( + 'z') + yz = y + yz' + yz = y + y = y lternte Solution: y + 'yz' + yz = y ( + 'z' + z) = y ( + z' + z) = y ( + ) = y 3.22 () 3.22 () y' + z + (' + y) z' = 'y + (' + y) {y Th. with Y = z} = y' + ' + y = + ' + y = + y = lt.: y' + z + (' + y) z' = (y' + z) + (y' + z)' = 8 3.22 () (y' + z) ( + y') z = (y' + z + y'z) z = y'z + z + y'z = z + y'z lternte Solution: (y' + z) (+y') z = z ( + y') = z + zy' ' (' + ) + '' ( + ') +(' + ) ( + ') = '' + ' + '' + ''' + '' + = '' + '' + '' + ' Other Solutions: '' + + ''' + '' '' + + ''' + ' '' + + '' + '
3.22 (e) w'' + 'y' + yz + w'z' + 'z reunnt term = w'' + 'y' + yz + w'z' + 'z = 'y' + yz + w'z' + 'z Remove reunnt term = 'y' + yz + w'z' 3.22 (g) [(' + ' + ') ( + + ')]' + ''' + '' = ( + ') + '' (' + ) +''' + '' = + '+ ''' + '' + ''' + '' ' '' = + ''' + '' + ' = + '' + ' 3.22 (f) ' + ''+ 'E+ E'G+'E+''E = ' + 'E + E'G + 'E (onsensus) = ' + 'E + E'G 3.23 () ''' + ' + + '' + ' + '' 3.23 () = '' + ' + + ' onsensus = '' + ' + 3.24 WY' + (W'Y' ) + (Y WZ) 3.25 () = WY' + W'Y' + (W'Y')' ' + Y (WZ)' + Y'WZ = WY' + W'Y' + (W + Y) ' + Y (W' + Z') + Y'WZ = Y' + W' + 'Y + W'Y + YZ' + WY'Z + WY' = Y' + W' + 'Y + W'Y + YZ' + WY'Z + WY' = Y' + W' + W'Y + YZ' + WY' = + W' + W'Y + YZ' lternte Solutions: = W'Y + W' + WZ' + Y' = YZ' + W' + Y' + WY' = W' + 'Y + Z' + WY' = W' + Y' + WZ' + WY' ''' + + ' + '' + ' + '' = '' + + ' + ' = '' + + ' VLI: ' + ' + ' = ' ( + ') + ( + ') ' + ( + ') ' = ' + '' + ' + '' + ' + '' = ' + ' + ' lternte Solution: ' + ' + ' ll onsensus terms: ', ', ' We get = ' + ' + ' + ' + ' + ' = ' + ' + ' 3.25 () NOT VLI. ounteremple: =, =, =. LHS =, RHS =. This eqution is not lwys vli. In ft, the two sies of the eqution re omplements: [( + ) ( + ) ( + )]' = [( + ) ( + )]' = [ + + ]' = (' + ') (' + ') (' + ') 3.25 () VLI. Strting with the right sie, onsensus terms RHS = + '' + ' + ' + + ' = + '' + ' + ' + + ' = + '' + ' + ' + = LHS 3.25 () VLI: LHS = y' + 'z + yz' onsensus terms: y'z, z', 'y = y' + 'z + yz' + y'z + z' + 'y = y'z + z' + 'y = RHS 3.25 (e) NOT VLI. ounteremple: =, y =, z =, then LHS =, RHS =. This eqution is not lwys vli. In ft, the two sies of the equtions re omplements. LHS = ( + y) (y + z) ( + z) = [( + y)' + (y + z)' + ( + z)']' = ('y' + y'z' + 'z')' = [' (y' + z') + y'z']' =[(' + y'z') (y' + z' + y'z')]' = [(' + y') (' + z') (y' + z')]' (' + y') (y' + z') (' + z') 9
3.25 (f) VLI: LHS = ' + ' + '' + 3.26 () VLI: onsensus terms: ', = ' + ' + '' + + ' + ' + ' + + + '' = RHS LHS = (' + Y') ( Z) + ( + Y) ( Z) = (' + Y') ('Z' + Z) + ( + Y) ('Z + Z') = 'Z' + 'YZ' + Y'Z + 'YZ + Z' + YZ' = 'Z' + (Y' + 'Y)Z + Z' = Z' + Z( Y) = Z' + ( Y) = RHS 3.26 () LHS = (W' + + Y') (W + ' + Y) (W + Y' + Z) = (W' + + Y') (W + (' + Y) (Y' + Z)) = (W' + + Y') (W + ('Y' + YZ)) = (W' ('Y' + YZ) + W ( + Y ')) = W''Y' + W'YZ + W + WY' onsensus terms: 'Y' YZ = W''Y' + W'YZ + W + WY' + YZ + 'Y' = W''Y' + W''Z + W'YZ + YZ + W + WY' + 'Y' = W''Z + W'YZ + YZ + W + 'Y' = W'YZ + YZ + W + 'Y' 3.26 () LHS = + ''' + '' + = ( + ) + '' ( + ') = ( + ' ( + ')) (' + ( + )) = ( + ') ( + + ') (' + ) (' + + ) = ( + ') ( + + ') (' + ) (' + + ) ( + ' + ) onsensus: + ' + = ( + ') ( + + ') (' + ) ( + ' + ) = ( + ') (' + ) ( + ' + ) = RHS 3.27 () VLI. [ + = ] [' ( + ) = '()] [ + = ] [' + ' = '] 3.27 () NOT VLI. ounteremple: =, = = n = then LHS = + = RHS = = = LHS ut + = + = ; = + The sttement is flse. 3.27 () VLI. [ + = ] [( + ) + = () + ] [ + = ] [ + + = + ] 3.27 () NOT VLI. ounteremple: =, = = n = then LHS = + + = RHS = + = = LHS ut + = + = The sttement is flse. 3.28 () '' + + ' + ' + ''' + ' onsensus terms: () '' using '' + ' (2) ' using '' + (3) using ' + (4) '' using ''' + ' Using, 2, 3: '' + + ' + ' + ''' + ' + '' + ' + = '' + + ' (Using the onsensus theorem to remove the e terms sine the terms tht generte them re still present.) 3.28 () ''' + ' + '' + ' onsensus terms: () '' using ''' + ' (2) ' using '' + ' (3) ''' using ''' + '' (4) '' using ''' + ' (5) ' using ' + ' Using : ''' + ' + '' + ' + ', whih is the minimum solution. 2
Unit 4 Prolem Solutions 4. 4.2 See L p. 628 for solution. E y z 4.2 () Y = ''''E' + '''E' + ''E' (less thn gpm) + (t lest gpm) + 4.2 () Z = ''E' + 'E' + E' (t lest 2 gpm) + + (t lest 3 gpm) + (t lest 4 gpm) + (t lest 5 gpm) 4.3 = m(, 4, 5, 6); 2 = m(, 3, 4, 6, 7); + 2 = m(, 3, 4, 5, 6, 7) Generl rule: + 2 is the sum of ll minterms tht re present in either or 2. 2 n Proof: Let = i m i ; 2 = j m j ; + 2 = i m i + j m j = m + m + 2 m 2 +... Σi = 2 n Σj = 2 n Σi = 2 n Σj = 2 n + m + m + 2 m 2 +... = ( + ) m + ( + ) m + ( 2 + 2 ) m 2 +... = ( i + i ) m i Σi = 4.4 () 4.4 () 2 2n = 2 22 = 2 4 = 6 y z z z 2 z 3 z 4 z 5 z 6 z 7 z 8 z 9 z z z 2 z 3 z 4 z 5 'y' 'y ' y' y' 'y+y' '+y' y 'y'+y y '+y +y' +y 4.5 E Z 3 2 2 2 2 4 2 2 4 lternte Solutions E Z 3 4 These truth tle entries were me on't res euse = n = n never our 2 These truth tle entries were me on't res euse when is, the output Z of the OR gte will e regrless of its other input. So hnging n E nnot ffet Z. 3 These truth tle entries were me on't res euse when n E re oth, the output Z of the OR gte will e regrless of the vlue of. 4 These truth tle entries were me on't res euse when one input of the N gte is, the output will e regrless of the vlue of its other input. 4.6 () Of the four possile omintions of & 5, = n 5 = gives the est solution: = ''' + '' + ' + = '' + 4.6 () y inspetion, G = when oth on t res re set to. 2
4.7 () Etly one vrile not omplemente: = '' + '' + '' = m(, 2, 4) 4.8 () (,,, ) = m(,, 2, 3, 4, 5, 6, 8, 9, 2) Refer to L for full term epnsion 4.7 () Remining terms re mterms: = M(, 3, 5, 6, 7) = ( + + ) ( + ' + ') (' + + ') (' + ' + ) (' + ' + ') 4.8 () (,,, ) = Π M(7,,, 3, 4, 5) Refer to L for full term epnsion 4.8 = 2 = 2 2 = 2 3 = 2 = 2 = 2 2 = 2 2 3 = 3 > 2 2 = 2 2 = 2 2 2 2 = 4 > 2 2 3 = 6 > 2 3 = 2 3 = 3 > 2 3 2 = 6 > 2 3 3 = 9 > 2 4.9 () 4.9 () 4.9 () 4.9 () = ' + ' ( + ') ( + ') = ' + ' + '' + '' + '''; = m(,, 4, 5, 6) Remining terms re mterms: = M(2, 3, 7) Mterms of re minterms of ': ' = m(2, 3, 7) Minterms of re mterms of ': ' = M(,, 4, 5, 6) 4. (,,, ) = ( + + ) (' + ) (' + ' + ') ( + + ' + ') = ( + + + ) ( + + ' + ) (' + + ' + ') (' + ' + ' + ) (' + ' + ' + ') ( + + ' + ') = ( + + + ) ( + + ' + ) (' + + + ) (' + + + ') (' + ' + + ) (' + ' + + ') (' + ' + ' + ) (' + ' + ' + ') ( + + ' + ') 4. () = m(, 4, 5, 6, 7,, ) 4. () = M(, 2, 3, 8, 9, 2, 3, 4, 5) 4. () ' = m(, 2, 3, 8, 9, 2, 3, 4, 5) 4. () ' = M(, 4, 5, 6, 7,, ) 4. () ifferene, i = i y i i ; i+ = i i ' + i 'y i + i y i 4. () i = s i ; i+ is the sme s i+ with i reple y i ' i y i i i+ i 4.2 See L p. 629 for solution. 22
4.3 Z Z = '''' + ''' + ''' + ' + + ' = ''' + + ''' + ' = ''' + + ''' + ' + + ''' (e onsensus terms) Z = ''' + + + ''' ' ' ' ' ' ' Z 4.4 Z Z = '' + '' + ' + ''' + '' + '' + ' = ' + '' + ' + '' = ' + ' + '' + ' (e onsensus terms) Z = ' + ' + ' ' ' ' Z 4.5 () The uzzer will soun if the key is in the ignition swith n the r oor is open, or the set elts re not fstene. K S' The two possile interprettions re: = K + S' n = K( + S') 4.5 () You will gin weight if you et too muh, or you o not eerise enough n your metolism rte is too low. W E' M The two possile interprettions re: W = ( + E') M n W = + E'M 4.5 () The speker will e mge if the volume is set too high n lou musi is plye or the stereo is too powerful. V M S The two possile interprettions re: = VM + S n = V (M + S) 4.5 () The ros will e very slippery if it snows or it rins n there is oil on the ro. V S R O The two possile interprettions re: V = (S + R) O n V = S + RO 4.6 Z = + + 4.7 Z = (E + ''''E')'; Y = '''E 4.8 () 3 = 6 = ; = '''E'G 4.8 () = ; Y = '''E'G' 4.8 () = 2 ; 64 = 2 ; 3 = 2 ; 27 = 2 ; 32 = 2 ; Z = ('')' = + 23
4.9 2 = M(, 3, 4, 5, 6, 7). Generl rule: 2 is the prout of ll mterms tht re present in either or 2. Proof: 2 n Let = ( i + M i ); 2 = ( j + M j ); 2 = ( i + M i ) ( j + M j ) Πi = 2 n Πj = 2 n Πi = 2 n Πj = = ( + M ) ( + M ) ( + M ) ( + M ) ( 2 + M 2 ) ( 2 + M 2 )... = ( + M ) ( + M ) ( 2 2 + M 2 )... 3 n = ( i i + M i ) Πi = Mterm M i is present in 2 iff i i =. Mterm M i is present in iff i =. Mterm M i is present in 2 iff j =. Therefore, mterm M i is present in 2 iff it is present in or 2. 4.2 G H J () (,,, ) = m(5, 6, 7,,, 3, 4, 5) = M(,, 2, 3, 4, 8, 9, 2) () G (,,, ) = m(, 2, 4, 6) = M(, 3, 5, 7, 8, 9,,, 2, 3, 4, 5) () H (,,, ) = m(7,, 3, 4, 5) = M(,, 2, 3, 4, 5, 6, 8, 9,, 2) () J (,,, ) = m(4, 8, 2, 3, 4) = M(,, 2, 3, 5, 6, 7, 9,,, 5) 4.22 f () f = m(, 2, 4, 5, 6,,, 2, 4, 5) () f = M(, 3, 7, 8, 9, 3) () f ' = m(, 3, 7, 8, 9, 3) () f '= M(, 2, 4, 5, 6,,, 2, 4, 5) You n lso work this prolem lgerilly, s in prolem 4.2. 4.2 You n lso work this prolem using truth tle, s in prolem 4.22. f(,, ) = ' ( + ') = ' + '' = ' ( + ') + ' ( + ') ' = ' + '' + '' + ''' m 3 m 2 m 2 m 4.2 () f = m(, 2, 3) 4.2 () f = M(, 4, 5, 6, 7) 4.2 () f ' = m(, 4, 5, 6, 7) 4.2 () f ' = M(, 2, 3) 4.23 () (,,, ) = m(3, 4, 5, 8, 9,,, 2, 4) 4.23 () = '' + ''' + '' + ''' + '' + '' + ' + '' + ' (,,, ) = M(,, 2, 6, 7, 3, 5) = ( + + + ) ( + + + ') ( + + ' + ) ( + ' + ' + ) ( + ' + ' + ') (' + ' + + ') (' + ' + ' + ') 4.24 () (,,, ) = m(, 3, 4, 7, 8, 9,, 2, 3, 4) = '''' + '' + ''' + ' + ''' + '' m m 3 m 4 m 7 m 8 m 9 + ' + '' + ' + ' m m 2 m 3 m 4 4.24 () (,,, ) = M(, 2, 5, 6,, 5) = ( + + + ') ( + + ' + ) ( + ' + + ') ( + ' + ' + ) M M 2 M 5 M 6 (' + + ' + ) (' + ' + ' + ') M M 5 24
4.25 () If on't res re hnge to (, ), respetively, = ''' + + '' + ' = '' +, 4.25 () If on't res re hnge to (, ), respetively 3 = ( + + ) ( + + ') = + 4.25 () If on't res re hnge to (, ), respetively 2 = '''+ '' + '' + ' = ' 4.25 () If on't res re hnge to (, ), respetively 4 = ''' + ' + '' + = '' + 4.26 E Z These truth tle entries were me on't res 2 euse = n 2 = n never 2 our. 2 These truth tle entries were me on't res 2 euse when one input 2 of the OR gte is, the output will e regrless of the vlue of its other 2 input. 4.27 () G (,, ) = m(, 7) = M(, 2, 3, 4, 5, 6) 4.27 () G 2 (,, ) = m(,, 6, 7) = M(2, 3, 4, 5) 4.28 's Y Z 2 2 2 3 2 2 3 2 3 3 4 () = Y = '' + '' + '' + ' + '' + '' + ' + '' + ' + ' Z = ''' + ''' + ''' + ' + ''' + ' + ' + ' 4.29 W Y Z () = ''' + ''' + '' + ''' + '' + '' + ' + ''' + '' + '' + ' + '' + ' + ' + Y = '''' + ' + ' + ' + Z = '''' + '' + '' + '' + '' + '' + ' + '' + 4.28 () Y = ( + + + ) ( + + + ') 4.29 () Y = ( + + + ') ( + + ' + ) ( + + ' + ) ( + ' + + ) ( + + ' + ') ( + ' + + ) (' + + + ) (' + ' + ' + ') ( + ' + + ') ( + ' + ' + ) (' + + + ) (' + + + ') (' + + ' + ) (' + + ' + ') (' + ' + + ) Z = ( + + + ) ( + ' + + ') ( + ' + ' + ) (' + + + ') (' + + ' + ) (' + ' + + ) (' + ' + ' + ') Z = ( + + + ') ( + + ' + ) ( + ' + + ) ( + ' + ' + ) (' + + + ) (' + ' + + ') (' + ' + ' + ) 25
4.3 S T U V W Y Z 4.3 S T U V W Y Z 5 = 4 + = 5 = 5 4 + = 5 2 5 = 2 4 + = 9 3 5 = 5 3 4 + = 3 4 5 = 2 4 4 + = 7 5 5 = 25 5 4 + = 2 6 5 = 3 6 4 + = 25 7 5 = 35 7 4 + = 29 8 5 = 4 8 4 + = 33 9 5 =45 9 4 + =37 Note: Rows through hve on't re outputs. Note: Rows through hve on't re outputs. S =, T =, U =, V =, W =, =, Y =, Z = S =, T =, U = + +, V = ' + '' +, W = '' +, = '' + ', Y = ' + '' +, Z = 4.32 Notie tht the sign it 3 of the 4-it numer is etene to the leftmost full er s well. S 4 S 3 S 2 S S 4.. 3.. 2...... Y 4 Y 3 Y 2 2 3 Y Y 4.33 Y Sum out Y Sum out S 3 S 2 S S H.. 2 H.. H.. H.. 3 2 26
Unit 5 Prolem Solutions 5.3 () f 5.3 () 5.3 () f2 f3 r e f s t 5.3 () f4 y z f = '' + ' + ' f2 = 'e' + 'f + e'f f3 = r' + t' f4 = 'z + y + z' 5.4 () 5.4 () 5.4 () = ' + ' + + ' + '' = ' + ' + = ( + '+ ') ( + + ') 5.5 () 5.5 () See L p. 63 for solution. 2 2 lt: Z = ' ' 2 + ' 2 ' + 2 ' 2 ' + 2 + ' 2 ' 2 Z = ' ' 2 + ' 2 ' + 2 ' 2 ' + 2 + ' 2 ' Z = ' ' 2 + ' 2 ' + 2 ' 2 ' + 2 + 2 ' 2 5.6 () * * * * 5.6 () * * * lt: = ''' + ' + ' + ' + ' = ''' + ' + ' + ' + ' (*) inites minterm tht mkes the orresponing prime implint essentil. lt: = ' + '' + + '' = ' + '' + + ' (*) Inites minterm tht mkes the orresponing prime implint essentil. ' m 5 ; ''' m ; ' m ;' m 2 m 3 or m 5 ; ' m 3 ; '' m 8 or m 27
5.6 () * 5.7 () * * * = '' + ' + '' (*) Inites minterm tht mkes the orresponing prime implint essentil. lt: = ''' + ' + ''' + ' + ''' = ''' + ' + ''' + ' + '' '' m 2 ; '' m 6 ; ' m or m 5.7 () 5.7 () 5.7 () = '' + ''' + = ''' + ' + ' + ' + ' = + 5.8 () = ('+ ') ('+ ') ( + + ) ('+ + ) = ' ' + ' + ' ' 5.8 () lt: = ('+ ) ('+ ') ( + ) ('+ ) = ('+ ) ('+ ') ( + ) ('+ ') = '' + '' + 28
5.9 () E = (' + ' + + E) (' + + ' + ') ( + ' + ' + E) (' + + E) ( + ' + ) (' + + + E') (' + ' + ' + E') E lt: = ''E + '' + ' E + ' ' + ' E + E' + ''E' + '' = ''E + '' + ' E + ' ' + ' E + E' + ''E' + ''E' 5.9 () E E = (' + ' + E) (' + ' + + E) ( + ' + E') ( + + ' + E) ( + + ) (' + + E') lt: = ' ' + ' E' + E + ''' + ' E' + ' E = ' ' + ' E' + E + ''E' + ' + ''E = ' ' + ' E' + E + ''' + ' E' + ''E = ' ' + ' E' + E + ''E' + ' E' + ''E 29
5. () e 5. () e Essentil prime implints: ''E' (m 6, m 24 ), 'E' (m 4 ), E (m 3 ), ''E (m 3 ) Prime implints: ''E, ''E', 'E, 'E', E, '', 'E, ''E', '' 5. E = ('+ + ') ('+ '+ E ) ( + '+ E') ( + + E') ( + + + ) ('+'+ + ) ( + + E') 5.2 () = '' + ' + ' + = M(,, 9, 2, 3, 4) = ( + + + ) ( + + + ') (' + ' + + ) (' + ' + + ') (' + ' + ' + ) (' + + + ') lt: = ('+ + ') ('+ '+ E ) ( + '+ E') ( + + E') ( + + + ) ('+'+ + E ) ( + + E') ' 5.2 () 5.3 5.2 () ' = ''' + ' + ' = ' + ' + ' + '' Minterms m, m, m 2, m 3, m 4, m, n m n e me on t res, iniviully, without hnging the given epression. However, if m 3 or m 4 is me on t re, the term ' or the term ' (respetively) is not neee in the epression. = ('+ '+ ) ( + + ) ('+ + ') 3
5.4 () 5.4 () 2 5.4 () R E S T 5.4 () 5.4 (e) N P Q = ' + ' 2 = E' + E' + = T' + R = + ' = N'P + N Q 5.4 (f) 5.5 () f Y Z 5.5 () G E 5.5 () p q r 5.5 () s t u = Y' + 'Z' + Z f = '' + + ' f = '' + + G = E ' + 'E' G = E ' + ' G = E ' + E' = p'r + q'r' + p q = p'q' + p r' + q r = s' 5.5 (e) 5.5 (f) e f 5.6 () 5.6 () = '' + ' + = '' + ' + g = 'e' + f ' 5.6 () = '' + ' + = ('+ ) ( + '+ ') ('+ ) ('+ + ') 5.7 (), () 5.7 () = ' + ' + ' ' lt: = ('+ + ) ('+ '+ ') ('+ '+ ) = ('+ + ) ('+ '+ ') ('+ '+ ') 3
5.8 () 5.8 () 2 2 Z 2 2 = ( + 2+ ) ( + + 2) ( + 2'+ '+ 2') ( '+ 2'+ + 2') ( '+ '+ 2 ) ( + 2 + 2) 5.9 () 5.9 () = ' + ' + ' + ''' + ' = ''' + ''' + ''' lt: = ' + ' + ' + ''' + ' lt: = ''' + ''' + '' 5.9 () 5.9 () W Y Z 5.9 (e) = '' + ' + ' lt: = 'Y' + W'Z + Y'Z + W Z' = 'Y' + W Y' + W'Z + W Z' = 'Y' + W Y' + W'Z + W ' = '' + ' + ' + 5.2 () 5.2 () 5.2 () = ' + ' ' + ' + = '' + ' + ' + + = '' + ' + ' 32
5.2 () 5.2 () 5.2 () = ' ' + '' + = ('+ ) ('+ + ') ( + '+ ) ( + ) = ('+ ) ('+ + ') ( + ) ('+ ) 5.22 () lt: = ('+ ) ('+ + ') ( + ) ('+ ) 5.22 () = ('+ '+ ) ('+ ') ( + + ) w y z = ' + '' + ' + ' w y z = 'y' + w'z + y'z + w z' = (w + '+ z ) (w + y'+ z ) (w'+ y'+ z') lt: = 'y' + w y' + w'z + w z' = 'y' + w y' + w'z + w ' lt: = (w + '+ z ) (w + y'+ z ) (w'+ '+ y') 5.23 5.24 () = '' + ' + ' Notie tht = n never our, so minterms 5 n 5 re on t res. = '' + ' + ' + = M(,, 9, 2, 3, 4) = ( + + + ) ( + + + ') (' + + + ' ) (' + ' + + ) (' + ' + + ') (' + ' + ' + ) 33
5.24 () 5.24 () ' = ' + ''' + ' = ('+ '+ ) ( + + ) ('+ + ') 5.25 5.26 Prime implints for f ': 'e, '', 'e', 'e, ''e', ''e, ''e Prime implints for f: ''e', e, 'e', e',, e', ''e, ''e, '', 'e 5.27 or : ''e', 'e, 'e', '', 'e, ''e, ''e 5.28 () = + E * * * (*) Inites minterm tht mkes the orresponing prime implint essentil. ''' m ; 'e' m 28 ; ''e m 25 ; '' m 2 * or G: 'e, ', 'e', e, 'e, ''', ''e' 5.28 () E ''', 'e', ''e, '', 'e', 'e', 'e', '''e, ''e, '', 'e', 'e', 'e' 5.29 () E = '' + ' ' + '' + ''E' + ' + E + ''E lt: = '' + ' ' + '' + ''E' + ' + E + ''E 34
5.29 () E lt: = '''E + ' '' + E + ''E' + E + 'E' + '''E + ' E = '''E + ' '' + E + ''E' + E + 'E' + ' 'E + ' E = '''E + ' '' + E + ''E' + E + 'E' + ' 'E + E 5.3 E = '''' + 'E + ' + 'E' + ' + ''E + 'E 5.3 E = ''E' + '' + E' + '''E' + ''E + ''E 5.32 () w y z v = v' y'z' + 'y'z + v z + w 'y z' + v w 5.32 () w 5.33 () y z E v = ( + y + z) (v + y' + z') (v + ' + z') (v + ' + y') (v' + w + z) lt: = ( + + E ) ('+ ) ( + ') ( + '+ '+ E') = ( + + E ) ('+ ) ( + ') ( + '+ '+ E') 35
5.33 () E lt: = ( + ') ( + '+ E') ('+ + E') ('+ '+ '+ ) ( + + E ) ( + '+ E ) = ( + ') ( + '+ E') ( + '+ ) ('+ + E') ('+ '+ '+ ) ( + '+ E ) 5.34 () w y z v lt: = (v'+ w'+ '+ y + z') (w + y'+ z') (v + y') (w + + y ) (v'+ + y + z ) (w'+ + y') = (v'+ w'+ '+ y + z') (w + y'+ z') (v + y') (w + + y ) (v'+ w'+ + z ) (w'+ + y') = (v'+ w'+ '+ y + z') (w + y'+ z') (v + y') (w + + y ) (v'+ w'+ + z ) ( + y'+ z') 5.34 () 5.35 () E = ( + + E) (' + ' + ') (' + + + ) ( + ' + ) ( + ' + E) ( + + E) = ' + + ' hnging m to on't re removes ' from the solution. 5.35 () 5.36 () w y z v m 4 = v' y' + v'w z' + y z + v w''y' + v w'y z' + w' z m 8 = ' + ' + ' + '' m 4, m 3, or m4 hnge the minimum sum of prouts, removing '', ', or ', respetively. m 3 = v' y' + v'w z' + y z + v w''z' + v w' y + w'y'z = v' y' + v'w z' + y z + v w''y' + v w'y z' + w'y'z = v' y' + v'w z' + y z + v w''z' + v w'y z' + w'y'z 5.36 () 36 v'wz' m 8 ; yz m 3 ; v'y' m 4
Unit 6 Prolem Solutions 6.2 () ü, 5 - '' 5 ü, 9 - '' 9 ü 5, 7 - ' 2 ü 9, - ' 7 ü 2, 4 - ' ü 7, 5-4 ü, 5-5 ü 4, 5 - Prime implints: '', '', ', ', ',,, 6.2 () ü, - ''', 3, 5, 7 -- ' ü, 8 - ''', 5, 3, 7 -- 8 ü, 3 -ü 6, 7, 4, 5 -- 3 ü, 5 -ü 6, 4, 7, 5 -- 5 ü 8, - '' 6 ü 3, 7 -ü ü 5, 7 -ü 7 ü 6, 7 -ü 4 ü 6, 4 -ü 5 ü, 4 - ' 7, 5 -ü 4, 5 -ü Prime implints: ''', ''', '', ', ', 6.3 () 5 7 9 2 4 5, 5 '', 9 '' 5, 7 ' 9, ' 2, 4 ' 7, 5, 5 4, 5 f = ' + '' + ' + f = ' + '' + ' + 6.3 () 3 5 6 7 8 4 5, 3, 5, 7 ' 6, 7, 4, 5, ''', 8 ''' 8, '', 4 ' f = ' + + ''' + '' f = ' + + ''' + '' f = ' + + ''' + ' 37
6.4 ü, 3 -ü, 3, 5, 7 -- ' 2 ü, 5 -ü, 5, 3, 7 -- 4 ü, 9 -ü, 5, 9, 3 -- ' 3 ü 2, 3 -ü, 9, 5, 3 -- 5 ü 2, 6 -ü 2, 3, 6, 7 -- ' 6 ü 2, - '' 2, 6, 3, 7 -- 9 ü 4, 5 -ü 4, 5, 6, 7 -- ' ü 4, 6 -ü 4, 5, 2, 3 -- ' 2 ü 4, 2 -ü 4, 6, 5, 7 -- 7 ü 3, 7 -ü 4, 2, 5, 3 -- 3 ü 5, 7 -ü 5, 7, 3, 5 -- 5 ü 5, 3 -ü 5, 3, 7, 5 -- 6, 7 -ü 9, 3 -ü 2, 3 -ü 7, 5 -ü 3, 5 -ü 3, 5 -ü Prime implints: '', ', ', ', ', ', 3 4 5 6 7 2 3, 3, 5, 7 ', 5, 9, 3 ' 2, 3, 6, 7 ' 4, 5, 6, 7 ' 4, 5, 2, 3 ' 5, 7, 3, 5 2, '' f = ' + '' + ' + ' f = ' + '' + ' + ' f = ' + '' + ' + ' 6.5 ü, 5 -ü, 5, 9, 3 -- ' 4 ü, 9 -ü, 9, 5, 3 -- 8 ü 4, 5 -ü 4, 5, 2, 3 -- ' 5 ü 4, 2 -ü 4, 2, 5, 3 -- 9 ü 8, 9 -ü 5, 7, 3, 5 -- 2 ü 8, 2 -ü 5, 3, 7, 5 -- 7 ü 5, 7 -ü 8, 9, 2, 3 -- ' ü 5, 3 -ü 8, 2, 9, 3 -- 3 ü 9, -ü 9,, 3, 5 -- 4 ü 9, 3 -ü 9, 3,, 5 -- 5 ü 2, 3 -ü 2, 3, 4, 5 -- 2, 4 -ü 2, 4, 3, 5 -- 7, 5 -ü, 5 -ü 3, 5 -ü 4, 5 -ü Prime implints: ', ',, ',, 38
6.5 (ont) 9 2 3 5 P (, 5, 9, 3) ' P2 (4, 5, 2, 3) ' P3 (5, 7, 3, 5) P4 (8, 9, 2, 3) ' P5 (9,, 3, 5) P6 (2, 3, 4, 5) (P + P4 + P5) (P2 + P4 + P6) (P + P2 + P3 + P4 + P5 + P6) (P3 + P5 + P6) = (P4 + PP2 + PP6 + P2P5 + P5P6) (P3 + P5 + P6) = P3P4 + P4P5 + P4P6 + PP2P3 + PP2P5 + PP2P6 + PP3P6 + PP5P6 + PP6 + P2P3P5 + P2P5 + P2P5P6 + P3P5P6 + P5P6 = = (' + ) or ( + ') or ( + ') or ( + ) or ( + ') or ( + ') P4 P3 P5 P2 P5 P4 P6 P5 P6 P4 P6 P 6.6 () E = E = E E = MS + EMS = ' + ''' + ' + E ('' + ) or E ('' + ) MS = ''' + ' + ' 6.6 () E = = G = E = ; = G = E MS = '' + MS = '' + G E MS = '' + 2 3 = ; E = G = G = ; E = = MS = '' + ' MS = '' + Z = '' + + E ('' + ') + () + G (') MS = 2 MS 3 = ' or ' or 39
6.7 () ü, 4 - ''' 4 ü 4, 5 - '' 3 ü 3, 7 - ' 5 ü 3, - ' 9 ü 5, 7 - ' 7 ü 5, 3 - ' ü 9, - ' 3 ü 9, 3 - ' Prime implints: ''', '', ', ', ', ', ', ' 6.7 () 2 ü 2, 6 - '' 4, 5, 2, 3 -- ' 4 ü 2, - '' 4, 2, 5, 3 -- 5 ü 4, 5 -ü 9,, 3, 5 -- 6 ü 4, 6 - '' 9, 3,, 5 -- 9 ü 4, 2 -ü ü 5, 3 -ü 2 ü 9, -ü ü 9, 3 -ü 3 ü, - ' 5 ü 2, 3 -ü, 5 -ü 3, 5 -ü Prime implints:, ', '', '', '', ' 6.8 () 3 4 5 7 9 3, 4 ''' 4, 5 '' 3, 7 ' 3, ' 5, 7 ' 5, 3 ' 9, ' 9, 3 ' f = ''' + ' + ' + ' f = ''' + ' + ' + ' 6.8 () 2 4 5 6 9 2 3 5 2, 6 '' 2, '' 4, 6 '', ' 4, 5, 2, 3 ' 9,, 3, 5 f = ' + + '' + '' f = ' + + '' + ' f = ' + + '' + '' 6.9 () ü, 3 -ü, 3, 9, -- ' 2 ü, 9 -ü, 9, 3, -- 4 ü 2, 3 -ü 2, 3,, -- ' 3 ü 2, -ü 2,, 3, -- 9 ü 4, 2 - '' 3, 7,, 5 -- ü 3, 7 -ü 3,, 7, 5 -- 2 ü 3, -ü 9,, 3, 5 -- 7 ü 9, -ü 9, 3,, 5 -- ü 9, 3 -ü,, 4, 5 -- 3 ü, -ü, 4,, 5 -- 4 ü, 4 -ü 2, 3, 4, 5 -- 5 ü 2, 3 -ü 2, 4, 3, 5 -- 2, 4 -ü 7, 5 -ü, 5 -ü 3, 5 -ü 4, 5 -ü 4 Prime implints: '', ', ',,,,
6.9 () (ont) 2 3 4 7 9 2 3 4 4, 2 '', 3, 9, ' 2, 3,, ' 3, 7,, 5 9,, 3, 5,, 4, 5 2, 3, 4, 5 f = ' + '' + + ' + f = ' + '' + + + f = ' + '' + + + 6.9 () ü, -ü,, 8, 9 -- '' ü, 8 -ü, 8,, 9 -- 8 ü, 5 -ü, 5, 9, 3 -- ' 5 ü, 9 -ü, 9, 5, 3 -- 6 ü 8, 9 -ü 8, 9,, -- ' 9 ü 8, -ü 8,, 9, -- ü 8, 2 -ü 8, 9, 2, 3 -- ' 2 ü 5, 7 - ' 8, 2, 9, 3 -- 7 ü 5, 3 -ü ü 6, 7 - ' 3 ü 9, -ü 9, 3 -ü, -ü 2, 3 -ü Prime implints: ', ', '', ', ', ' 5 6 8 9 3 5, 7 ' 6, 7 ',, 8, 9 '', 5, 9, 3 ' 8, 9,, ' 8, 9, 2, 3 ' f = ' + '' + ' + ' 6.9 () f = ' + + '' + + f = ' + + '' + + f = ' + + '' + + ' 6. Prime implints: ', ', ', ', ', ''' f = ' + ' + ' + ''' + ' f = ' + ' + ' + ''' + ' 4
6. ü, 2 -ü, 2, 4, 6 --ü, 2, 4, 6, 8,, 2, 4 --- 'E' 2 ü, 4 -ü, 2, 8, --ü, 2, 8,, 4, 6, 2, 4 --- 4 ü, 8 -ü, 2, 6, 8 -- ''E', 4, 8, 2, 2, 6,, 4 --- 8 ü, 6 -ü, 4, 2, 6 -- 6 ü 2, 6 -ü, 4, 8, 2 --ü 6 ü 2, -ü, 8, 2, -- 9 ü 2, 8 -ü, 8, 4, 2 -- ü 4, 6 -ü, 6, 2, 8 -- 2 ü 4, 2 -ü 2, 6,, 4 --ü 8 ü 8, 9 -ü 2,, 6, 4 -- 7 ü 8, -ü 4, 6, 2, 4 --ü ü 8, 2 -ü 4, 2, 6, 4 -- 3 ü 6, 8 -ü 8, 9,, -- '' 4 ü 6, 7 - '' 8, 9, 2, 3 -- '' 9 ü 6, 4 -ü 8,, 9, -- 2 ü 9, -ü 8,, 2, 4 --ü 29 ü 9, 3 -ü 8, 2, 9, 3 -- 3 ü, -ü 8, 2,, 4 --, 4 -ü 2, 3 -ü 2, 4 -ü 8, 9 - '' 3, 29 - 'E 4, 3 - E' 2, 29 - 'E 2 6 7 8 2 3 4 6 8 9 29 3 6, 7 '' 8, 9 '' 3, 29 'E 4, 3 E' 2, 29 'E, 2, 6, 8 ''E' 8, 9,, '' 8, 9, 2, 3 '', 2, 4, 6, 8,, 2, 4 'E' = E' + '' + ''E' + '' + '' + 'E + 'E' 42
6.2 () ü, -ü,, 2, 3 --ü,, 2, 3, 8, 9,, --- '' ü, 2 -ü,, 8, 9 --ü,, 8, 9, 2, 3,, --- 2 ü, 8 -ü, 2,, 3 --, 2, 8,,, 3, 9, --- 8 ü, 3 -ü, 2, 8, --ü 3 ü, 9 -ü, 8,, 9 -- 6 ü, 7 -ü, 8, 2, -- 9 ü 2, 3 -ü, 3, 9, --ü ü 2, 6 - ''E', 9, 3, -- 7 ü 2, -ü, 9, 7, 25 -- ''E 2 ü 8, 9 -ü, 7, 9, 25 -- ü 8, -ü 2, 3,, --ü 2 ü 3, -ü 2,, 3, -- 25 ü 9, -ü 8, 9,, --ü 28 ü 9, 25 -ü 8,, 9, -- 23 ü, -ü 3 ü 7, 2 - ''E 3 ü 7, 25 -ü 2, 2 - '' 2, 28 - 'E' 2, 23 - 'E 28, 3 - E' 23, 3 - E 3, 3-2 3 6 8 9 7 2 2 23 25 28 3 3 2, 6 ''E' 7, 2 ''E 2, 2 '' 2, 28 'E' 2, 23 'E 28, 3 E' 23, 3 E 3, 3, 9, 7, 25 ''E,, 2, 3, 8, 9,, '' f = '' + ''E + ''E' + E + E' + '' f = '' + ''E + ''E' + 'E' + 'E + 6.2 () f = + E' + ''E + ''' +''E + '''E' f = + E' + ''E + ''E + ''' + '''E' 6.3 = ' + ' + ' + '' + ' = ' + ' + ' + '' + ' = ' + ' + ' + ' + '' 6.4 Prime implints: e, 'e, 'e, 'e', '', '', ''e, ''e', ''e' Essentil prime implints re unerline: = e + ''e' + 'e' + ''e + '' = e + ''e' + 'e' + ''e + 'e 43
6.5 ü, 3 -ü, 3, 7, 9 -- ''' 2 ü, 7 -ü, 7, 3, 9 -- 6 ü 2, 3 -ü 2, 3, 8, 9 -- '''E 32 ü 2, 8 -ü 2, 8, 3, 9 -- 3 ü 6, 7 -ü 6, 7, 8, 9 -- ''' 7 ü 6, 8 -ü 6, 8, 7, 9 -- 8 ü 6, 48 - ''E'' 48 ü 32, 48 - ''E'' 9 ü 3, 9 -ü 26 ü 7, 9 -ü 28 ü 8, 9 -ü 5 ''E 8, 26 - ''E' 29 ü 26, 3 - 'E' 3 ü 28, 29 - 'E' 39 ''E 28, 3 - '' 63 E 2 3 6 7 8 9 26 32 39 48 63 5 ''E 39 ''E 63 E 6, 48 ''E'' 32, 48 ''E'' 8, 26 ''E' 26, 3 'E' 28, 29 'E' 28, 3 '', 3, 7, 9 ''' 2, 3, 8, 9 '''E 6, 7, 8, 9 ''' 6.5 () 6.5 () 6.5 () G = ''E + E + ''' + '''E +''E'' +''' +''E' G = ''E + E + ''' + '''E +''E'' +''' + 'E' Essentil prime implints re unerline in 6.5 (). If there were no on't res, prime implints 5, (26, 3), (28, 29), n (28, 3) re omitte. There is only one minimum solution. Sme s (), eept elete the seon eqution. 6.6 () Prime implints: 'E, '', 'E'', 'E, 'E'', E, 'E, ''E', ''E, ''E', ''E', ''E' G = E + 'E'' + 'E'' + 'E + ''E' + 'E + 'E G = E + 'E'' + 'E'' + 'E + ''E' + 'E + ''E G = E + 'E'' + 'E'' + 'E + ''E' + '' + 'E G = E + 'E'' + 'E'' + 'E + ''E' + '' + ''E 44
6.6 () Essentil prime implints re unerline in 6.6(). 6.7 Prime implints:, ',,,, ' Minimum solutions: (' + ); (' + ); ( + ); ( + ); ( + ') 6.6 () If there re no on t res, the prime implints re: 'E, '', 'E'', 'E, 'E'', E, 'E, ''E' G = E + 'E'' + 'E + 'E'' +'E + ''E' + '' G = E + 'E'' + 'E + 'E'' +'E + ''E' + 'E 6.8 () E 6.8 () G E E E = ' + ' + '' + E (''' + ') MS MS Z = ' + '' + E (' + ') + (') + G ('') MS MS MS 2 MS 3 6.9 () Eh minterm of the four vriles,,, epns to two minterms of the five vriles,,,, E. or emple, m 4 (,,,) = ''' = '''E' + '''E = m 8 (,,,,E) + m 9 (,,,,E) 6.9 () Prime implints: ''', ', ', ''E, E, E, ''E = ''' + ' + ' + ''E + E = ''' + ' + ' + ''E + E E = ''' + ' + ' + ''E + E = ''' + ' + ' + ''E + E 6.2 E * * This squre ontins +, whih reues to. G = 'E' + E + ('') + () MS MS MS 2 45
7. () f Unit 7 Prolem Solutions f f = '' + '' + ' + ' ' Sum of prouts solution requires 5 gtes, 6 inputs f = ('+ ') ( + ) ( + + ') ( + '+ ') f = ('+ ') ( + ) ( + '+ ') ('+ + ') f = ('+ ') ( + ) ( + + ') ('+ '+ ') f = ('+ ') ( + ) ('+ + ') ('+ '+ ') Prout of sums solution requires 5 gtes, 4 inputs, so prout of sums solution is minimum. 7. () eginning with the minimum sum of prouts solution, we n get f = ' ( + ') + ' (' + ') 5 gtes, 2 inputs 2 2 3 3 So sum of prouts solution is minimum. 2 eginning with minimum prout of sums solution, we n get f = ( + ) (' + ') (' + ' + ')) 2 2 2 2 3 6 gtes, 4 inputs 3 7.2 () ' + E' + E' + ' + ''E' = E' ( + ) + ''E' + ' ( + ) = ( + ) (E' + ') + ''E' 2 2 2 3 2 2 4 levels, 6 gtes, 3 inputs 7.2 () E + E + E + G + G + G = E + G + E ( + ) + G ( + ) = (E + G) [ + ( + )] 2 2 2 4 levels, 6 gtes, 2 inputs 2 2 2 46
7.3 (,,, )n = ' + ' or (' + ') = ( + ) (' + ') You n otin this eqution in the prout of sums form using Krnugh mp, s shown elow: ' ' N-OR ' ' NN-NN OR-NN ' ' ' ' NOR-OR ='+' (')'=[(')'(')']' (')'=[(+'+')('++')]' (')'=(+'+')'+('++')' (')'=[('+')']' ' ' ' ' ' ' OR-N ' ' NOR-NOR ' ' =(+)('+') (')'=['+(+)'+('+')']' (')'=['+''+]' (')'=('')'()' (')'=[[(+)('+'))']' ' ' N-NOR ' ' NN-N = ' + ' = ( + ) ( ) ('+ ') 7.4 (,,, ) = m(5,,, 2, 3) = ' + ' + ' = ' ( + ) + ' = ' ( + ) + ' 2 3 3 2 4 gtes, inputs = ' + ' + ' ' ' ' ' 47
7.5 Z = ( + + ) ('+ ') ('+ ') ('+ ') Z = ( + + ) (' + ''') 3 2 4 gtes, inputs ' 2 3 Z 7.6 Z = + + '' = ( + ) + '' ' ' ' Z 7.7 Z = E + E + E = E ( + + ) = E [ + ( + )] ' ' ' E' Z 7.8 or the solution to 7.8, see L P. 633 7.9 2 = ' + + '' 6 gtes 2 = '' + '' + ' 7. f (,,, ) = m(3, 4, 6, 9, ) f 2 (,,, ) = m(2, 4, 8,,, 2) f 3 (,,, ) = m(3, 6, 7,, ) = ' + ' + ' ' 2 = ' + ' ' + '' + '' 2 = ' + ' ' + '' + '' gtes 48 3 = ' + ' + '
7. = ( + ) ( + ') ('+'+)('++') 8 gtes 2 2 = ('++)('+'+)(+')('++') 2 = (+'+)('+'+)(+')('++') 7.2 2 = (++)('+) 2 = (++)('++)('+) 9 gtes 3 = ('++)(+)(+') 7.3 () Using = (')' from Equtions (7-23()), p. 94: f = [(')' ()' ('')' (')']'; f 2 = [' (')']'; f 3 = [()' ('')' ()']' ' ' ' ' f ' f 2 ' ' ' f 3 7.3 () Using = (')' from Equtions erive in prolem 7.2: f = [( + + )' + (' + )']' f 2 = [( + + )' + (' + + )' + (' + )']' f 3 = [(' + + )' + ( + )' + ( + ')']' ' f ' ' f 2 ' ' f 3 49
7.4 () f = ( + + ) ( + + ') ('+ '+ ') ('+ '+ ') 5 gtes, 6 inputs 7.4 () eginning with the sum of prouts solution, we get f = ' + ' + ' (' + ') = ' + ' + ' (' + ') ( + ) 6 gtes, 4 inputs ut, eginning with the prout of sums solution ove, we get f = ( + + ') (' + ' + '') 5 gtes, 2 inputs, whih is minimum n f = ' + ' + '' + '' f = ' + ' + '' + '' (two other minimun solutions) 5 gtes, 4 inputs miniml ' ' ' ' ' ' ' ' ' ' ' 7.5 () rom K-mps: = ' + ' + ' 4 gtes, inputs = ( + + ) ( + ) (' + ') 4 gtes, inputs, miniml 7.5 () rom K-mps: = + + '' 4 gtes, 9 inputs = (' + ) ( + ' + ) 3 gtes, 7 inputs, miniml ' ' ' ' 7.5 () rom K-mps: = + '' + = + '' + ' 4 gtes, inputs = ( + ) ( ' + ) ( + + ') 4 gtes, inputs, miniml ' ' 7.5 () rom K-mps: = ' + + ' 4 gtes, 9 inputs, miniml = ( + ) (' + + ') (' + + ) = ( + ) (' + + ') ( + + ) 4 gtes, inputs ' ' 5
7.6 () In this se, multi-level iruits o not improve the solution. rom K-mps: = ' + + ' + '' 5 gtes, 6 inputs, miniml = (' + + ) ( + + ) (' + ' + ) ( + + ') 5 gtes, 6 inputs, lso miniml Either nswer is orret. ' ' ' ' 7.6 () Too mny vriles to use K-mp; use lger. E y onsensus, then use + Y = E + E + ' + EG + E + E G E ' = E + ' + EG + E = E ( + G) + (' + E) 2 4 3 2 5 gtes, 3 inputs, miniml E 2 7.7 () = M(,, 2, 4, 8) 2 3 4 5 6 7 8 9 2 3 4 5 7.7 () = ( + + ) ( + + ) ( + + ) ( + + ) = ( + + )( + + ) or = ( + + )( + + ) or = ( + + )( + + ) This solution hs 5 gtes, 2 inputs. eginning with the sum of prouts requires 6 gtes. 5
7.8 () (w,, y, z) = ( + y' + z) (' + y + z) w y' z ' y z OR-N w y' z ' y z NOR-NOR w' ' y z' y' z' N-NOR w' ' y z' y' z' NN-N w rom Krnugh mp: = wy + w'y' + wz w y w ' y' w z N-OR w y w ' y' w z NN-NN w' ' y' w' y w' z' OR-NN w' ' y' w' y w' z' NOR-OR 7.8 () (,,, ) = m(4, 5, 8, 9, 3) rom Kmp: = '' + '' + ' = '' + '' + ' = ' ( + ) (' + ' + ) ' ' ' ' ' N-OR ' ' ' ' ' NN-NN ' ' ' ' OR-NN ' ' ' ' NOR-OR ' ' OR-N ' ' ' NOR-NOR ' ' ' N-NOR ' ' ' NN-N ' 52
7.9 () y z = (y'+ z ) ('+ y + z') rom Kmp: = (y' + z) (' + y + z') y z' y' z f y z' y' z f 7.9 () y z ' z ( ) or ' y' y' z' f ' z ( ) or ' y' y' z' f = y z + y'z' + 'y' y z y z = y z + y'z' + 'z 7.2 () Using OR n NOR gtes: ' ' f ' ' f = '' + 7.2 () Using NOR gtes only: ' ' ' f ' ' ' f = ('+ ) ('+ ) ('+ ) ('+ ) ' ' 53
7.2 () NN gtes: = ' + ' + (Refer to prolem 5.4 for K-mp) NOR gtes: = ( + ' + ') ( + + ') 7.2 () NN gtes: = '' + '' + (Refer to prolem 5.8() for K-mp) NOR gtes: = ( + ) (' + ') (' + ) (' + ') = ( + ) (' + ') (' + ) (' + ) 7.2 (e) NN gtes: =''+'E'+E+'''+''E+'E' =''+'E'+E+''E'+'+''E =''+'E'+E+'E'+''E'+''E =''+'E'+E+'E'+''E+'E (Refer to prolem 5.9() for K-mp) NOR gtes: = (' + ' + + E) ( + ' + E') (' + ' + E) ( + + ' + E) ( + + ) (' + + E') 7.2 (g) NN gtes: f = 'y' + wy' + w'z+ wz' f = 'y' + wy' + w' + w'z f = 'y' + wy' + y'z+ wz' (Refer to prolem 5.22() for K-mp) NOR gtes: f = (w + ' + z) (w + y' + z) (w' + y' + z') f = (w + ' + z) (w + y' + z) (w' + ' + y') 7.2 () NN gtes: = '' + ' + '' (Refer to prolem 5.8() for K-mp) NOR gtes: = (' + ') (' + ') ( + + ) (' + + ) 7.2 () NN gtes: = '' + ''E + 'E + 'E + E' + '' + ''E' + '' = '' + ''E + 'E + 'E + E' + '' + ''E' + ''E' (Refer to prolem 5.9() for K-mp) NOR gtes: = (' + + E) ( + ' + ) (' + + ' + ') (' + ' + + E ) ( + ' + ' + E) (' + + + E') (' + ' + ' + E') 7.2 (f) NN gtes: = ' + ' + ' + '' (Refer to prolem 5.22() for K-mp) NOR gtes: = ( + + ) (' + ' + ) (' + ') 7.22 () 7.22 () f = (' + ' + e) ( + ' + e') ( + + ) E ' e' e ' ' ' ' f = ( + ' + ) ( + ' + e') (' + ' + e) ( + + ) ( + ' + ') 54
7.23 ' ' ' ' ' ' f f = (' + ) (' + + ) ( + ') = ( + ') [' + ( + )] = ( + ') (' + + ) 7.24 () Z = e'f + 'e'f + 'e'f + gh = e'f ( + ' + ') + gh 7.24 () Z= (' + +e + f)(' + ' + )(' + ' + )(g+h) = [' + + '' (e + f)] (g + h) g h e' f z e f g h ' z 7.25 = e' + '' + = ( + ') (' + e') + = ( + ' + ) (' + + e') ' ' ' e ' lternte: = (' + + ) (' + + e') 7.26 f = 'yz + vy'w' + vy'z' = 'yz + vy' (z' + w') w z ' y z v y' f 7.27 () 7.27 () = ' + ' + ''' + ' = ' + ' + ''' + ' rw N-OR iruit n reple ll gtes with NNs. = ( + + ') ('+ ) ('+ ) ('+ '+ ') rw OR-N iruit n reple ll gtes with NORs. 55
7.27 () = (' + ') + ' ('' + ) ' ' ' ' ' lterntive: = ' ('' + ) + (' + ') = (' + ') + ' ('' + ) = ' ('' + ) + (' + ') = (' + ') + ' ('' + ) 7.28 () 7.28 () = + '' + '' + '' + '' + '''' = ( + + ') ( + ' + ) ( + ' + ) ( + ' + ') (' + + ) (' + + ') (' + + ') (' + ' + ) 7.28 () Mny solutions eist. Here is one, rwn with lternte gte symols. = ' (''' + ' + ') + ('' + '' + ) = ' ('('' + ) + ') + (('' + ) + '') ' ' ' ' ' ' ' 56
7.29 () = '' + + + '' = ( + '') + ( + '') Mny NOR solutions eist. Here is one. = ( + ) (' + + ) ( + + ') ( + ' + ' + ) = ( + ) [ + ( + ') (' + ' + )] (' + + ) = ( + ) [ ( + ) + ' ( + ') (' + ' + )] = ( + ) [ ( + ) + ' ((' + ) + '')] ' ' ' 7.29 () = ' + + '' + ' = ( + ') + ('' + ') = ( + ') + [(' + ') ( + ')] = ( + ) ( + ) ('+ + ') ('+ + ') ' ' ' ' ' ' ' ' ' ' = (' + + ') (' + + ') ( + ) ( + ) = ( + (' + ')) ( + (' + ')) 7.3 = m(,, 2, 3, 4, 5, 7, 9,, 3, 4, 5) = + '' + '' + = + ' (' + ') + lternte solution: = + (' + ) ( + ' + ') = '' + '' + + 57
7.3 () 7.3 () ' ' ' ' ' ' 7.3 () ' ' ' ' ' ' ' ' ' ' 7.3 Z = [' + + E(' + GH)] G H ' E ' G' H' ' E' ' ' 58
7.32 f f2 f3 f = '' + f 2 = '' + '' 8 gtes f 3 = + + '' 7.33 = ' + ' + '' 6 gtes = '' + ' + '' 7.34 f y z f2 y z f3 y z f = 'y z + ' y z' + y' f 2 = y' z + 'y z + y z' 8 gtes f 3 = y' + y'z + 'y z' + y z' 7.35 () f f2 f = (' + + ) (' + ' + ') (' + ) 6 gtes f 2 = (' + + ) (' + ' + ') ( + ') 59
7.35 () f irle 's to get sum-of-prouts epressions: f = ' + ''' + ' 6 gtes f 2 = ' + ''' + ' Then onvert iretly to NN gtes. f2 7.36 () irle s 2 f = ( + + ) ('+ ') ('+ ) 7 gtes f 2 = ( + + ) (' + ) (' + ' + ') 7.36 () irle 's to get sum-of-prouts epressions: 2 Then onvert iretly to NN gtes f = ' + ' + ' 7 gtes f 2 = ' + ' + ' 6
7.37 () f = + ' + ' 2 f 2 = ' + ' + ' ' ' ' f f 2 7.37 () f = ( + ) ( + ) ( + ) ( + + ') 2 f 2 = ( + ) ( + ) ( + + ') ('+'+') ' f f 2 ' ' ' 7.38 () f f = '' + ' + ' f 2 = '' + ' + ' 7.38 () f2 f = ('+ ) ('+ ') ( + ') ( + '+ ') f 2 = ('+ ) ('+ ') ( + '+ ') ( + ' + ) 6
7.39 () The iruit onsisting of levels 2, 3, n 4 hs OR gte outputs. onvert this iruit to NN gtes in the usul wy, leving the N gtes t level unhnge. The result is: ' ' e f ' g h 2 7.39 () One solution woul e to reple the two N gtes in () with NN gtes, n then inverters t the output. However, the following solution vois ing inverters t the outputs: = [( + ') + ] (e' + f) = e' + 'e' + e' + f + 'f + f = e' ( + ') + (e' + f) + f ( + ') 2 = [( + ') + g'] (e' + f) h = h (e' + 'e' + f + 'f) + g'h (e' + f) = h [e' ( + ') + f ( + ')] + g'h (e' + f) ' e' e f ' f g' h h 2 62
Unit 8 Prolem Solutions 8. W Y V Z 5 5 2 25 3 35 4 t (ns) 8.2 () = ''' + + ' 8.2 () (ont) Stti -hzrs re: n = ( + ') ('+ + ) ( + + ') Stti -hzrs re: n 8.2 () 8.2 () t = ( + ') (' + + ) ( + + ') (' + + ) ( + + ') 8.3 () t = ''' + + ' + '' + E G 2 3 4 5 6 7 t (ns) Glith (stti '' hzr) 8.3 () Moifie iruit (to voi hzrs) 8.4 G = '' + + ' = ; = Z; = Z = ; = + Z = ; E = ' = ; = ' = ; G = = ; H = + = See L Tle 8-, P. 24 8.5 = =, = = So = ' + '' + = ut in the figure, gte 4 outputs =, initing something is wrong. or the lst NN gte, = only when ll its inputs re. ut the output of gte 3 is. Therefore, gte 4 is working properly, ut gte 3 is onnete inorretly or is mlfuntioning. 63
8.6 8.8 8.9 W Y V Z 5 5 2 25 3 35 4 t (ns) = Z; = ; = Z' = ; = Z = ; E = Z; = + + = ; G = ( Z)' = ' = ; H = ( + )' = ' = = = =, so = ( + ' + ') (' + + ') (' + ' + ) = ut, in the figure, gte 4 outputs =, initing something is wrong. or the lst NOR gte, = only when ll its inputs re. ut the output of gte is. Therefore, gte 4 is working properly, ut gte is onnete inorretly or is mlfuntioning. 8.7 Z = ' + '' + ' ' Stti -hzrs lie etween n Without hzrs: Z t = '' + ' + '' + '' + '' 8. () (,,, ) = m(, 2, 5, 6, 7, 8, 9, 2, 3, 5) There re 3 ifferent minimum N-OR solutions to this prolem. The prolem sks for ny two of these. 8. () = + ' + ' ' + ''' Solution : -hzrs re etween n = ( + + ') ( + ' + + ) (' + ' + ) (' + + ') -hzr is etween Either wy, without hzr: t = ( + + ') ( + ' + + ) (' + ' + ) ( + ' + ') (' + + ') = + ' + ''' + ' Solution 2: -hzrs re etween n 64 = + ' + ''' + ' ' Solution 3: -hzrs re etween n Without hzrs: t = + ' + ''' + '' + ''' + ' = ( + + ') ( + ' + + ) (' + ' + ) ( + ' + ') -hzr is etween
Unit 9 Prolem Solutions 9. See L p. 636 for solution. 9.2 See L p. 636 for solution. 9.3 See L p. 637 for solution. 9.4 See L p. 637 n igure 4-4 on L p.99. 9.5 y y y 2 y 3 y y y y 2 3 y y y y 2 3 y y y y 2 3 = y 3 + y 2 = y 3 + y 2' y = y 3 + y 2+ y + y 9.6 See L p. 638 for solution. 9.7 See L p. 638 for solution. 9.8 See L p. 638-639 for solution. 9.9 The equtions erive from Tle 4-6 on L p. re: 9. Note: 6 = 4 ' n 5 = 4. Equtions for 4 through n e foun using Krnugh mps. See L p. 64-64 for nswers. = 'y' in + 'y in ' + y' in ' + y in out = ' in + 'y + y in See L p. 639 for PL igrm. 9. () = '' + ' + ' Use 3 N gtes ' = ['' + ' + ']' = [' ( +') + ']' = [( + + ') (' + ')]' = '' + Use 2 N gtes 9. () = '' + '' Use 2 N gtes ' = ('' + '')' = [(' +') (' + ') (' + ') (' + ')]' = + + + Use 4 N gtes 9.2 () See L p. 64, use the nswer for 9.2 (), ut leve off ll onnetions to n '. 9.2 () See L p. 64 for solution. 9.3 Using Shnnon s epnsion theorem: = 'e' + ''e + ''e + 'e' = ' (e' + ''e + 'e') + (''e + ''e + 'e') = ' [e' ( + ') + ''e] + [(' + ') 'e + 'e'] = ' (e' + ''e) + (''e + ''e + 'e') The sme result n e otine y splitting Krnugh mp, s shown to the right. E = = 65
9.4 There re mny solutions. or emple: J J I I I I J 2 J 3 I 2 I 3 I 4 J J I 2 I 3 I 4 I 5 I 6 I 7 J 2 J 3 I 5 I 6 I 7 9.5 () y in Sum out Y in Sum Y in out 9.5 () 9.5 () ' in in Sum in out ' ' Sum out Y in Y in Y Y 9.6 () y in iff out Y in iff Y in out 66
9.6 () 9.6 () in ' in in iff out in ' ' Y in iff ' ' Y in out Y Y 9.7 or positive numer, = n for negtive numer, =. Therefore, if the numer is negtive, tht is [3] is, then the output shoul e the 2's omplement (tht is, invert n ) of the input. 3 2.... 3 2 3 3 output.. 3.. 3 9.8 I I I I 2 I 3 Z 2-to-4 eoer m m m 2 m 3 I I 2 Z 9.9 I I I 2 I 3 I 4 I 5 I 6 I 7 Z I 3 9.2 () 9.2 () y in 3-to-8 eoer out = m(, 2, 4, 7); out = m(, 2, 3, 7) y in 3-to-8 eoer out = M(, 3, 5, 6); out = M(, 4, 5, 6) 67
9.2 y y y 2 y 3 y 4 y 5 y 6 y 7 4-to-2 priority enoer 4-to-2 priority enoer 2 2 2 If ny of the inputs y through y 7 is, then of the 8-to-3 eoer shoul e. ut in tht se, or 2 of one of the 4-to-2 eoers will e. So = + 2. If one of the inputs y 4, y 5, y 6, n y 7 is, then shoul e, n n shoul orrespon to 2 n 2, respetively. Otherwise, shoul e, n n shoul orreson to n, respetively. So = 2, = 2 2 + 2 ', n = 2 2 + 2 '. 9.22 N N 2 e f g h 8 2 5 ROM S S 3 2 S S out e f g h S 3 S 2 S S out Mening ( is not vli input) ( + = ) (2 + 3 = 5) (7 + 4 = ) 9.23 () R S T U V W Y Z R S T U 4 2 4 ROM V W Y Z 9.23 () R S T U V = S T + R R S T U W = S'T U + S T' U + R U + S T' U' 68
9.23 () (ont) Y R S T U Y = S'T U' + S T'U + R U' Z R S T U Z = R'S'T'U + S T' U' + S T U S T R U S' T U S T' U R U' S T' U' S' T U' R' S' T' U R' V W Y Z T S U 9.23 () R S T U V W Y Z - - - - - - - - - - - - 9.24 () R S T U V W Y Z 69
9.24 () R S T U R S T U V = R S' Y = R'T U + R T'U + R S W R S T U W = R'T U' + R T'U' + S Z R S T U Z = R'T'U + R'S + R T U R S' R' T U' R T' U' R S R' T U R T' U R' T' U R T U R' S S' V W Y Z 9.24 () R S T U V W Y Z - - - - - - - - - - - - - - - or R S T U V W Y Z - - - - - - - - - - - - 9.25 () = ( + + + )('+ + ')(' + ') 9.25 () (ont) 2 = ( + + + )(' + + ')( + ') 2 ' ' ' 2 lternte solution: = ( + + + ) ( + ' + ') (' + ') 2 = ( + + + ) ( + ' + ') ( + ') 7
9.25 () 2 (') - - (') - - (') - - () - - ('') - ' ' ' '' 2 9.26 () 9.26 () W Y Z W Y Z - - - - - - - - - - - - - - - - - - - - - Y = ' + + ''' W = ' + + + ' lt: 7 Z = + + '' Z = + + '' 9.26 () = ''' + + + ' ' ' ' ' ' ' ' ' W Y Z W Y Z ' ' ''' ''
9.27 () ' ' '' ' '' '' '' ' f f 2 See solution for 7. f f 2 f 3 - - - - - - - - f 3 9.27 () See solution for 7.34 9.27 () euse PL works with sum-of-prouts epression, see solution for 7.36(), not (). y z f f 2 f 3 - - y z f f 2 - - - - - - - - - f f 2 f 3 'yz 'yz' y' y'z yz' ' ' ' ' ' f f 2 72
9.28 Z = I ''' + I '' + I 2 '' + I 3 ' + I 4 '' + I 5 ' + I 6 ' + I 7 = ' + 2 where = I '' + I ' + I 2 ' + I 3 n 2 = I 4 '' + I 5 ' + I 6 ' + I 7 Note: Unuse inputs, outputs, n wires hve een omitte from this igrm. I I I 2 I 3 I 4 I 5 I 6 I 7 2 Z 9.29 or n 8-to-3 enoer, using the truth tle given in L igure 9-6, we get = y 4 + y 5 + y 6 + y 7 = y 2 y 3 ' y 4 ' y 5 ' y 6 ' y 7 ' + y 3 y 4 ' y 5 ' y 6 ' y 7 ' + y 6 y 7 ' + y 7 = y y 2 ' y 3 ' y 4 ' y 5 ' y 6 ' y 7 ' + y 3 y 4 ' y 5 ' y 6 ' y 7 ' + y 5 y 6 ' y 7 ' + y 7 = + + + y lterntive solution for simplifie epressions: = y 2 y 4 ' y 5 ' + y 3 y 4 ' y 5 ' + y 6 + y 7 = y y 2 ' y 4 ' y 6 ' + y 3 y 4 ' y 6 ' + y 5 y 6 ' + y 7 73
9.29 (ont) y y Note: Unuse inputs, outputs, n wires hve een omitte from this igrm. y 2 y 3 y 4 y 5 y 6 y 7 9.3 = 'E + E + ''E + ''E' + 9.3 () 9.3 () 9.3 () = ''('E + E + 'E + E') + ' ('E + E + 'E + ) + ' ('E + E) + ('E + E + ) = '' (''E + 'E') + ' ('E +E + ''E + 'E') + ' (''E) + ('E + E + ''E + ) = '' ('E + 'E') + ' ('E + E + 'E + 'E' + ) + '() + ('E + E + ) 9.3 () Use the epnsion out n = ''( ) + '( ) + ( 3 ) where,, 3 re implemente in lookup tles: E E E 74 LUT LUT LUT 3 3 E 3
9.3 = ''E' + ' + 'E' + '' 9.3 () 9.3 () 9.3 () = '' ('E' + 'E') + ' ('E' + ') + ' ('E' + + ') + ('E') = '' ('E' + E') + ' ('E' + ) + ' (E' + ') + () = '' (''E' + E' + ) + ' (''E') + ' (''E' + E') + (''E' + ') In this se, use the epnsion out n to implement the funtion in 3 LUTs: = ''( ) + '( ) + '( 2 ) + () Here we use the LUTs to implement,, 2 whih re funtions of,, E E E E LUT LUT LUT 2 2 E 2 9.32 or 4-to- MU: Y = ''I + 'I + 'I 2 + I 3 = ' ('I + I ) + ('I 2 + I 3 ) = 'G +, where G = 'I + I ; = 'I 2 + I 3 Set progrmmle MU so tht Y is the output of MU H. G 4 = G 3 = G 2 = I G = I 4= 3= 2= I2 = I3 LUT LUT G H H = Y Unit Prolem Solutions. See L p. 642 for solution..2 See L p. 642 for solution..3 See L p. 643 for solution..4 See L p. 643 for solution..5 See L p. 643 for solution. Notes: The funtion ve2int is foun in it_pk, whih is in the lirry itli, so the following elrtions re neee to use ve2int: lirry itli; use itli.it_pk.ll; If st_logi is use inste of its, then the ine n e ompute s: ine <= onv_integer(&&in); where,, n in re st_logi. onv_integer is foun in the st_logi_rith pkge. 75
.6 See L p. 643 for solution..7 See L p. 644 for solution. Notes: In line 8, ""& onverts to 8-it.8 See L p. 644 for solution. the following to the nswer given on L p. 644: out <= '' & E + us; Sum <= out(3 ownto ); out <= out(4); st_logi_vetor. The overloe + opertors utomtilly eten,, n to 8 its so tht the sum is 8 its. In line 9, sum(7 ownto 2) rops the lower 2 its of sum, whih effetively ivies y 4 to give the verge. ing sum() rouns up the vlue of f if sum() =..9 See L p. 644 for solution.. The network represente y the given oe is: P Q N L M R () Sttement () will eeute s soon s either P or Q hnge. Hene, it will eeute t 4 ns. (2) Sine the NN gte hs ely of ns, L will e upte t 4 ns. (3) Sttement () will eeute when the vlue M hnges. It will eeute t 9 ns. (4) R will e upte t 9 + Δ ns, sine Δ is the efult ely time when no ely is epliitly speifie.. () H <= not nn nor not nn E;.() N <= not fter 5 ns; <= N nn fter ns; (Note: not hppens first, then it proees from left to <= not fter 5ns; right) G <= nor fter 5ns; H <= G nn E fter ns;.2 R S P Q S U V P Q R T.3 L = (Sine n in the resolution funtion yiels ) M = N = ( overries Z in the resolution funtion).4 () The epression n e rewritten s: <= (((not E) & "") or "") n (not ); Evluting in this orer, we get: =.4 () LHS: not("" & "") = "" RHS: ("" & "" n "" & "") = "" Sine LHS > RHS, the epression evlutes to LSE 76
.5 lirry itli; use itli.it_pk.ll; entity myrom is port (,,, : in it; W,, Y: out it); en myrom; rhiteture tle of myrom is type ROM6_3 is rry( to 5)of it_vetor( to 2); onstnt ROM: ROM6_3 := ("", "", "", "", "", "", "", "", "", "", "", "", "", "", "", ""); signl ine: integer rnge to 5; signl temp: it_vetor( to 2); egin ine <= ve2int(&&&); temp <= ROM(ine); W <= temp(); <= temp(); Y <= temp(2); en tle;.6 () tus <= memus when mre = ''.6 () The vlue will e etermine y the else "ZZZZZZZZ"; st_logi resolution funtion. or emple, if tus <= prous when mwrite = '' memus = "" n prous = "", else "ZZZZZZZZ"; then tus = "".7 () with & selet <= not fter 5ns when "", fter 5ns when "", not fter 5ns when "", '' fter 5ns when "";.7 () <= not fter 5ns when & = "" else fter 5ns when & = "" else not fter 5ns when & = "" else '' fter 5ns;.8 () entity mynn is.8 () entity min is port(, Y: in it; Z: out it); port(,,, : in it; : out it); en mynn; en min; rhiteture eqn of mynn is egin Z <= nn Y fter 4 ns; en eqn; rhiteture eqn of min is omponent mynn is port(, Y: in it; Z: out it); en omponent; signl E, G: it; egin n: mynn port mp(,, E); n2: mynn port mp(,, G); n3: mynn port mp(e, G, ); en eqn; 77