II. SOLUTIONS TO HOMEWORK PROBLEMS Unit 1 Problem Solutions

Similar documents
Words Symbols Diagram. abcde. a + b + c + d + e

Angles 2.1. Exercise Find the size of the lettered angles. Give reasons for your answers. a) b) c) Example

Lesson 2.1 Inductive Reasoning

CS99S Laboratory 2 Preparation Copyright W. J. Dally 2001 October 1, 2001

Maximum area of polygon

1 Fractions from an advanced point of view

The remaining two sides of the right triangle are called the legs of the right triangle.

Chapter. Contents: A Constructing decimal numbers

CS 316: Gates and Logic

MA Lesson 16 Notes Summer 2016 Properties of Logarithms. Remember: A logarithm is an exponent! It behaves like an exponent!

MATH PLACEMENT REVIEW GUIDE

Example 27.1 Draw a Venn diagram to show the relationship between counting numbers, whole numbers, integers, and rational numbers.

50 MATHCOUNTS LECTURES (10) RATIOS, RATES, AND PROPORTIONS

SOLUTIONS MANUAL DIGITAL DESIGN FOURTH EDITION M. MORRIS MANO California State University, Los Angeles MICHAEL D.

Homework 3 Solutions

Appendix D: Completing the Square and the Quadratic Formula. In Appendix A, two special cases of expanding brackets were considered:

Lec 2: Gates and Logic

Volumes by Cylindrical Shells: the Shell Method

1. Definition, Basic concepts, Types 2. Addition and Subtraction of Matrices 3. Scalar Multiplication 4. Assignment and answer key 5.

5.6 POSITIVE INTEGRAL EXPONENTS

If two triangles are perspective from a point, then they are also perspective from a line.

Interior and exterior angles add up to 180. Level 5 exterior angle

Module 5. Three-phase AC Circuits. Version 2 EE IIT, Kharagpur

and thus, they are similar. If k = 3 then the Jordan form of both matrices is

Practice Test 2. a. 12 kn b. 17 kn c. 13 kn d. 5.0 kn e. 49 kn

Vectors Summary. Projection vector AC = ( Shortest distance from B to line A C D [OR = where m1. and m

Angles and Triangles

CHAPTER 31 CAPACITOR

MATH 150 HOMEWORK 4 SOLUTIONS

Polynomial Functions. Polynomial functions in one variable can be written in expanded form as ( )

Bayesian Updating with Continuous Priors Class 13, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom

End of term: TEST A. Year 4. Name Class Date. Complete the missing numbers in the sequences below.

. At first sight a! b seems an unwieldy formula but use of the following mnemonic will possibly help. a 1 a 2 a 3 a 1 a 2

Boğaziçi University Department of Economics Spring 2016 EC 102 PRINCIPLES of MACROECONOMICS Problem Set 5 Answer Key

SECTION 7-2 Law of Cosines

Second Term MAT2060B 1. Supplementary Notes 3 Interchange of Differentiation and Integration

Unit 6: Exponents and Radicals

Orthopoles and the Pappus Theorem

National Firefighter Ability Tests And the National Firefighter Questionnaire

The art of Paperarchitecture (PA). MANUAL

P.3 Polynomials and Factoring. P.3 an 1. Polynomial STUDY TIP. Example 1 Writing Polynomials in Standard Form. What you should learn

c b N/m 2 (0.120 m m 3 ), = J. W total = W a b + W b c 2.00

1.2 The Integers and Rational Numbers

Ratio and Proportion

DiaGen: A Generator for Diagram Editors Based on a Hypergraph Model

Or more simply put, when adding or subtracting quantities, their uncertainties add.

COMPLEX FRACTIONS. section. Simplifying Complex Fractions

SPECIAL PRODUCTS AND FACTORIZATION

Math Review for Algebra and Precalculus

Factoring Polynomials

Section 5-4 Trigonometric Functions

PROF. BOYAN KOSTADINOV NEW YORK CITY COLLEGE OF TECHNOLOGY, CUNY

Two hours UNIVERSITY OF MANCHESTER SCHOOL OF COMPUTER SCIENCE. Date: Friday 16 th May Time: 14:00 16:00

Reasoning to Solve Equations and Inequalities

19. The Fermat-Euler Prime Number Theorem

On Equivalence Between Network Topologies

Multiplication and Division - Left to Right. Addition and Subtraction - Left to Right.

1. Find the zeros Find roots. Set function = 0, factor or use quadratic equation if quadratic, graph to find zeros on calculator

SOLVING EQUATIONS BY FACTORING

LISTENING COMPREHENSION

Learning Outcomes. Computer Systems - Architecture Lecture 4 - Boolean Logic. What is Logic? Boolean Logic 10/28/2010

Chapter. Fractions. Contents: A Representing fractions

MULTIPLYING OUT & FACTORING

Vectors Recap of vectors

Pentominoes. Pentominoes. Bruce Baguley Cascade Math Systems, LLC. The pentominoes are a simple-looking set of objects through which some powerful

Further applications of area and volume

Math 314, Homework Assignment Prove that two nonvertical lines are perpendicular if and only if the product of their slopes is 1.

0.1 Basic Set Theory and Interval Notation

Firm Objectives. The Theory of the Firm II. Cost Minimization Mathematical Approach. First order conditions. Cost Minimization Graphical Approach

Quick Guide to Lisp Implementation

Pure C4. Revision Notes

Vectors. The magnitude of a vector is its length, which can be determined by Pythagoras Theorem. The magnitude of a is written as a.

EQUATIONS OF LINES AND PLANES

H SERIES. Area and Perimeter. Curriculum Ready.

Operations with Polynomials

A.7.1 Trigonometric interpretation of dot product A.7.2 Geometric interpretation of dot product

WHAT HAPPENS WHEN YOU MIX COMPLEX NUMBERS WITH PRIME NUMBERS?

Geometry 7-1 Geometric Mean and the Pythagorean Theorem

GENERAL OPERATING PRINCIPLES

84 cm 30 cm. 12 in. 7 in. Proof. Proof of Theorem 7-4. Given: #QXY with 6 Prove: * RS * XY

Rotating DC Motors Part II

StyleView SV32 Change Power System Batteries

Solution to Problem Set 1

OxCORT v4 Quick Guide Revision Class Reports

Answer, Key Homework 10 David McIntyre 1

2 DIODE CLIPPING and CLAMPING CIRCUITS

Printer Disk. Modem. Computer. Mouse. Tape. Display. I/O Devices. Keyboard

32. The Tangency Problem of Apollonius.

Overview of IEEE Standard

Unit 5 Section 1. Mortgage Payment Methods & Products (20%)

How To Balance Power In A Distribution System

Algebra Review. How well do you remember your algebra?

Use Geometry Expressions to create a more complex locus of points. Find evidence for equivalence using Geometry Expressions.

9 CONTINUOUS DISTRIBUTIONS

RIGHT TRIANGLES AND THE PYTHAGOREAN TRIPLETS

Transcription:

II. SOLUTIONS TO HOMEWORK PROLEMS Unit Prolem Solutions 757.25. (). () 23.7 6 757.25 6 47 r5 6 6 2 r5= 6 (4). r2 757.25 = 25.4 6 =. 2 2 5 4 6 23.7 6 7 r 6 r7 (2).72 6 ().52 6 (8).32. () 6 356.89 6 22 r4 6 6 r6 (4).24 r 6 (3).84 6 (3).44 6 (7).4 356.89 = 64.E3 6 =. 2 6 4 E 3 23.7 = 7.2 6 =. 2 7 2. () 63.5 6 63.5 6 66 r7 6 6 4 r2 (8). r4 63.5 = 427.8 6 =. 2 4 2 7 8.2 () E.6 6 = E 6 2 + 6 + 6 + 6 6.2() 59. 6 = 5 6 2 + 9 6 + 6 + 6 = 4 256 + 6 + + 6/6 = 376.375.() 2 E 6 726.3 8 = 7 8 3 + 2 8 2 + 6 8 + + 3 8 = 7 52 + 2 64 + 6 8 + + 3/8 = 376.375. 8 7 2 6 3 = 5 256 + 9 6 + 3 + 2/6 = 437.75. 6 5 9 2635.6 8 = 2 8 3 + 6 8 2 + 3 8 + 5 8 + 6 8 = 2 52 + 6 64 + 3 8 + 5 + 6/8 = 437.75. 8 2 6 3 5 6.3 3.25 4 = 3 4 2 + 4 + 4 + 2 4.4 () 457. + 5 4 2 = 588 + 54 + +.684 = 752.684 6 752.684 6 25 r2 6 6 2 r5 ().4 6 3 r2 6 r3 ().624 6 ().3744 6 (2).2464 6 ().4784 3.25 4 = 752.684 = 3252.2 6 5 6 457. 6 9 r 6 6 5 r= 6 ().76 r5 6 (2).6 457. = 5. 6 5.4 () 5. 6 =. 2 =266.7 8 2 6 6 7.4 () 5. 6 = 23. 3 4 5.4 () E. 6 = 6 2 + E 6 + 6 + 6 = 3328 + 224 + 2 +.625 =3564.625

.5 () () (Su) + (Multiply).5 (, ) See L p. 625 for solution..6,.7,.8 See L p. 625 for solution.. (). () 35.375 6 35.375 6 8 r9 6 5 r (6). 35.375 = 59.6 6 =. 2 5 9 6 6 3.2 6 8 r3 6 r2 ().92 6 (4).72. ().33 6.33 6 r5 = 6 6 (5).28 6 (4).48.33 = 6.54 6 =. 2 6 5 4. () 644.875 6 644.875 6 2 r2 6 6 r6 (4). 3.2 = 2.E 8 =. 2 2 E 644.875 = 66.E 6 =. 2 6 6 E. (). 2 = 5724.5 8 = 5 8 3 + 7 8 2 + 2 8 + 4 8 + 5 8 = 5 52 + 7 64 + 2 8 + 4 + 5/8 = 328.625. (). 2 = 457.2 8 = 4 8 3 + 8 2 5 8 + 7 8 + 2 8 = 4 52 + 64 + 5 8 + 7 + 2/8 = 259.25. 2 = 4. 6 6 2 + 6 + 4 6 + 6 256 + 3 6 + 4 + /6 = 328.625. 2 = 86.4 6 = 8 6 2 + 6 6 + 6 4 6 = 8 256 + 6 6 + 5 + 4/6 = 259.25.2 () 375.54 8 = 3 64+ 7 8 + 5 + 5/8 + 4/64 = 253.6875 3 253.69 3 84 r 3 3 28 r (2).7 3 9 r 3 3 3 r ().2 3 r 3 r ().63 3 ().89 375.54 8 =.2 3 6.2 () 384.74 4 384.74 4 96 r 4 4 24 r (2).96 4 6 r 4 4 r2 (3).84 r 4 (3).36 384.74 = 2.2333 4...

.2 ().4 ().4 () 52.4 = 2 + 5 + 2 + / + 4/2 = 267.94 9 267.94 9 4 r7 9 9 5 r5 (8).46 9 r6 9 r (4).4 52.4 = 267.94 = 657.8427 9... 2983 63/64 = 8 2983.984 8 372 r7 8 8 46 r4 (7).872 9 5 r6 8 r5 (6).976 2983 63/64 = 5647.76 8 (or 5647.77 8 ) =. 2 (or. 2) 9 3/32 8 9.969 8 273 r4 8 8 29 r5 (7).752 9 3 r5 8 r3 (6).6.3 22.22 3 2 2.2 2 = 425.673 9 se 3 se 9 2 2 3 4 2 5 2 6 2 7 22 8.4 () 93.7 8 93.7 8 r5 8 8 r3 (5).6 r 8 (4).8 93.7 = 35.54 8 =. 2.4 () 9.3 8 9.3 8 3 r5 8 8 r5 (2).4 r 8 (3).2 9 3/32 = 3554.76 8 =. 2 9.3 = 55.23 8 =. 2.5 () () (Sutrt) (Multiply).5() () (Su) (Mult) 7

.5() () (Su) (Mult).6 () () ().7 () Quotient ) Reminer.7() Quotient ) Reminer.7().8 ().8() Quotient ) Reminer Quotient ) Reminer Quotient ) Reminer.8().9 Quotient ) Reminer 4 3 2 2 3 4 5 6 7 8 9 8 954 =

.2 5-3-- is possile, ut 6-4-- is not, euse there is no wy to represent 3 or 9. lternte Solutions:.2 5-4-- is not possile, euse there is no wy to represent 3 or 8. 6-3-2- is possile: 6 3 2.22 5 3 () 2 2 3 3 4 4 () 5 5 6 6 () 7 7 8 8 9 9 () 6 2 2 2 3 4 5 6 7 8 9 = 83 lternte Solutions: () () () ().23 lternte.24 lternte Solutions: Solutions: 5 2 2 2 3 4 5 6 7 8 9 = 94 () () () () 7 3 2 2 3 4 5 6 7 8 9 () () 49 = lt.: = " " " 6 222.22 6 3 r4 6 r3 (3).52 6 (8).32 222.22 = E.38 6 = E. 3 8 6 83.8 6 r7 6 r (2).96 6 (5).36 83.8 = 7. 6 = 7. 9

.26 () In 2 s omplement In s omplement ( ) + ( ) ( ) + ( ) () ( 2) ( 2).26 () In 2 s omplement In s omplement ( ) + ( 6) ( ) + ( 6) () ( 6) ( 6).26 () ( 8) + ( ) ( 8) + ( ) () ( 9) ( 9).26 () + 9 + 9 (2) (2).26 (e) ( ) + ( 4) ( ) + ( 4) () ( 5) ( 5).27 () In 2 s omplement In s omplement + +.27 () In 2 s omplement In s omplement + + ().27 () + + () overflow overflow.27 () + + ().27 (e) In 2 s omplement In s omplement + + ().28 () In 2 s omplement In s omplement + + ().28 () + +.28 () + + () overflow overflow.28 () + +

Unit 2 Prolem Solutions 2. See L p. 626 for solution. 2.2 () In oth ses, if =, the trnsmission is, n if =, the trnsmission is. 2.2 () In oth ses, if =, the trnsmission is YZ, n if =, the trnsmission is. Y Y Z Y Z 2.3 or the nswer to 2.3, refer to L p. 626 2.4 () = [( ) + ( )] + E + = + E + 2.4 () Y = (' + ( + )) + = (' + ) + = ( + ) + = + + = + 2.5 () ( + ) ( + ) (' + ) (' + E) = ( + ) (' + ) (' + E) y Th. 8 = (' + ) (' + E) y Th. 8 = ' + E y Th. 8 2.5 () (' + + ') (' + ' + ) (' + ') = (' + ' + ) (' + ') {y Th. 8 with = ' + '} = '' + '' + ' + '' + '' + ' = '' + '' + '' + '' 2.6 () + '' = ( + ') ( + ') 2.6 () W + WY' + ZY = (W + WY' + ZY) = ( + ') ( + ') ( + ') ( + ') = (W + ZY) {y Th. } = (W +Z) (W + Y) 2.6 () ' + E + E' = ' + E( +') = ' + E( +) = (' + E) (' + + ) = (' + E) ( + E) ( + E) (' + + ) ( + + ) ( + + ) 2.6 () YZ + W'Z + Q'Z = Z(Y + W' + Q') = Z[W' + (Y + Q')] = Z(W' + ) (W' + Y + Q') y Th. 8 2.6 (e) ' + '' + ' = ' ( + ') + ' = ' ( + ') + ' y Th. = (' + ') ( + ' + ') = (' + ') (' + ) ( + ' + ') y Th. = (' + ') ( + ') 2.6 (f) + + E = ( + + ) ( + + E) = ( + + ) ( + + ) ( + + E) ( + + E) 2.7 () ( + + + ) ( + + + E) ( + + + ) = + + + E pply seon istriutive lw (Th. 8) twie 2.7 () WYZ + VYZ + UYZ = YZ (W + V + U) y first istriutive lw (Th. 8) U V W E Y Z 2.8 () [()' + ']' = (')' = ( + ') 2.8 () [ + (' + )]' = '((' + ))' = + ' = '(' + (' + )') = '(' + ') = '' + '' 2.8 () (( + ') )' ( + ) ( + )' = (' + ') ( + )'' = (' + ')'' = ''

2.9 () = [( + )' + ( + ( + )')'] ( + ( + )')' 2.9 () G = {[(R + S + T)' PT(R + S)']' T}' = ( + ( + )')' y Th. with =(+(+)')' = (R + S + T)' PT(R + S)' + T' = '( + ) = ' = T' + (R'S'T') P(R'S')T = T' + PR'S'T'T = T' 2. () Y 2. () Y Y Y' Y' 2. () ' Y Z Y Z 2. () ' 2. (e) 2. (f) Y Z Y Z Y Y 2. () '' + ('')' = y Th. 5 2. () ( + ') + + ' = + ' y Th. 2. () + + '( + )' = + + ' y Th. 2. () (' + ')(' + E) = ' + 'E y Th. 8 2. (e) [' + ()' +E'] = ' + E' y Th. 8 2. (f) (' + )('E + )' + ('E + ) = 'E + + ' + y Th. 2.2 () ( + Y'Z)( + Y'Z)' = y Th. 5 2.2 () (W + ' + YZ)(W' + ' + YZ) = '+ YZ y Th. 9 2.2 () (V'W + )' ( + Y + Z + V'W) = (V'W + )' (Y + Z) y Th. 2.2 () (V' + W')(V' + W' + Y'Z) = V' + W' y Th. 2.2 (e) (W' + )YZ' + (W' + )'YZ' = YZ' y Th. 9 2.2 (f) (V' + U + W)(W + Y + UZ') + (W + UZ' + Y) = W + UZ' + Y y Th. 2.3 () = ' + + ( + ) = + + = 2.3 () 2 = '' + ' = ' + ' = ' + ' 2.3 () 3 = [( + )'][( + ) + ] = ( + )' ( + ) + ( + )' = ( + )' y Th. 5 & Th. 2 2.3 () Z = [( + )]' + ( + ) = [( + )]' + y Th. with Y = [( + ) ]' = '' + ' + ' 2.4 () ( + E + ) 2.4 () W + Y + Z + VU 2

2.5 () 2.5 () 2.5 () 2.5 () 2.5 (e) 2.5 (f) H'I' + JK = (H'I' + J)(H'I' + K) = (H' + J)(I' + J)(H' + K)(I' + K) + '' + ' = ( + '' + ') = [(' + )( + ') + '] = (' + + ')( + ' + ') ' + + E' = (' + + E') = [' + ( + E')] = (' + )(' + + E') ' + '' + E' = ' + '' + E' = ' ( + ') + E' = (' + E') ( + ' + E') = (' + E) (' + ') ( + E) ( + ' ) ( + ' + E) ( + ' + ') W'Y + W'' + W'Y' = '(WY + W') + W'Y' = '(W' + Y) + W'Y' = (' + W') (' + Y') (W' + Y + W') (W' + Y + Y') = (' + W') (' + Y') (W' + Y) ' + (' + E) = ' + ( + E)(' + E) = (' + + E)(' + ' + E) = ( + + E)(' + + E)( + ' + E)(' + ' + E) 2.6 () W + 'YZ = (W + ')(W + Y) (W + Z) 2.6 () VW + Y' + Z = (V++Z)(V+Y'+Z)(W++Z)(W+Y'+Z) 2.6 () '' + '' + 'E' = '(' + ' + E') 2.6 () = '[E' + (' + ')] = '(E' + )(E' + ' + ') + E' + ' = ( + E' + ') = [E' + ( + ')] = (E' + )(E' + + ') = ( + )( + E')( + ' + )( + ' + E') 2.7 () [(Y)' + (' + Y')'Z] = ' + Y' + (' + Y')'Z 2.7 () ( + (Y(Z + W)')')' = 'Y(Z + W)' = 'YZ'W' = ' + Y' + Z y Th. with Y = (' + Y') 2.7 () [(' + ')' + ('')' + '']' = (' + ')''( + ) = '' 2.7 () ( + ) ' + ( + )' = ' + ( + )' {y Th. with Y = ( + )'} = ' + '' 2.8 () = [(' + )']' + = [' + + '] + = + 2.8 () G = [()'( + )]' = ( + '') = 2.8 () H = [W''(Y' + Z')]' = W + + YZ 2.9 = (V + + W) (V + + Y) (V + Z) = (V + + WY)(V + Z) = V + Z ( + WY) y Th. 8 with = V W 2.2 () = + ' + ' + ' = + ' + ' (y Th. 9) = ( + ') + ' = (+ ) + ' (y Th. ) = + + ' = + ( + ') = + ( + ) = + + + 2.2 () Y + Z V eginning with the nswer to (): = ( + ) + + + lternte solutions: = + ( + ) + 3 = + ( + )

2.2 () W Y Z W'Y WZ W'Y+WZ W'+Z W+Y (W'+Z)(W+Y) 2.2 () + +' (+)(+') ' +' 2.2 () Y Z +Y '+Z (+Y)('+Z) Z 'Y Z+'Y 2-2 () Y Z Y YZ 'Z Y+YZ+'Z Y+'Z 4

2.2 (e) Y Z +Y Y+Z '+Z (+Y)(Y+Z)('+Z) (+Y)('+Z) 2.22 ( + ) =, = [(+Y')Y] = Y' + Y, (Y) = + Y Unit 3 Prolem Solutions 3.6 () (W + ' + Z') (W' + Y') (W' + + Z') (W + ') (W + Y + Z) = (W + ') (W' + Y') (W' + + Z') (W + Y + Z) = (W + ') [W' + Y' ( + Z')] (W + Y + Z ) = [W + ' (Y + Z)] [W' + Y'( + Z')] = WY' ( + Z') + W'' (Y + Z) {Using ( + Y) (' + Z) = 'Y +Z with =W} = WY' + WY'Z' + W''Y + W''Z 3.6 () ( + + + ) (' + ' + + ') (' + ) ( + ) ( + + ) = ( + + ) (' + ) ( + ) = ( + + ) (' + ) {Using ( + Y) (' + Z) = 'Y + Z with = } = ' + ' + ' + + + = ' + 3.7 () + '' + '' + = + '(' + ') = (' + ) [ + (' + ')] {Using ( + Y) (' + Z) = 'Y + Z with =} = (' + ) [ + (' + ') (' + )] = (' + ) ( + ' + ') 3.7 () ''' + ' + ' + ' 3.8 = ' ('' + ) + (' + ') = ' [(' + ) ( + ')] + [(' + ') (' + )] {Using Y + 'Z = (' + Y) ( + Z) twie insie the rkets} = [ + (' + ) ( + ')] [' + (' + ') (' + )] {Using Y + 'Z = (' + Y) ( + Z) with = } = ( + ' + ) ( + + ') (' + ' + ') ( ' + ' + ) {Using the istriutive Lw} = [( ) + ] = ( + '' + ) = ('' + ) = (' + ) = ()' (' + ) + (' + )' = (' + ') (' + ) + (') = ' + ' + ' {Using ( + Y) ( + Z) = + YZ} = ' + ' + ' {Using + 'Y = + Y} 3.9 = ( Β) (Α ) is not vli istriutive lw. PROO: Let =, =, =. LHS: = = =. RHS: ( ) ( ) = ( ) ( ) = =. 5

3. () ( + W) (Y Z) + W' = ( + W) (YZ' + Y'Z) + W' = YZ' + Y'Z + WYZ' + WY'Z + W' 3. () ( ) + + = ' + ()' + + = ' + (' + ') + + = ' + ' + ' + + Using onsensus Theorem WYZ' + WY'Z + W' = ' + ' + ' + + + ( onsensus term, eliminte ) = ' + ' + ' + (Remove onsensus term ) 3. () (' + ' + ') (' + + ') ( + + ) ( + + ) = (' + ' + ') ( + ' + ) (' + + ') ( + + ) ( + + ) onsensus term = (' + + ') ( + + ) = (' + ' + ') ( + ' + ) ( + + ) Removing onsensus terms 3. ( + ' + + E') ( + ' +' + E) (' + ' + ' + E') = [ + ' + ( + E') (' + E)] (' + ' + ' + E') = ( + ' + 'E' + E) (' + ' + ' + E') = ' + ( + 'E' + E) (' + ' + E') ' { onsensus term} = ' + ' + ' + E' + ''E' + 'E' + 'E' + 'E = ' + ' + ' + E' + ' +'E + 'E' = ' + ' + E' + ' + 'E' 3.2 ''E + ''' + E + = ''' + + 'E Proof: LHS: ''E + 'E + ''' + E + onsensus term to left-hn sie n use it to eliminte two onsensus terms = 'E + ''' + This yiels the right-hn sie. LHS = RHS 3.3 () (' + ' + ) (' + ) ( + ' + ') (' + + ) ( + ) = (' + + '') ( + ') = ( + '') + ('') {Using Y + 'Z = ( + Z)(' + Y) with = } = + '' + '' 3.3 () (' + ' + ') ( + + ') ( + ) (' + ) (' + + ) = [' + (' + ')] [ + ( + ')] = (' + ') + ' ( + ') = ' + ' + ' + '' 3.3 () (' + ' + ) ( + ') (' + + ') ( + ) ( + + ') = [' + (' + ) ( + ')] ( + ') = (' + + '') ( + ') {y Th. 4 with = } = ( + '') + '' {y Th. 4 with = } = + '' + '' 3.3 () 3.3 (e) ( + + ) (' + ' + ') (' + ' + ') ( + + ) = ( + + ) (' + ' + '') = ( ' + '') + '( + ) {y Th. 4 with = } = ' + '' + ' + ' ( + + ) ( + + ) (' + ' + ') (' + ' + ') = ( + + ) (' + ' + '') = (' + '') + '( + ) = ' + '' + ' + ' lt. soln's: ' + ' + '' + ' (or) ' + ' + ' + '' (or) ' + ' + '' + ' 3.4 () ' + '' + ' = '' + ' = ('' + ') = (' + '') {y Th. with Y = '} = ' + '' 6

3.4 () '' + ' + '' = '' + '( + ') = '' + '( + ) = '' + ' + ' 3.4 () 3.4 () 3.5 () 3.5 () 3.5 () ( + ') (' + ' + ) (' + + ') = ' + (' + ) ( + ') = ' + ( + ') = ' + (' + + ' + ) (' + ' + + E) (' +' + + E') = [' + ' + ( + ) ( + E) ( + E')] {y Th. 8 twie with = ' + '} = [' + ' + ( + )] = [' + ' + ] = '' + ' + + '' = ' ( + ') + ('' + ) = ' [( + ') ( + )] + [(' + ) ( + ')] {y Th. 4 twie with = n = } = [ + ( + ') ( + ) ] [' + (' + ) ( + ')] {y Th. 4 with = } = ( + + ') ( + + ) (' + ' + ) (' + + ') {y istriutive Lw} + '' + ''' + ' = ' (' + '') + ( + ') = ( + ' + '') (' + + ') {y Th. 4 with = } = ( + ' + ') ( + ' + ') (' + + ) (' + + ') + '' + '' + '' = ' [' + '] + [ + ''] = ' [( + ) (' + ')] + [( + ') ( + ')] = [ + ( + ) (' + ')][' + ( + ') ( + ')] = ( + + ) ( + ' + ') (' + + ') (' + + ') 3.5 () '' + '' + '' + = ('' + ) + ' (' + ') = ( + ') ( + ') + ' (' + ') ( + ) = [' + ( + ') ( + ')] [ + (' + ') ( + )] = (' + + ') (' + + ') ( + ' + ') ( + + ) 3.5 (e) WY + W'Y + WYZ + YZ' = WY ( + ' + Z) + YZ' = WY + YZ' = Y (W + Z') = Y (W + ) (W + Z') 3.6 () ( ) + '' = ()' + ' + '' = (' + ') + ' + '' = (' + ') + ' ( + ') = (' + ' + ') ( + ' + ) = (' + ' + ') ( + ' + ) ( + ' + ) 3.6 () ' ( ') + + ' = ' ['' + ] + + ' = ''' + ' + + ' = ''' + ( + ' + ') = ''' + ( + ' + ') = ''' + = + '' = (' + ) (' + ) 3.7 () 3.7 () ( Y) Z = (Y Z) Proof: LHS: Let Y =. Z = Z' + 'Z = ( Y) Z' + ( Y)' Z = ( Y ) Z' + ( Y) Z {y (3-8) on L p. 6) = ('Y + Y') Z' + (Y + 'Y') Z = 'YZ' + Y'Z' + YZ + 'Y'Z RHS: Let Y Z =. = ' + ' = (Y Z)' + ' (Y Z) = (Y Z) + ' (Y Z) = [YZ + Y'Z'] + ' [YZ' + Y'Z] = YZ + Y'Z' + 'YZ' + 'Y'Z LHS = RHS ( Y) Z = (Y Z) Proof: LHS: Let Y =. ( Z) = Z + 'Z' = ( Y) Z + ( Y)' Z' = ( Y ) Z + ( Y) Z' = (Y + 'Y') Z + (Y' + 'Y) Z' = YZ + 'Y'Z + Y'Z' + 'YZ' RHS: Let Y Z =. ( ) = + '' = (Y Z) + ' (Y Z)' = (Y Z) + ' (Y Z) = [YZ + Y'Z'] + ' [Y'Z + YZ'] = YZ + Y'Z' + 'Y'Z + 'YZ' LHS = RHS 3.8 () '' + ' + ' + ' + '' = '' + ' + ' + '' = ' + ' + '' 3.8 () W'Y' + WYZ + Y'Z + W'Y + WZ = W'Y' + WYZ + Y'Z + W'Y + WZ = W'Y' + WYZ + W'Y + WZ = W'Y' + W'Y + WZ 7

3.8 () ( + + ) ( + + ) (' + + ) (' + ' + ') = ( + + ) (' + + ) (' + ' + ') 3.8 () W'Y + WZ + WY'Z + W'Z' = W'Y + WZ + WY'Z +W'Z' + YZ = WY'Z + W'Z' + YZ YZ ( onsensus term) 3.8 (e) '' + '' + ' + ' + ' = '' + ' + ' 3.8 (f) ( + + ) ( + ' + ) ( + + ) (' + ' + ') = ( + + ) ( + ' + ) (' + ' + ') 3.9 Z = + E + + ' + 'E' = ( + + ' + 'E') + E = ( + E) (E + + + ' + 'E') {y Th. 8 with = E} = ( + ) ( + E) ( + + ' + E + 'E') = ( + ) ( + E) (' + E + ' + + ) {Sine E + 'E' = E + '} = ( + ) ( + E) (' + E + ' + + ) {Sine ' + = ' + } = ( + ) ( + E) (' + E + ' +) {Sine + = } = ( + E) (' + E + ' + ) = ' + E + ' + + E + E' + E {eliminte onsensus term E; use + Y = where = E} 3.2 = ' + ' + + E = ' + + '' + E + = ( + ) (' + ) + ('' + E + ) = [( + ) (' + ) + ] [( + ) (' + ) + '' + E + ] = ( + ) (' + + ) ( + + '' + E + ) (' + + '' + E + ) + + ' = ( + ) (' + + ) ( + ) ( + + '' + E + ) (' + + ' + E + ) = ( + ) ( + ) (' + + ' + E + ) = ( + ) ( + ) (' + + ' + + E) = ( + ) ( + ) (' + + ' + ) = ( + ) (' + + ' + ) = (' + + ' + + + ' + = ' + ' + + use onsensus, + Y = where = 3.2 'Y'Z' + YZ = ( + Y'Z') (' + YZ) = ( + Y') ( + Z') (' + Y) (' + Z) (Y + Z') = ( + Y') ( + Z') (' + Y) (' + Z) (Y + Z') = ( + Y') ( + Z') (' + Z) (Y + Z') = ( + Y') (' + Z) (Y + Z') lt.: (' + Y) (Y' + Z) ( + Z') y ing (Y' + Z) s onsensus in 3r step 3.22 () y + 'yz' + yz = y ( + 'z') + yz = y + yz' + yz = y + y = y lternte Solution: y + 'yz' + yz = y ( + 'z' + z) = y ( + z' + z) = y ( + ) = y 3.22 () 3.22 () y' + z + (' + y) z' = 'y + (' + y) {y Th. with Y = z} = y' + ' + y = + ' + y = + y = lt.: y' + z + (' + y) z' = (y' + z) + (y' + z)' = 8 3.22 () (y' + z) ( + y') z = (y' + z + y'z) z = y'z + z + y'z = z + y'z lternte Solution: (y' + z) (+y') z = z ( + y') = z + zy' ' (' + ) + '' ( + ') +(' + ) ( + ') = '' + ' + '' + ''' + '' + = '' + '' + '' + ' Other Solutions: '' + + ''' + '' '' + + ''' + ' '' + + '' + '

3.22 (e) w'' + 'y' + yz + w'z' + 'z reunnt term = w'' + 'y' + yz + w'z' + 'z = 'y' + yz + w'z' + 'z Remove reunnt term = 'y' + yz + w'z' 3.22 (g) [(' + ' + ') ( + + ')]' + ''' + '' = ( + ') + '' (' + ) +''' + '' = + '+ ''' + '' + ''' + '' ' '' = + ''' + '' + ' = + '' + ' 3.22 (f) ' + ''+ 'E+ E'G+'E+''E = ' + 'E + E'G + 'E (onsensus) = ' + 'E + E'G 3.23 () ''' + ' + + '' + ' + '' 3.23 () = '' + ' + + ' onsensus = '' + ' + 3.24 WY' + (W'Y' ) + (Y WZ) 3.25 () = WY' + W'Y' + (W'Y')' ' + Y (WZ)' + Y'WZ = WY' + W'Y' + (W + Y) ' + Y (W' + Z') + Y'WZ = Y' + W' + 'Y + W'Y + YZ' + WY'Z + WY' = Y' + W' + 'Y + W'Y + YZ' + WY'Z + WY' = Y' + W' + W'Y + YZ' + WY' = + W' + W'Y + YZ' lternte Solutions: = W'Y + W' + WZ' + Y' = YZ' + W' + Y' + WY' = W' + 'Y + Z' + WY' = W' + Y' + WZ' + WY' ''' + + ' + '' + ' + '' = '' + + ' + ' = '' + + ' VLI: ' + ' + ' = ' ( + ') + ( + ') ' + ( + ') ' = ' + '' + ' + '' + ' + '' = ' + ' + ' lternte Solution: ' + ' + ' ll onsensus terms: ', ', ' We get = ' + ' + ' + ' + ' + ' = ' + ' + ' 3.25 () NOT VLI. ounteremple: =, =, =. LHS =, RHS =. This eqution is not lwys vli. In ft, the two sies of the eqution re omplements: [( + ) ( + ) ( + )]' = [( + ) ( + )]' = [ + + ]' = (' + ') (' + ') (' + ') 3.25 () VLI. Strting with the right sie, onsensus terms RHS = + '' + ' + ' + + ' = + '' + ' + ' + + ' = + '' + ' + ' + = LHS 3.25 () VLI: LHS = y' + 'z + yz' onsensus terms: y'z, z', 'y = y' + 'z + yz' + y'z + z' + 'y = y'z + z' + 'y = RHS 3.25 (e) NOT VLI. ounteremple: =, y =, z =, then LHS =, RHS =. This eqution is not lwys vli. In ft, the two sies of the equtions re omplements. LHS = ( + y) (y + z) ( + z) = [( + y)' + (y + z)' + ( + z)']' = ('y' + y'z' + 'z')' = [' (y' + z') + y'z']' =[(' + y'z') (y' + z' + y'z')]' = [(' + y') (' + z') (y' + z')]' (' + y') (y' + z') (' + z') 9

3.25 (f) VLI: LHS = ' + ' + '' + 3.26 () VLI: onsensus terms: ', = ' + ' + '' + + ' + ' + ' + + + '' = RHS LHS = (' + Y') ( Z) + ( + Y) ( Z) = (' + Y') ('Z' + Z) + ( + Y) ('Z + Z') = 'Z' + 'YZ' + Y'Z + 'YZ + Z' + YZ' = 'Z' + (Y' + 'Y)Z + Z' = Z' + Z( Y) = Z' + ( Y) = RHS 3.26 () LHS = (W' + + Y') (W + ' + Y) (W + Y' + Z) = (W' + + Y') (W + (' + Y) (Y' + Z)) = (W' + + Y') (W + ('Y' + YZ)) = (W' ('Y' + YZ) + W ( + Y ')) = W''Y' + W'YZ + W + WY' onsensus terms: 'Y' YZ = W''Y' + W'YZ + W + WY' + YZ + 'Y' = W''Y' + W''Z + W'YZ + YZ + W + WY' + 'Y' = W''Z + W'YZ + YZ + W + 'Y' = W'YZ + YZ + W + 'Y' 3.26 () LHS = + ''' + '' + = ( + ) + '' ( + ') = ( + ' ( + ')) (' + ( + )) = ( + ') ( + + ') (' + ) (' + + ) = ( + ') ( + + ') (' + ) (' + + ) ( + ' + ) onsensus: + ' + = ( + ') ( + + ') (' + ) ( + ' + ) = ( + ') (' + ) ( + ' + ) = RHS 3.27 () VLI. [ + = ] [' ( + ) = '()] [ + = ] [' + ' = '] 3.27 () NOT VLI. ounteremple: =, = = n = then LHS = + = RHS = = = LHS ut + = + = ; = + The sttement is flse. 3.27 () VLI. [ + = ] [( + ) + = () + ] [ + = ] [ + + = + ] 3.27 () NOT VLI. ounteremple: =, = = n = then LHS = + + = RHS = + = = LHS ut + = + = The sttement is flse. 3.28 () '' + + ' + ' + ''' + ' onsensus terms: () '' using '' + ' (2) ' using '' + (3) using ' + (4) '' using ''' + ' Using, 2, 3: '' + + ' + ' + ''' + ' + '' + ' + = '' + + ' (Using the onsensus theorem to remove the e terms sine the terms tht generte them re still present.) 3.28 () ''' + ' + '' + ' onsensus terms: () '' using ''' + ' (2) ' using '' + ' (3) ''' using ''' + '' (4) '' using ''' + ' (5) ' using ' + ' Using : ''' + ' + '' + ' + ', whih is the minimum solution. 2

Unit 4 Prolem Solutions 4. 4.2 See L p. 628 for solution. E y z 4.2 () Y = ''''E' + '''E' + ''E' (less thn gpm) + (t lest gpm) + 4.2 () Z = ''E' + 'E' + E' (t lest 2 gpm) + + (t lest 3 gpm) + (t lest 4 gpm) + (t lest 5 gpm) 4.3 = m(, 4, 5, 6); 2 = m(, 3, 4, 6, 7); + 2 = m(, 3, 4, 5, 6, 7) Generl rule: + 2 is the sum of ll minterms tht re present in either or 2. 2 n Proof: Let = i m i ; 2 = j m j ; + 2 = i m i + j m j = m + m + 2 m 2 +... Σi = 2 n Σj = 2 n Σi = 2 n Σj = 2 n + m + m + 2 m 2 +... = ( + ) m + ( + ) m + ( 2 + 2 ) m 2 +... = ( i + i ) m i Σi = 4.4 () 4.4 () 2 2n = 2 22 = 2 4 = 6 y z z z 2 z 3 z 4 z 5 z 6 z 7 z 8 z 9 z z z 2 z 3 z 4 z 5 'y' 'y ' y' y' 'y+y' '+y' y 'y'+y y '+y +y' +y 4.5 E Z 3 2 2 2 2 4 2 2 4 lternte Solutions E Z 3 4 These truth tle entries were me on't res euse = n = n never our 2 These truth tle entries were me on't res euse when is, the output Z of the OR gte will e regrless of its other input. So hnging n E nnot ffet Z. 3 These truth tle entries were me on't res euse when n E re oth, the output Z of the OR gte will e regrless of the vlue of. 4 These truth tle entries were me on't res euse when one input of the N gte is, the output will e regrless of the vlue of its other input. 4.6 () Of the four possile omintions of & 5, = n 5 = gives the est solution: = ''' + '' + ' + = '' + 4.6 () y inspetion, G = when oth on t res re set to. 2

4.7 () Etly one vrile not omplemente: = '' + '' + '' = m(, 2, 4) 4.8 () (,,, ) = m(,, 2, 3, 4, 5, 6, 8, 9, 2) Refer to L for full term epnsion 4.7 () Remining terms re mterms: = M(, 3, 5, 6, 7) = ( + + ) ( + ' + ') (' + + ') (' + ' + ) (' + ' + ') 4.8 () (,,, ) = Π M(7,,, 3, 4, 5) Refer to L for full term epnsion 4.8 = 2 = 2 2 = 2 3 = 2 = 2 = 2 2 = 2 2 3 = 3 > 2 2 = 2 2 = 2 2 2 2 = 4 > 2 2 3 = 6 > 2 3 = 2 3 = 3 > 2 3 2 = 6 > 2 3 3 = 9 > 2 4.9 () 4.9 () 4.9 () 4.9 () = ' + ' ( + ') ( + ') = ' + ' + '' + '' + '''; = m(,, 4, 5, 6) Remining terms re mterms: = M(2, 3, 7) Mterms of re minterms of ': ' = m(2, 3, 7) Minterms of re mterms of ': ' = M(,, 4, 5, 6) 4. (,,, ) = ( + + ) (' + ) (' + ' + ') ( + + ' + ') = ( + + + ) ( + + ' + ) (' + + ' + ') (' + ' + ' + ) (' + ' + ' + ') ( + + ' + ') = ( + + + ) ( + + ' + ) (' + + + ) (' + + + ') (' + ' + + ) (' + ' + + ') (' + ' + ' + ) (' + ' + ' + ') ( + + ' + ') 4. () = m(, 4, 5, 6, 7,, ) 4. () = M(, 2, 3, 8, 9, 2, 3, 4, 5) 4. () ' = m(, 2, 3, 8, 9, 2, 3, 4, 5) 4. () ' = M(, 4, 5, 6, 7,, ) 4. () ifferene, i = i y i i ; i+ = i i ' + i 'y i + i y i 4. () i = s i ; i+ is the sme s i+ with i reple y i ' i y i i i+ i 4.2 See L p. 629 for solution. 22

4.3 Z Z = '''' + ''' + ''' + ' + + ' = ''' + + ''' + ' = ''' + + ''' + ' + + ''' (e onsensus terms) Z = ''' + + + ''' ' ' ' ' ' ' Z 4.4 Z Z = '' + '' + ' + ''' + '' + '' + ' = ' + '' + ' + '' = ' + ' + '' + ' (e onsensus terms) Z = ' + ' + ' ' ' ' Z 4.5 () The uzzer will soun if the key is in the ignition swith n the r oor is open, or the set elts re not fstene. K S' The two possile interprettions re: = K + S' n = K( + S') 4.5 () You will gin weight if you et too muh, or you o not eerise enough n your metolism rte is too low. W E' M The two possile interprettions re: W = ( + E') M n W = + E'M 4.5 () The speker will e mge if the volume is set too high n lou musi is plye or the stereo is too powerful. V M S The two possile interprettions re: = VM + S n = V (M + S) 4.5 () The ros will e very slippery if it snows or it rins n there is oil on the ro. V S R O The two possile interprettions re: V = (S + R) O n V = S + RO 4.6 Z = + + 4.7 Z = (E + ''''E')'; Y = '''E 4.8 () 3 = 6 = ; = '''E'G 4.8 () = ; Y = '''E'G' 4.8 () = 2 ; 64 = 2 ; 3 = 2 ; 27 = 2 ; 32 = 2 ; Z = ('')' = + 23

4.9 2 = M(, 3, 4, 5, 6, 7). Generl rule: 2 is the prout of ll mterms tht re present in either or 2. Proof: 2 n Let = ( i + M i ); 2 = ( j + M j ); 2 = ( i + M i ) ( j + M j ) Πi = 2 n Πj = 2 n Πi = 2 n Πj = = ( + M ) ( + M ) ( + M ) ( + M ) ( 2 + M 2 ) ( 2 + M 2 )... = ( + M ) ( + M ) ( 2 2 + M 2 )... 3 n = ( i i + M i ) Πi = Mterm M i is present in 2 iff i i =. Mterm M i is present in iff i =. Mterm M i is present in 2 iff j =. Therefore, mterm M i is present in 2 iff it is present in or 2. 4.2 G H J () (,,, ) = m(5, 6, 7,,, 3, 4, 5) = M(,, 2, 3, 4, 8, 9, 2) () G (,,, ) = m(, 2, 4, 6) = M(, 3, 5, 7, 8, 9,,, 2, 3, 4, 5) () H (,,, ) = m(7,, 3, 4, 5) = M(,, 2, 3, 4, 5, 6, 8, 9,, 2) () J (,,, ) = m(4, 8, 2, 3, 4) = M(,, 2, 3, 5, 6, 7, 9,,, 5) 4.22 f () f = m(, 2, 4, 5, 6,,, 2, 4, 5) () f = M(, 3, 7, 8, 9, 3) () f ' = m(, 3, 7, 8, 9, 3) () f '= M(, 2, 4, 5, 6,,, 2, 4, 5) You n lso work this prolem lgerilly, s in prolem 4.2. 4.2 You n lso work this prolem using truth tle, s in prolem 4.22. f(,, ) = ' ( + ') = ' + '' = ' ( + ') + ' ( + ') ' = ' + '' + '' + ''' m 3 m 2 m 2 m 4.2 () f = m(, 2, 3) 4.2 () f = M(, 4, 5, 6, 7) 4.2 () f ' = m(, 4, 5, 6, 7) 4.2 () f ' = M(, 2, 3) 4.23 () (,,, ) = m(3, 4, 5, 8, 9,,, 2, 4) 4.23 () = '' + ''' + '' + ''' + '' + '' + ' + '' + ' (,,, ) = M(,, 2, 6, 7, 3, 5) = ( + + + ) ( + + + ') ( + + ' + ) ( + ' + ' + ) ( + ' + ' + ') (' + ' + + ') (' + ' + ' + ') 4.24 () (,,, ) = m(, 3, 4, 7, 8, 9,, 2, 3, 4) = '''' + '' + ''' + ' + ''' + '' m m 3 m 4 m 7 m 8 m 9 + ' + '' + ' + ' m m 2 m 3 m 4 4.24 () (,,, ) = M(, 2, 5, 6,, 5) = ( + + + ') ( + + ' + ) ( + ' + + ') ( + ' + ' + ) M M 2 M 5 M 6 (' + + ' + ) (' + ' + ' + ') M M 5 24

4.25 () If on't res re hnge to (, ), respetively, = ''' + + '' + ' = '' +, 4.25 () If on't res re hnge to (, ), respetively 3 = ( + + ) ( + + ') = + 4.25 () If on't res re hnge to (, ), respetively 2 = '''+ '' + '' + ' = ' 4.25 () If on't res re hnge to (, ), respetively 4 = ''' + ' + '' + = '' + 4.26 E Z These truth tle entries were me on't res 2 euse = n 2 = n never 2 our. 2 These truth tle entries were me on't res 2 euse when one input 2 of the OR gte is, the output will e regrless of the vlue of its other 2 input. 4.27 () G (,, ) = m(, 7) = M(, 2, 3, 4, 5, 6) 4.27 () G 2 (,, ) = m(,, 6, 7) = M(2, 3, 4, 5) 4.28 's Y Z 2 2 2 3 2 2 3 2 3 3 4 () = Y = '' + '' + '' + ' + '' + '' + ' + '' + ' + ' Z = ''' + ''' + ''' + ' + ''' + ' + ' + ' 4.29 W Y Z () = ''' + ''' + '' + ''' + '' + '' + ' + ''' + '' + '' + ' + '' + ' + ' + Y = '''' + ' + ' + ' + Z = '''' + '' + '' + '' + '' + '' + ' + '' + 4.28 () Y = ( + + + ) ( + + + ') 4.29 () Y = ( + + + ') ( + + ' + ) ( + + ' + ) ( + ' + + ) ( + + ' + ') ( + ' + + ) (' + + + ) (' + ' + ' + ') ( + ' + + ') ( + ' + ' + ) (' + + + ) (' + + + ') (' + + ' + ) (' + + ' + ') (' + ' + + ) Z = ( + + + ) ( + ' + + ') ( + ' + ' + ) (' + + + ') (' + + ' + ) (' + ' + + ) (' + ' + ' + ') Z = ( + + + ') ( + + ' + ) ( + ' + + ) ( + ' + ' + ) (' + + + ) (' + ' + + ') (' + ' + ' + ) 25

4.3 S T U V W Y Z 4.3 S T U V W Y Z 5 = 4 + = 5 = 5 4 + = 5 2 5 = 2 4 + = 9 3 5 = 5 3 4 + = 3 4 5 = 2 4 4 + = 7 5 5 = 25 5 4 + = 2 6 5 = 3 6 4 + = 25 7 5 = 35 7 4 + = 29 8 5 = 4 8 4 + = 33 9 5 =45 9 4 + =37 Note: Rows through hve on't re outputs. Note: Rows through hve on't re outputs. S =, T =, U =, V =, W =, =, Y =, Z = S =, T =, U = + +, V = ' + '' +, W = '' +, = '' + ', Y = ' + '' +, Z = 4.32 Notie tht the sign it 3 of the 4-it numer is etene to the leftmost full er s well. S 4 S 3 S 2 S S 4.. 3.. 2...... Y 4 Y 3 Y 2 2 3 Y Y 4.33 Y Sum out Y Sum out S 3 S 2 S S H.. 2 H.. H.. H.. 3 2 26

Unit 5 Prolem Solutions 5.3 () f 5.3 () 5.3 () f2 f3 r e f s t 5.3 () f4 y z f = '' + ' + ' f2 = 'e' + 'f + e'f f3 = r' + t' f4 = 'z + y + z' 5.4 () 5.4 () 5.4 () = ' + ' + + ' + '' = ' + ' + = ( + '+ ') ( + + ') 5.5 () 5.5 () See L p. 63 for solution. 2 2 lt: Z = ' ' 2 + ' 2 ' + 2 ' 2 ' + 2 + ' 2 ' 2 Z = ' ' 2 + ' 2 ' + 2 ' 2 ' + 2 + ' 2 ' Z = ' ' 2 + ' 2 ' + 2 ' 2 ' + 2 + 2 ' 2 5.6 () * * * * 5.6 () * * * lt: = ''' + ' + ' + ' + ' = ''' + ' + ' + ' + ' (*) inites minterm tht mkes the orresponing prime implint essentil. lt: = ' + '' + + '' = ' + '' + + ' (*) Inites minterm tht mkes the orresponing prime implint essentil. ' m 5 ; ''' m ; ' m ;' m 2 m 3 or m 5 ; ' m 3 ; '' m 8 or m 27

5.6 () * 5.7 () * * * = '' + ' + '' (*) Inites minterm tht mkes the orresponing prime implint essentil. lt: = ''' + ' + ''' + ' + ''' = ''' + ' + ''' + ' + '' '' m 2 ; '' m 6 ; ' m or m 5.7 () 5.7 () 5.7 () = '' + ''' + = ''' + ' + ' + ' + ' = + 5.8 () = ('+ ') ('+ ') ( + + ) ('+ + ) = ' ' + ' + ' ' 5.8 () lt: = ('+ ) ('+ ') ( + ) ('+ ) = ('+ ) ('+ ') ( + ) ('+ ') = '' + '' + 28

5.9 () E = (' + ' + + E) (' + + ' + ') ( + ' + ' + E) (' + + E) ( + ' + ) (' + + + E') (' + ' + ' + E') E lt: = ''E + '' + ' E + ' ' + ' E + E' + ''E' + '' = ''E + '' + ' E + ' ' + ' E + E' + ''E' + ''E' 5.9 () E E = (' + ' + E) (' + ' + + E) ( + ' + E') ( + + ' + E) ( + + ) (' + + E') lt: = ' ' + ' E' + E + ''' + ' E' + ' E = ' ' + ' E' + E + ''E' + ' + ''E = ' ' + ' E' + E + ''' + ' E' + ''E = ' ' + ' E' + E + ''E' + ' E' + ''E 29

5. () e 5. () e Essentil prime implints: ''E' (m 6, m 24 ), 'E' (m 4 ), E (m 3 ), ''E (m 3 ) Prime implints: ''E, ''E', 'E, 'E', E, '', 'E, ''E', '' 5. E = ('+ + ') ('+ '+ E ) ( + '+ E') ( + + E') ( + + + ) ('+'+ + ) ( + + E') 5.2 () = '' + ' + ' + = M(,, 9, 2, 3, 4) = ( + + + ) ( + + + ') (' + ' + + ) (' + ' + + ') (' + ' + ' + ) (' + + + ') lt: = ('+ + ') ('+ '+ E ) ( + '+ E') ( + + E') ( + + + ) ('+'+ + E ) ( + + E') ' 5.2 () 5.3 5.2 () ' = ''' + ' + ' = ' + ' + ' + '' Minterms m, m, m 2, m 3, m 4, m, n m n e me on t res, iniviully, without hnging the given epression. However, if m 3 or m 4 is me on t re, the term ' or the term ' (respetively) is not neee in the epression. = ('+ '+ ) ( + + ) ('+ + ') 3

5.4 () 5.4 () 2 5.4 () R E S T 5.4 () 5.4 (e) N P Q = ' + ' 2 = E' + E' + = T' + R = + ' = N'P + N Q 5.4 (f) 5.5 () f Y Z 5.5 () G E 5.5 () p q r 5.5 () s t u = Y' + 'Z' + Z f = '' + + ' f = '' + + G = E ' + 'E' G = E ' + ' G = E ' + E' = p'r + q'r' + p q = p'q' + p r' + q r = s' 5.5 (e) 5.5 (f) e f 5.6 () 5.6 () = '' + ' + = '' + ' + g = 'e' + f ' 5.6 () = '' + ' + = ('+ ) ( + '+ ') ('+ ) ('+ + ') 5.7 (), () 5.7 () = ' + ' + ' ' lt: = ('+ + ) ('+ '+ ') ('+ '+ ) = ('+ + ) ('+ '+ ') ('+ '+ ') 3

5.8 () 5.8 () 2 2 Z 2 2 = ( + 2+ ) ( + + 2) ( + 2'+ '+ 2') ( '+ 2'+ + 2') ( '+ '+ 2 ) ( + 2 + 2) 5.9 () 5.9 () = ' + ' + ' + ''' + ' = ''' + ''' + ''' lt: = ' + ' + ' + ''' + ' lt: = ''' + ''' + '' 5.9 () 5.9 () W Y Z 5.9 (e) = '' + ' + ' lt: = 'Y' + W'Z + Y'Z + W Z' = 'Y' + W Y' + W'Z + W Z' = 'Y' + W Y' + W'Z + W ' = '' + ' + ' + 5.2 () 5.2 () 5.2 () = ' + ' ' + ' + = '' + ' + ' + + = '' + ' + ' 32

5.2 () 5.2 () 5.2 () = ' ' + '' + = ('+ ) ('+ + ') ( + '+ ) ( + ) = ('+ ) ('+ + ') ( + ) ('+ ) 5.22 () lt: = ('+ ) ('+ + ') ( + ) ('+ ) 5.22 () = ('+ '+ ) ('+ ') ( + + ) w y z = ' + '' + ' + ' w y z = 'y' + w'z + y'z + w z' = (w + '+ z ) (w + y'+ z ) (w'+ y'+ z') lt: = 'y' + w y' + w'z + w z' = 'y' + w y' + w'z + w ' lt: = (w + '+ z ) (w + y'+ z ) (w'+ '+ y') 5.23 5.24 () = '' + ' + ' Notie tht = n never our, so minterms 5 n 5 re on t res. = '' + ' + ' + = M(,, 9, 2, 3, 4) = ( + + + ) ( + + + ') (' + + + ' ) (' + ' + + ) (' + ' + + ') (' + ' + ' + ) 33

5.24 () 5.24 () ' = ' + ''' + ' = ('+ '+ ) ( + + ) ('+ + ') 5.25 5.26 Prime implints for f ': 'e, '', 'e', 'e, ''e', ''e, ''e Prime implints for f: ''e', e, 'e', e',, e', ''e, ''e, '', 'e 5.27 or : ''e', 'e, 'e', '', 'e, ''e, ''e 5.28 () = + E * * * (*) Inites minterm tht mkes the orresponing prime implint essentil. ''' m ; 'e' m 28 ; ''e m 25 ; '' m 2 * or G: 'e, ', 'e', e, 'e, ''', ''e' 5.28 () E ''', 'e', ''e, '', 'e', 'e', 'e', '''e, ''e, '', 'e', 'e', 'e' 5.29 () E = '' + ' ' + '' + ''E' + ' + E + ''E lt: = '' + ' ' + '' + ''E' + ' + E + ''E 34

5.29 () E lt: = '''E + ' '' + E + ''E' + E + 'E' + '''E + ' E = '''E + ' '' + E + ''E' + E + 'E' + ' 'E + ' E = '''E + ' '' + E + ''E' + E + 'E' + ' 'E + E 5.3 E = '''' + 'E + ' + 'E' + ' + ''E + 'E 5.3 E = ''E' + '' + E' + '''E' + ''E + ''E 5.32 () w y z v = v' y'z' + 'y'z + v z + w 'y z' + v w 5.32 () w 5.33 () y z E v = ( + y + z) (v + y' + z') (v + ' + z') (v + ' + y') (v' + w + z) lt: = ( + + E ) ('+ ) ( + ') ( + '+ '+ E') = ( + + E ) ('+ ) ( + ') ( + '+ '+ E') 35

5.33 () E lt: = ( + ') ( + '+ E') ('+ + E') ('+ '+ '+ ) ( + + E ) ( + '+ E ) = ( + ') ( + '+ E') ( + '+ ) ('+ + E') ('+ '+ '+ ) ( + '+ E ) 5.34 () w y z v lt: = (v'+ w'+ '+ y + z') (w + y'+ z') (v + y') (w + + y ) (v'+ + y + z ) (w'+ + y') = (v'+ w'+ '+ y + z') (w + y'+ z') (v + y') (w + + y ) (v'+ w'+ + z ) (w'+ + y') = (v'+ w'+ '+ y + z') (w + y'+ z') (v + y') (w + + y ) (v'+ w'+ + z ) ( + y'+ z') 5.34 () 5.35 () E = ( + + E) (' + ' + ') (' + + + ) ( + ' + ) ( + ' + E) ( + + E) = ' + + ' hnging m to on't re removes ' from the solution. 5.35 () 5.36 () w y z v m 4 = v' y' + v'w z' + y z + v w''y' + v w'y z' + w' z m 8 = ' + ' + ' + '' m 4, m 3, or m4 hnge the minimum sum of prouts, removing '', ', or ', respetively. m 3 = v' y' + v'w z' + y z + v w''z' + v w' y + w'y'z = v' y' + v'w z' + y z + v w''y' + v w'y z' + w'y'z = v' y' + v'w z' + y z + v w''z' + v w'y z' + w'y'z 5.36 () 36 v'wz' m 8 ; yz m 3 ; v'y' m 4

Unit 6 Prolem Solutions 6.2 () ü, 5 - '' 5 ü, 9 - '' 9 ü 5, 7 - ' 2 ü 9, - ' 7 ü 2, 4 - ' ü 7, 5-4 ü, 5-5 ü 4, 5 - Prime implints: '', '', ', ', ',,, 6.2 () ü, - ''', 3, 5, 7 -- ' ü, 8 - ''', 5, 3, 7 -- 8 ü, 3 -ü 6, 7, 4, 5 -- 3 ü, 5 -ü 6, 4, 7, 5 -- 5 ü 8, - '' 6 ü 3, 7 -ü ü 5, 7 -ü 7 ü 6, 7 -ü 4 ü 6, 4 -ü 5 ü, 4 - ' 7, 5 -ü 4, 5 -ü Prime implints: ''', ''', '', ', ', 6.3 () 5 7 9 2 4 5, 5 '', 9 '' 5, 7 ' 9, ' 2, 4 ' 7, 5, 5 4, 5 f = ' + '' + ' + f = ' + '' + ' + 6.3 () 3 5 6 7 8 4 5, 3, 5, 7 ' 6, 7, 4, 5, ''', 8 ''' 8, '', 4 ' f = ' + + ''' + '' f = ' + + ''' + '' f = ' + + ''' + ' 37

6.4 ü, 3 -ü, 3, 5, 7 -- ' 2 ü, 5 -ü, 5, 3, 7 -- 4 ü, 9 -ü, 5, 9, 3 -- ' 3 ü 2, 3 -ü, 9, 5, 3 -- 5 ü 2, 6 -ü 2, 3, 6, 7 -- ' 6 ü 2, - '' 2, 6, 3, 7 -- 9 ü 4, 5 -ü 4, 5, 6, 7 -- ' ü 4, 6 -ü 4, 5, 2, 3 -- ' 2 ü 4, 2 -ü 4, 6, 5, 7 -- 7 ü 3, 7 -ü 4, 2, 5, 3 -- 3 ü 5, 7 -ü 5, 7, 3, 5 -- 5 ü 5, 3 -ü 5, 3, 7, 5 -- 6, 7 -ü 9, 3 -ü 2, 3 -ü 7, 5 -ü 3, 5 -ü 3, 5 -ü Prime implints: '', ', ', ', ', ', 3 4 5 6 7 2 3, 3, 5, 7 ', 5, 9, 3 ' 2, 3, 6, 7 ' 4, 5, 6, 7 ' 4, 5, 2, 3 ' 5, 7, 3, 5 2, '' f = ' + '' + ' + ' f = ' + '' + ' + ' f = ' + '' + ' + ' 6.5 ü, 5 -ü, 5, 9, 3 -- ' 4 ü, 9 -ü, 9, 5, 3 -- 8 ü 4, 5 -ü 4, 5, 2, 3 -- ' 5 ü 4, 2 -ü 4, 2, 5, 3 -- 9 ü 8, 9 -ü 5, 7, 3, 5 -- 2 ü 8, 2 -ü 5, 3, 7, 5 -- 7 ü 5, 7 -ü 8, 9, 2, 3 -- ' ü 5, 3 -ü 8, 2, 9, 3 -- 3 ü 9, -ü 9,, 3, 5 -- 4 ü 9, 3 -ü 9, 3,, 5 -- 5 ü 2, 3 -ü 2, 3, 4, 5 -- 2, 4 -ü 2, 4, 3, 5 -- 7, 5 -ü, 5 -ü 3, 5 -ü 4, 5 -ü Prime implints: ', ',, ',, 38

6.5 (ont) 9 2 3 5 P (, 5, 9, 3) ' P2 (4, 5, 2, 3) ' P3 (5, 7, 3, 5) P4 (8, 9, 2, 3) ' P5 (9,, 3, 5) P6 (2, 3, 4, 5) (P + P4 + P5) (P2 + P4 + P6) (P + P2 + P3 + P4 + P5 + P6) (P3 + P5 + P6) = (P4 + PP2 + PP6 + P2P5 + P5P6) (P3 + P5 + P6) = P3P4 + P4P5 + P4P6 + PP2P3 + PP2P5 + PP2P6 + PP3P6 + PP5P6 + PP6 + P2P3P5 + P2P5 + P2P5P6 + P3P5P6 + P5P6 = = (' + ) or ( + ') or ( + ') or ( + ) or ( + ') or ( + ') P4 P3 P5 P2 P5 P4 P6 P5 P6 P4 P6 P 6.6 () E = E = E E = MS + EMS = ' + ''' + ' + E ('' + ) or E ('' + ) MS = ''' + ' + ' 6.6 () E = = G = E = ; = G = E MS = '' + MS = '' + G E MS = '' + 2 3 = ; E = G = G = ; E = = MS = '' + ' MS = '' + Z = '' + + E ('' + ') + () + G (') MS = 2 MS 3 = ' or ' or 39

6.7 () ü, 4 - ''' 4 ü 4, 5 - '' 3 ü 3, 7 - ' 5 ü 3, - ' 9 ü 5, 7 - ' 7 ü 5, 3 - ' ü 9, - ' 3 ü 9, 3 - ' Prime implints: ''', '', ', ', ', ', ', ' 6.7 () 2 ü 2, 6 - '' 4, 5, 2, 3 -- ' 4 ü 2, - '' 4, 2, 5, 3 -- 5 ü 4, 5 -ü 9,, 3, 5 -- 6 ü 4, 6 - '' 9, 3,, 5 -- 9 ü 4, 2 -ü ü 5, 3 -ü 2 ü 9, -ü ü 9, 3 -ü 3 ü, - ' 5 ü 2, 3 -ü, 5 -ü 3, 5 -ü Prime implints:, ', '', '', '', ' 6.8 () 3 4 5 7 9 3, 4 ''' 4, 5 '' 3, 7 ' 3, ' 5, 7 ' 5, 3 ' 9, ' 9, 3 ' f = ''' + ' + ' + ' f = ''' + ' + ' + ' 6.8 () 2 4 5 6 9 2 3 5 2, 6 '' 2, '' 4, 6 '', ' 4, 5, 2, 3 ' 9,, 3, 5 f = ' + + '' + '' f = ' + + '' + ' f = ' + + '' + '' 6.9 () ü, 3 -ü, 3, 9, -- ' 2 ü, 9 -ü, 9, 3, -- 4 ü 2, 3 -ü 2, 3,, -- ' 3 ü 2, -ü 2,, 3, -- 9 ü 4, 2 - '' 3, 7,, 5 -- ü 3, 7 -ü 3,, 7, 5 -- 2 ü 3, -ü 9,, 3, 5 -- 7 ü 9, -ü 9, 3,, 5 -- ü 9, 3 -ü,, 4, 5 -- 3 ü, -ü, 4,, 5 -- 4 ü, 4 -ü 2, 3, 4, 5 -- 5 ü 2, 3 -ü 2, 4, 3, 5 -- 2, 4 -ü 7, 5 -ü, 5 -ü 3, 5 -ü 4, 5 -ü 4 Prime implints: '', ', ',,,,

6.9 () (ont) 2 3 4 7 9 2 3 4 4, 2 '', 3, 9, ' 2, 3,, ' 3, 7,, 5 9,, 3, 5,, 4, 5 2, 3, 4, 5 f = ' + '' + + ' + f = ' + '' + + + f = ' + '' + + + 6.9 () ü, -ü,, 8, 9 -- '' ü, 8 -ü, 8,, 9 -- 8 ü, 5 -ü, 5, 9, 3 -- ' 5 ü, 9 -ü, 9, 5, 3 -- 6 ü 8, 9 -ü 8, 9,, -- ' 9 ü 8, -ü 8,, 9, -- ü 8, 2 -ü 8, 9, 2, 3 -- ' 2 ü 5, 7 - ' 8, 2, 9, 3 -- 7 ü 5, 3 -ü ü 6, 7 - ' 3 ü 9, -ü 9, 3 -ü, -ü 2, 3 -ü Prime implints: ', ', '', ', ', ' 5 6 8 9 3 5, 7 ' 6, 7 ',, 8, 9 '', 5, 9, 3 ' 8, 9,, ' 8, 9, 2, 3 ' f = ' + '' + ' + ' 6.9 () f = ' + + '' + + f = ' + + '' + + f = ' + + '' + + ' 6. Prime implints: ', ', ', ', ', ''' f = ' + ' + ' + ''' + ' f = ' + ' + ' + ''' + ' 4

6. ü, 2 -ü, 2, 4, 6 --ü, 2, 4, 6, 8,, 2, 4 --- 'E' 2 ü, 4 -ü, 2, 8, --ü, 2, 8,, 4, 6, 2, 4 --- 4 ü, 8 -ü, 2, 6, 8 -- ''E', 4, 8, 2, 2, 6,, 4 --- 8 ü, 6 -ü, 4, 2, 6 -- 6 ü 2, 6 -ü, 4, 8, 2 --ü 6 ü 2, -ü, 8, 2, -- 9 ü 2, 8 -ü, 8, 4, 2 -- ü 4, 6 -ü, 6, 2, 8 -- 2 ü 4, 2 -ü 2, 6,, 4 --ü 8 ü 8, 9 -ü 2,, 6, 4 -- 7 ü 8, -ü 4, 6, 2, 4 --ü ü 8, 2 -ü 4, 2, 6, 4 -- 3 ü 6, 8 -ü 8, 9,, -- '' 4 ü 6, 7 - '' 8, 9, 2, 3 -- '' 9 ü 6, 4 -ü 8,, 9, -- 2 ü 9, -ü 8,, 2, 4 --ü 29 ü 9, 3 -ü 8, 2, 9, 3 -- 3 ü, -ü 8, 2,, 4 --, 4 -ü 2, 3 -ü 2, 4 -ü 8, 9 - '' 3, 29 - 'E 4, 3 - E' 2, 29 - 'E 2 6 7 8 2 3 4 6 8 9 29 3 6, 7 '' 8, 9 '' 3, 29 'E 4, 3 E' 2, 29 'E, 2, 6, 8 ''E' 8, 9,, '' 8, 9, 2, 3 '', 2, 4, 6, 8,, 2, 4 'E' = E' + '' + ''E' + '' + '' + 'E + 'E' 42

6.2 () ü, -ü,, 2, 3 --ü,, 2, 3, 8, 9,, --- '' ü, 2 -ü,, 8, 9 --ü,, 8, 9, 2, 3,, --- 2 ü, 8 -ü, 2,, 3 --, 2, 8,,, 3, 9, --- 8 ü, 3 -ü, 2, 8, --ü 3 ü, 9 -ü, 8,, 9 -- 6 ü, 7 -ü, 8, 2, -- 9 ü 2, 3 -ü, 3, 9, --ü ü 2, 6 - ''E', 9, 3, -- 7 ü 2, -ü, 9, 7, 25 -- ''E 2 ü 8, 9 -ü, 7, 9, 25 -- ü 8, -ü 2, 3,, --ü 2 ü 3, -ü 2,, 3, -- 25 ü 9, -ü 8, 9,, --ü 28 ü 9, 25 -ü 8,, 9, -- 23 ü, -ü 3 ü 7, 2 - ''E 3 ü 7, 25 -ü 2, 2 - '' 2, 28 - 'E' 2, 23 - 'E 28, 3 - E' 23, 3 - E 3, 3-2 3 6 8 9 7 2 2 23 25 28 3 3 2, 6 ''E' 7, 2 ''E 2, 2 '' 2, 28 'E' 2, 23 'E 28, 3 E' 23, 3 E 3, 3, 9, 7, 25 ''E,, 2, 3, 8, 9,, '' f = '' + ''E + ''E' + E + E' + '' f = '' + ''E + ''E' + 'E' + 'E + 6.2 () f = + E' + ''E + ''' +''E + '''E' f = + E' + ''E + ''E + ''' + '''E' 6.3 = ' + ' + ' + '' + ' = ' + ' + ' + '' + ' = ' + ' + ' + ' + '' 6.4 Prime implints: e, 'e, 'e, 'e', '', '', ''e, ''e', ''e' Essentil prime implints re unerline: = e + ''e' + 'e' + ''e + '' = e + ''e' + 'e' + ''e + 'e 43

6.5 ü, 3 -ü, 3, 7, 9 -- ''' 2 ü, 7 -ü, 7, 3, 9 -- 6 ü 2, 3 -ü 2, 3, 8, 9 -- '''E 32 ü 2, 8 -ü 2, 8, 3, 9 -- 3 ü 6, 7 -ü 6, 7, 8, 9 -- ''' 7 ü 6, 8 -ü 6, 8, 7, 9 -- 8 ü 6, 48 - ''E'' 48 ü 32, 48 - ''E'' 9 ü 3, 9 -ü 26 ü 7, 9 -ü 28 ü 8, 9 -ü 5 ''E 8, 26 - ''E' 29 ü 26, 3 - 'E' 3 ü 28, 29 - 'E' 39 ''E 28, 3 - '' 63 E 2 3 6 7 8 9 26 32 39 48 63 5 ''E 39 ''E 63 E 6, 48 ''E'' 32, 48 ''E'' 8, 26 ''E' 26, 3 'E' 28, 29 'E' 28, 3 '', 3, 7, 9 ''' 2, 3, 8, 9 '''E 6, 7, 8, 9 ''' 6.5 () 6.5 () 6.5 () G = ''E + E + ''' + '''E +''E'' +''' +''E' G = ''E + E + ''' + '''E +''E'' +''' + 'E' Essentil prime implints re unerline in 6.5 (). If there were no on't res, prime implints 5, (26, 3), (28, 29), n (28, 3) re omitte. There is only one minimum solution. Sme s (), eept elete the seon eqution. 6.6 () Prime implints: 'E, '', 'E'', 'E, 'E'', E, 'E, ''E', ''E, ''E', ''E', ''E' G = E + 'E'' + 'E'' + 'E + ''E' + 'E + 'E G = E + 'E'' + 'E'' + 'E + ''E' + 'E + ''E G = E + 'E'' + 'E'' + 'E + ''E' + '' + 'E G = E + 'E'' + 'E'' + 'E + ''E' + '' + ''E 44

6.6 () Essentil prime implints re unerline in 6.6(). 6.7 Prime implints:, ',,,, ' Minimum solutions: (' + ); (' + ); ( + ); ( + ); ( + ') 6.6 () If there re no on t res, the prime implints re: 'E, '', 'E'', 'E, 'E'', E, 'E, ''E' G = E + 'E'' + 'E + 'E'' +'E + ''E' + '' G = E + 'E'' + 'E + 'E'' +'E + ''E' + 'E 6.8 () E 6.8 () G E E E = ' + ' + '' + E (''' + ') MS MS Z = ' + '' + E (' + ') + (') + G ('') MS MS MS 2 MS 3 6.9 () Eh minterm of the four vriles,,, epns to two minterms of the five vriles,,,, E. or emple, m 4 (,,,) = ''' = '''E' + '''E = m 8 (,,,,E) + m 9 (,,,,E) 6.9 () Prime implints: ''', ', ', ''E, E, E, ''E = ''' + ' + ' + ''E + E = ''' + ' + ' + ''E + E E = ''' + ' + ' + ''E + E = ''' + ' + ' + ''E + E 6.2 E * * This squre ontins +, whih reues to. G = 'E' + E + ('') + () MS MS MS 2 45

7. () f Unit 7 Prolem Solutions f f = '' + '' + ' + ' ' Sum of prouts solution requires 5 gtes, 6 inputs f = ('+ ') ( + ) ( + + ') ( + '+ ') f = ('+ ') ( + ) ( + '+ ') ('+ + ') f = ('+ ') ( + ) ( + + ') ('+ '+ ') f = ('+ ') ( + ) ('+ + ') ('+ '+ ') Prout of sums solution requires 5 gtes, 4 inputs, so prout of sums solution is minimum. 7. () eginning with the minimum sum of prouts solution, we n get f = ' ( + ') + ' (' + ') 5 gtes, 2 inputs 2 2 3 3 So sum of prouts solution is minimum. 2 eginning with minimum prout of sums solution, we n get f = ( + ) (' + ') (' + ' + ')) 2 2 2 2 3 6 gtes, 4 inputs 3 7.2 () ' + E' + E' + ' + ''E' = E' ( + ) + ''E' + ' ( + ) = ( + ) (E' + ') + ''E' 2 2 2 3 2 2 4 levels, 6 gtes, 3 inputs 7.2 () E + E + E + G + G + G = E + G + E ( + ) + G ( + ) = (E + G) [ + ( + )] 2 2 2 4 levels, 6 gtes, 2 inputs 2 2 2 46

7.3 (,,, )n = ' + ' or (' + ') = ( + ) (' + ') You n otin this eqution in the prout of sums form using Krnugh mp, s shown elow: ' ' N-OR ' ' NN-NN OR-NN ' ' ' ' NOR-OR ='+' (')'=[(')'(')']' (')'=[(+'+')('++')]' (')'=(+'+')'+('++')' (')'=[('+')']' ' ' ' ' ' ' OR-N ' ' NOR-NOR ' ' =(+)('+') (')'=['+(+)'+('+')']' (')'=['+''+]' (')'=('')'()' (')'=[[(+)('+'))']' ' ' N-NOR ' ' NN-N = ' + ' = ( + ) ( ) ('+ ') 7.4 (,,, ) = m(5,,, 2, 3) = ' + ' + ' = ' ( + ) + ' = ' ( + ) + ' 2 3 3 2 4 gtes, inputs = ' + ' + ' ' ' ' ' 47

7.5 Z = ( + + ) ('+ ') ('+ ') ('+ ') Z = ( + + ) (' + ''') 3 2 4 gtes, inputs ' 2 3 Z 7.6 Z = + + '' = ( + ) + '' ' ' ' Z 7.7 Z = E + E + E = E ( + + ) = E [ + ( + )] ' ' ' E' Z 7.8 or the solution to 7.8, see L P. 633 7.9 2 = ' + + '' 6 gtes 2 = '' + '' + ' 7. f (,,, ) = m(3, 4, 6, 9, ) f 2 (,,, ) = m(2, 4, 8,,, 2) f 3 (,,, ) = m(3, 6, 7,, ) = ' + ' + ' ' 2 = ' + ' ' + '' + '' 2 = ' + ' ' + '' + '' gtes 48 3 = ' + ' + '

7. = ( + ) ( + ') ('+'+)('++') 8 gtes 2 2 = ('++)('+'+)(+')('++') 2 = (+'+)('+'+)(+')('++') 7.2 2 = (++)('+) 2 = (++)('++)('+) 9 gtes 3 = ('++)(+)(+') 7.3 () Using = (')' from Equtions (7-23()), p. 94: f = [(')' ()' ('')' (')']'; f 2 = [' (')']'; f 3 = [()' ('')' ()']' ' ' ' ' f ' f 2 ' ' ' f 3 7.3 () Using = (')' from Equtions erive in prolem 7.2: f = [( + + )' + (' + )']' f 2 = [( + + )' + (' + + )' + (' + )']' f 3 = [(' + + )' + ( + )' + ( + ')']' ' f ' ' f 2 ' ' f 3 49

7.4 () f = ( + + ) ( + + ') ('+ '+ ') ('+ '+ ') 5 gtes, 6 inputs 7.4 () eginning with the sum of prouts solution, we get f = ' + ' + ' (' + ') = ' + ' + ' (' + ') ( + ) 6 gtes, 4 inputs ut, eginning with the prout of sums solution ove, we get f = ( + + ') (' + ' + '') 5 gtes, 2 inputs, whih is minimum n f = ' + ' + '' + '' f = ' + ' + '' + '' (two other minimun solutions) 5 gtes, 4 inputs miniml ' ' ' ' ' ' ' ' ' ' ' 7.5 () rom K-mps: = ' + ' + ' 4 gtes, inputs = ( + + ) ( + ) (' + ') 4 gtes, inputs, miniml 7.5 () rom K-mps: = + + '' 4 gtes, 9 inputs = (' + ) ( + ' + ) 3 gtes, 7 inputs, miniml ' ' ' ' 7.5 () rom K-mps: = + '' + = + '' + ' 4 gtes, inputs = ( + ) ( ' + ) ( + + ') 4 gtes, inputs, miniml ' ' 7.5 () rom K-mps: = ' + + ' 4 gtes, 9 inputs, miniml = ( + ) (' + + ') (' + + ) = ( + ) (' + + ') ( + + ) 4 gtes, inputs ' ' 5

7.6 () In this se, multi-level iruits o not improve the solution. rom K-mps: = ' + + ' + '' 5 gtes, 6 inputs, miniml = (' + + ) ( + + ) (' + ' + ) ( + + ') 5 gtes, 6 inputs, lso miniml Either nswer is orret. ' ' ' ' 7.6 () Too mny vriles to use K-mp; use lger. E y onsensus, then use + Y = E + E + ' + EG + E + E G E ' = E + ' + EG + E = E ( + G) + (' + E) 2 4 3 2 5 gtes, 3 inputs, miniml E 2 7.7 () = M(,, 2, 4, 8) 2 3 4 5 6 7 8 9 2 3 4 5 7.7 () = ( + + ) ( + + ) ( + + ) ( + + ) = ( + + )( + + ) or = ( + + )( + + ) or = ( + + )( + + ) This solution hs 5 gtes, 2 inputs. eginning with the sum of prouts requires 6 gtes. 5

7.8 () (w,, y, z) = ( + y' + z) (' + y + z) w y' z ' y z OR-N w y' z ' y z NOR-NOR w' ' y z' y' z' N-NOR w' ' y z' y' z' NN-N w rom Krnugh mp: = wy + w'y' + wz w y w ' y' w z N-OR w y w ' y' w z NN-NN w' ' y' w' y w' z' OR-NN w' ' y' w' y w' z' NOR-OR 7.8 () (,,, ) = m(4, 5, 8, 9, 3) rom Kmp: = '' + '' + ' = '' + '' + ' = ' ( + ) (' + ' + ) ' ' ' ' ' N-OR ' ' ' ' ' NN-NN ' ' ' ' OR-NN ' ' ' ' NOR-OR ' ' OR-N ' ' ' NOR-NOR ' ' ' N-NOR ' ' ' NN-N ' 52

7.9 () y z = (y'+ z ) ('+ y + z') rom Kmp: = (y' + z) (' + y + z') y z' y' z f y z' y' z f 7.9 () y z ' z ( ) or ' y' y' z' f ' z ( ) or ' y' y' z' f = y z + y'z' + 'y' y z y z = y z + y'z' + 'z 7.2 () Using OR n NOR gtes: ' ' f ' ' f = '' + 7.2 () Using NOR gtes only: ' ' ' f ' ' ' f = ('+ ) ('+ ) ('+ ) ('+ ) ' ' 53

7.2 () NN gtes: = ' + ' + (Refer to prolem 5.4 for K-mp) NOR gtes: = ( + ' + ') ( + + ') 7.2 () NN gtes: = '' + '' + (Refer to prolem 5.8() for K-mp) NOR gtes: = ( + ) (' + ') (' + ) (' + ') = ( + ) (' + ') (' + ) (' + ) 7.2 (e) NN gtes: =''+'E'+E+'''+''E+'E' =''+'E'+E+''E'+'+''E =''+'E'+E+'E'+''E'+''E =''+'E'+E+'E'+''E+'E (Refer to prolem 5.9() for K-mp) NOR gtes: = (' + ' + + E) ( + ' + E') (' + ' + E) ( + + ' + E) ( + + ) (' + + E') 7.2 (g) NN gtes: f = 'y' + wy' + w'z+ wz' f = 'y' + wy' + w' + w'z f = 'y' + wy' + y'z+ wz' (Refer to prolem 5.22() for K-mp) NOR gtes: f = (w + ' + z) (w + y' + z) (w' + y' + z') f = (w + ' + z) (w + y' + z) (w' + ' + y') 7.2 () NN gtes: = '' + ' + '' (Refer to prolem 5.8() for K-mp) NOR gtes: = (' + ') (' + ') ( + + ) (' + + ) 7.2 () NN gtes: = '' + ''E + 'E + 'E + E' + '' + ''E' + '' = '' + ''E + 'E + 'E + E' + '' + ''E' + ''E' (Refer to prolem 5.9() for K-mp) NOR gtes: = (' + + E) ( + ' + ) (' + + ' + ') (' + ' + + E ) ( + ' + ' + E) (' + + + E') (' + ' + ' + E') 7.2 (f) NN gtes: = ' + ' + ' + '' (Refer to prolem 5.22() for K-mp) NOR gtes: = ( + + ) (' + ' + ) (' + ') 7.22 () 7.22 () f = (' + ' + e) ( + ' + e') ( + + ) E ' e' e ' ' ' ' f = ( + ' + ) ( + ' + e') (' + ' + e) ( + + ) ( + ' + ') 54

7.23 ' ' ' ' ' ' f f = (' + ) (' + + ) ( + ') = ( + ') [' + ( + )] = ( + ') (' + + ) 7.24 () Z = e'f + 'e'f + 'e'f + gh = e'f ( + ' + ') + gh 7.24 () Z= (' + +e + f)(' + ' + )(' + ' + )(g+h) = [' + + '' (e + f)] (g + h) g h e' f z e f g h ' z 7.25 = e' + '' + = ( + ') (' + e') + = ( + ' + ) (' + + e') ' ' ' e ' lternte: = (' + + ) (' + + e') 7.26 f = 'yz + vy'w' + vy'z' = 'yz + vy' (z' + w') w z ' y z v y' f 7.27 () 7.27 () = ' + ' + ''' + ' = ' + ' + ''' + ' rw N-OR iruit n reple ll gtes with NNs. = ( + + ') ('+ ) ('+ ) ('+ '+ ') rw OR-N iruit n reple ll gtes with NORs. 55

7.27 () = (' + ') + ' ('' + ) ' ' ' ' ' lterntive: = ' ('' + ) + (' + ') = (' + ') + ' ('' + ) = ' ('' + ) + (' + ') = (' + ') + ' ('' + ) 7.28 () 7.28 () = + '' + '' + '' + '' + '''' = ( + + ') ( + ' + ) ( + ' + ) ( + ' + ') (' + + ) (' + + ') (' + + ') (' + ' + ) 7.28 () Mny solutions eist. Here is one, rwn with lternte gte symols. = ' (''' + ' + ') + ('' + '' + ) = ' ('('' + ) + ') + (('' + ) + '') ' ' ' ' ' ' ' 56

7.29 () = '' + + + '' = ( + '') + ( + '') Mny NOR solutions eist. Here is one. = ( + ) (' + + ) ( + + ') ( + ' + ' + ) = ( + ) [ + ( + ') (' + ' + )] (' + + ) = ( + ) [ ( + ) + ' ( + ') (' + ' + )] = ( + ) [ ( + ) + ' ((' + ) + '')] ' ' ' 7.29 () = ' + + '' + ' = ( + ') + ('' + ') = ( + ') + [(' + ') ( + ')] = ( + ) ( + ) ('+ + ') ('+ + ') ' ' ' ' ' ' ' ' ' ' = (' + + ') (' + + ') ( + ) ( + ) = ( + (' + ')) ( + (' + ')) 7.3 = m(,, 2, 3, 4, 5, 7, 9,, 3, 4, 5) = + '' + '' + = + ' (' + ') + lternte solution: = + (' + ) ( + ' + ') = '' + '' + + 57

7.3 () 7.3 () ' ' ' ' ' ' 7.3 () ' ' ' ' ' ' ' ' ' ' 7.3 Z = [' + + E(' + GH)] G H ' E ' G' H' ' E' ' ' 58

7.32 f f2 f3 f = '' + f 2 = '' + '' 8 gtes f 3 = + + '' 7.33 = ' + ' + '' 6 gtes = '' + ' + '' 7.34 f y z f2 y z f3 y z f = 'y z + ' y z' + y' f 2 = y' z + 'y z + y z' 8 gtes f 3 = y' + y'z + 'y z' + y z' 7.35 () f f2 f = (' + + ) (' + ' + ') (' + ) 6 gtes f 2 = (' + + ) (' + ' + ') ( + ') 59

7.35 () f irle 's to get sum-of-prouts epressions: f = ' + ''' + ' 6 gtes f 2 = ' + ''' + ' Then onvert iretly to NN gtes. f2 7.36 () irle s 2 f = ( + + ) ('+ ') ('+ ) 7 gtes f 2 = ( + + ) (' + ) (' + ' + ') 7.36 () irle 's to get sum-of-prouts epressions: 2 Then onvert iretly to NN gtes f = ' + ' + ' 7 gtes f 2 = ' + ' + ' 6

7.37 () f = + ' + ' 2 f 2 = ' + ' + ' ' ' ' f f 2 7.37 () f = ( + ) ( + ) ( + ) ( + + ') 2 f 2 = ( + ) ( + ) ( + + ') ('+'+') ' f f 2 ' ' ' 7.38 () f f = '' + ' + ' f 2 = '' + ' + ' 7.38 () f2 f = ('+ ) ('+ ') ( + ') ( + '+ ') f 2 = ('+ ) ('+ ') ( + '+ ') ( + ' + ) 6

7.39 () The iruit onsisting of levels 2, 3, n 4 hs OR gte outputs. onvert this iruit to NN gtes in the usul wy, leving the N gtes t level unhnge. The result is: ' ' e f ' g h 2 7.39 () One solution woul e to reple the two N gtes in () with NN gtes, n then inverters t the output. However, the following solution vois ing inverters t the outputs: = [( + ') + ] (e' + f) = e' + 'e' + e' + f + 'f + f = e' ( + ') + (e' + f) + f ( + ') 2 = [( + ') + g'] (e' + f) h = h (e' + 'e' + f + 'f) + g'h (e' + f) = h [e' ( + ') + f ( + ')] + g'h (e' + f) ' e' e f ' f g' h h 2 62

Unit 8 Prolem Solutions 8. W Y V Z 5 5 2 25 3 35 4 t (ns) 8.2 () = ''' + + ' 8.2 () (ont) Stti -hzrs re: n = ( + ') ('+ + ) ( + + ') Stti -hzrs re: n 8.2 () 8.2 () t = ( + ') (' + + ) ( + + ') (' + + ) ( + + ') 8.3 () t = ''' + + ' + '' + E G 2 3 4 5 6 7 t (ns) Glith (stti '' hzr) 8.3 () Moifie iruit (to voi hzrs) 8.4 G = '' + + ' = ; = Z; = Z = ; = + Z = ; E = ' = ; = ' = ; G = = ; H = + = See L Tle 8-, P. 24 8.5 = =, = = So = ' + '' + = ut in the figure, gte 4 outputs =, initing something is wrong. or the lst NN gte, = only when ll its inputs re. ut the output of gte 3 is. Therefore, gte 4 is working properly, ut gte 3 is onnete inorretly or is mlfuntioning. 63

8.6 8.8 8.9 W Y V Z 5 5 2 25 3 35 4 t (ns) = Z; = ; = Z' = ; = Z = ; E = Z; = + + = ; G = ( Z)' = ' = ; H = ( + )' = ' = = = =, so = ( + ' + ') (' + + ') (' + ' + ) = ut, in the figure, gte 4 outputs =, initing something is wrong. or the lst NOR gte, = only when ll its inputs re. ut the output of gte is. Therefore, gte 4 is working properly, ut gte is onnete inorretly or is mlfuntioning. 8.7 Z = ' + '' + ' ' Stti -hzrs lie etween n Without hzrs: Z t = '' + ' + '' + '' + '' 8. () (,,, ) = m(, 2, 5, 6, 7, 8, 9, 2, 3, 5) There re 3 ifferent minimum N-OR solutions to this prolem. The prolem sks for ny two of these. 8. () = + ' + ' ' + ''' Solution : -hzrs re etween n = ( + + ') ( + ' + + ) (' + ' + ) (' + + ') -hzr is etween Either wy, without hzr: t = ( + + ') ( + ' + + ) (' + ' + ) ( + ' + ') (' + + ') = + ' + ''' + ' Solution 2: -hzrs re etween n 64 = + ' + ''' + ' ' Solution 3: -hzrs re etween n Without hzrs: t = + ' + ''' + '' + ''' + ' = ( + + ') ( + ' + + ) (' + ' + ) ( + ' + ') -hzr is etween

Unit 9 Prolem Solutions 9. See L p. 636 for solution. 9.2 See L p. 636 for solution. 9.3 See L p. 637 for solution. 9.4 See L p. 637 n igure 4-4 on L p.99. 9.5 y y y 2 y 3 y y y y 2 3 y y y y 2 3 y y y y 2 3 = y 3 + y 2 = y 3 + y 2' y = y 3 + y 2+ y + y 9.6 See L p. 638 for solution. 9.7 See L p. 638 for solution. 9.8 See L p. 638-639 for solution. 9.9 The equtions erive from Tle 4-6 on L p. re: 9. Note: 6 = 4 ' n 5 = 4. Equtions for 4 through n e foun using Krnugh mps. See L p. 64-64 for nswers. = 'y' in + 'y in ' + y' in ' + y in out = ' in + 'y + y in See L p. 639 for PL igrm. 9. () = '' + ' + ' Use 3 N gtes ' = ['' + ' + ']' = [' ( +') + ']' = [( + + ') (' + ')]' = '' + Use 2 N gtes 9. () = '' + '' Use 2 N gtes ' = ('' + '')' = [(' +') (' + ') (' + ') (' + ')]' = + + + Use 4 N gtes 9.2 () See L p. 64, use the nswer for 9.2 (), ut leve off ll onnetions to n '. 9.2 () See L p. 64 for solution. 9.3 Using Shnnon s epnsion theorem: = 'e' + ''e + ''e + 'e' = ' (e' + ''e + 'e') + (''e + ''e + 'e') = ' [e' ( + ') + ''e] + [(' + ') 'e + 'e'] = ' (e' + ''e) + (''e + ''e + 'e') The sme result n e otine y splitting Krnugh mp, s shown to the right. E = = 65

9.4 There re mny solutions. or emple: J J I I I I J 2 J 3 I 2 I 3 I 4 J J I 2 I 3 I 4 I 5 I 6 I 7 J 2 J 3 I 5 I 6 I 7 9.5 () y in Sum out Y in Sum Y in out 9.5 () 9.5 () ' in in Sum in out ' ' Sum out Y in Y in Y Y 9.6 () y in iff out Y in iff Y in out 66

9.6 () 9.6 () in ' in in iff out in ' ' Y in iff ' ' Y in out Y Y 9.7 or positive numer, = n for negtive numer, =. Therefore, if the numer is negtive, tht is [3] is, then the output shoul e the 2's omplement (tht is, invert n ) of the input. 3 2.... 3 2 3 3 output.. 3.. 3 9.8 I I I I 2 I 3 Z 2-to-4 eoer m m m 2 m 3 I I 2 Z 9.9 I I I 2 I 3 I 4 I 5 I 6 I 7 Z I 3 9.2 () 9.2 () y in 3-to-8 eoer out = m(, 2, 4, 7); out = m(, 2, 3, 7) y in 3-to-8 eoer out = M(, 3, 5, 6); out = M(, 4, 5, 6) 67

9.2 y y y 2 y 3 y 4 y 5 y 6 y 7 4-to-2 priority enoer 4-to-2 priority enoer 2 2 2 If ny of the inputs y through y 7 is, then of the 8-to-3 eoer shoul e. ut in tht se, or 2 of one of the 4-to-2 eoers will e. So = + 2. If one of the inputs y 4, y 5, y 6, n y 7 is, then shoul e, n n shoul orrespon to 2 n 2, respetively. Otherwise, shoul e, n n shoul orreson to n, respetively. So = 2, = 2 2 + 2 ', n = 2 2 + 2 '. 9.22 N N 2 e f g h 8 2 5 ROM S S 3 2 S S out e f g h S 3 S 2 S S out Mening ( is not vli input) ( + = ) (2 + 3 = 5) (7 + 4 = ) 9.23 () R S T U V W Y Z R S T U 4 2 4 ROM V W Y Z 9.23 () R S T U V = S T + R R S T U W = S'T U + S T' U + R U + S T' U' 68

9.23 () (ont) Y R S T U Y = S'T U' + S T'U + R U' Z R S T U Z = R'S'T'U + S T' U' + S T U S T R U S' T U S T' U R U' S T' U' S' T U' R' S' T' U R' V W Y Z T S U 9.23 () R S T U V W Y Z - - - - - - - - - - - - 9.24 () R S T U V W Y Z 69

9.24 () R S T U R S T U V = R S' Y = R'T U + R T'U + R S W R S T U W = R'T U' + R T'U' + S Z R S T U Z = R'T'U + R'S + R T U R S' R' T U' R T' U' R S R' T U R T' U R' T' U R T U R' S S' V W Y Z 9.24 () R S T U V W Y Z - - - - - - - - - - - - - - - or R S T U V W Y Z - - - - - - - - - - - - 9.25 () = ( + + + )('+ + ')(' + ') 9.25 () (ont) 2 = ( + + + )(' + + ')( + ') 2 ' ' ' 2 lternte solution: = ( + + + ) ( + ' + ') (' + ') 2 = ( + + + ) ( + ' + ') ( + ') 7

9.25 () 2 (') - - (') - - (') - - () - - ('') - ' ' ' '' 2 9.26 () 9.26 () W Y Z W Y Z - - - - - - - - - - - - - - - - - - - - - Y = ' + + ''' W = ' + + + ' lt: 7 Z = + + '' Z = + + '' 9.26 () = ''' + + + ' ' ' ' ' ' ' ' ' W Y Z W Y Z ' ' ''' ''

9.27 () ' ' '' ' '' '' '' ' f f 2 See solution for 7. f f 2 f 3 - - - - - - - - f 3 9.27 () See solution for 7.34 9.27 () euse PL works with sum-of-prouts epression, see solution for 7.36(), not (). y z f f 2 f 3 - - y z f f 2 - - - - - - - - - f f 2 f 3 'yz 'yz' y' y'z yz' ' ' ' ' ' f f 2 72

9.28 Z = I ''' + I '' + I 2 '' + I 3 ' + I 4 '' + I 5 ' + I 6 ' + I 7 = ' + 2 where = I '' + I ' + I 2 ' + I 3 n 2 = I 4 '' + I 5 ' + I 6 ' + I 7 Note: Unuse inputs, outputs, n wires hve een omitte from this igrm. I I I 2 I 3 I 4 I 5 I 6 I 7 2 Z 9.29 or n 8-to-3 enoer, using the truth tle given in L igure 9-6, we get = y 4 + y 5 + y 6 + y 7 = y 2 y 3 ' y 4 ' y 5 ' y 6 ' y 7 ' + y 3 y 4 ' y 5 ' y 6 ' y 7 ' + y 6 y 7 ' + y 7 = y y 2 ' y 3 ' y 4 ' y 5 ' y 6 ' y 7 ' + y 3 y 4 ' y 5 ' y 6 ' y 7 ' + y 5 y 6 ' y 7 ' + y 7 = + + + y lterntive solution for simplifie epressions: = y 2 y 4 ' y 5 ' + y 3 y 4 ' y 5 ' + y 6 + y 7 = y y 2 ' y 4 ' y 6 ' + y 3 y 4 ' y 6 ' + y 5 y 6 ' + y 7 73

9.29 (ont) y y Note: Unuse inputs, outputs, n wires hve een omitte from this igrm. y 2 y 3 y 4 y 5 y 6 y 7 9.3 = 'E + E + ''E + ''E' + 9.3 () 9.3 () 9.3 () = ''('E + E + 'E + E') + ' ('E + E + 'E + ) + ' ('E + E) + ('E + E + ) = '' (''E + 'E') + ' ('E +E + ''E + 'E') + ' (''E) + ('E + E + ''E + ) = '' ('E + 'E') + ' ('E + E + 'E + 'E' + ) + '() + ('E + E + ) 9.3 () Use the epnsion out n = ''( ) + '( ) + ( 3 ) where,, 3 re implemente in lookup tles: E E E 74 LUT LUT LUT 3 3 E 3

9.3 = ''E' + ' + 'E' + '' 9.3 () 9.3 () 9.3 () = '' ('E' + 'E') + ' ('E' + ') + ' ('E' + + ') + ('E') = '' ('E' + E') + ' ('E' + ) + ' (E' + ') + () = '' (''E' + E' + ) + ' (''E') + ' (''E' + E') + (''E' + ') In this se, use the epnsion out n to implement the funtion in 3 LUTs: = ''( ) + '( ) + '( 2 ) + () Here we use the LUTs to implement,, 2 whih re funtions of,, E E E E LUT LUT LUT 2 2 E 2 9.32 or 4-to- MU: Y = ''I + 'I + 'I 2 + I 3 = ' ('I + I ) + ('I 2 + I 3 ) = 'G +, where G = 'I + I ; = 'I 2 + I 3 Set progrmmle MU so tht Y is the output of MU H. G 4 = G 3 = G 2 = I G = I 4= 3= 2= I2 = I3 LUT LUT G H H = Y Unit Prolem Solutions. See L p. 642 for solution..2 See L p. 642 for solution..3 See L p. 643 for solution..4 See L p. 643 for solution..5 See L p. 643 for solution. Notes: The funtion ve2int is foun in it_pk, whih is in the lirry itli, so the following elrtions re neee to use ve2int: lirry itli; use itli.it_pk.ll; If st_logi is use inste of its, then the ine n e ompute s: ine <= onv_integer(&&in); where,, n in re st_logi. onv_integer is foun in the st_logi_rith pkge. 75

.6 See L p. 643 for solution..7 See L p. 644 for solution. Notes: In line 8, ""& onverts to 8-it.8 See L p. 644 for solution. the following to the nswer given on L p. 644: out <= '' & E + us; Sum <= out(3 ownto ); out <= out(4); st_logi_vetor. The overloe + opertors utomtilly eten,, n to 8 its so tht the sum is 8 its. In line 9, sum(7 ownto 2) rops the lower 2 its of sum, whih effetively ivies y 4 to give the verge. ing sum() rouns up the vlue of f if sum() =..9 See L p. 644 for solution.. The network represente y the given oe is: P Q N L M R () Sttement () will eeute s soon s either P or Q hnge. Hene, it will eeute t 4 ns. (2) Sine the NN gte hs ely of ns, L will e upte t 4 ns. (3) Sttement () will eeute when the vlue M hnges. It will eeute t 9 ns. (4) R will e upte t 9 + Δ ns, sine Δ is the efult ely time when no ely is epliitly speifie.. () H <= not nn nor not nn E;.() N <= not fter 5 ns; <= N nn fter ns; (Note: not hppens first, then it proees from left to <= not fter 5ns; right) G <= nor fter 5ns; H <= G nn E fter ns;.2 R S P Q S U V P Q R T.3 L = (Sine n in the resolution funtion yiels ) M = N = ( overries Z in the resolution funtion).4 () The epression n e rewritten s: <= (((not E) & "") or "") n (not ); Evluting in this orer, we get: =.4 () LHS: not("" & "") = "" RHS: ("" & "" n "" & "") = "" Sine LHS > RHS, the epression evlutes to LSE 76

.5 lirry itli; use itli.it_pk.ll; entity myrom is port (,,, : in it; W,, Y: out it); en myrom; rhiteture tle of myrom is type ROM6_3 is rry( to 5)of it_vetor( to 2); onstnt ROM: ROM6_3 := ("", "", "", "", "", "", "", "", "", "", "", "", "", "", "", ""); signl ine: integer rnge to 5; signl temp: it_vetor( to 2); egin ine <= ve2int(&&&); temp <= ROM(ine); W <= temp(); <= temp(); Y <= temp(2); en tle;.6 () tus <= memus when mre = ''.6 () The vlue will e etermine y the else "ZZZZZZZZ"; st_logi resolution funtion. or emple, if tus <= prous when mwrite = '' memus = "" n prous = "", else "ZZZZZZZZ"; then tus = "".7 () with & selet <= not fter 5ns when "", fter 5ns when "", not fter 5ns when "", '' fter 5ns when "";.7 () <= not fter 5ns when & = "" else fter 5ns when & = "" else not fter 5ns when & = "" else '' fter 5ns;.8 () entity mynn is.8 () entity min is port(, Y: in it; Z: out it); port(,,, : in it; : out it); en mynn; en min; rhiteture eqn of mynn is egin Z <= nn Y fter 4 ns; en eqn; rhiteture eqn of min is omponent mynn is port(, Y: in it; Z: out it); en omponent; signl E, G: it; egin n: mynn port mp(,, E); n2: mynn port mp(,, G); n3: mynn port mp(e, G, ); en eqn; 77