Estimating the Eutectic Composition of Simple Binary Alloy System Using Linear Geometry

Similar documents
Phase. Gibbs Phase rule

Chapter 8. Phase Diagrams

9.11 Upon heating a lead-tin alloy of composition 30 wt% Sn-70 wt% Pb from 150 C and utilizing Figure

Introduction to Materials Science, Chapter 9, Phase Diagrams. Phase Diagrams. University of Tennessee, Dept. of Materials Science and Engineering 1

Lecture 19: Eutectoid Transformation in Steels: a typical case of Cellular

Phase Equilibria & Phase Diagrams

CHAPTER 8. Phase Diagrams 8-1

Alloys & Their Phase Diagrams

CHAPTER 9 Part 1. = 5 wt% Sn-95 wt% Pb C β. = 98 wt% Sn-2 wt% Pb. = 77 wt% Ag-23 wt% Cu. = 51 wt% Zn-49 wt% Cu C γ. = 58 wt% Zn-42 wt% Cu

THREE MAIN SOLIDIFICATION REACTIONS OF VANADIUM MODIFIED T1 TUNGSTEN HIGH SPEED TOOL STEEL. Hossam Halfa

REACTIONS IN THE SN CORNER OF THE CU-SN-ZN ALLOY SYSTEM

BINARY SYSTEMS. Definition of Composition: Atomic (molar) fraction. Atomic percent. Mass fraction. Mass percent (weight percent)

Phase Transformations in Metals and Alloys

μ α =μ β = μ γ = =μ ω μ α =μ β =μ γ = =μ ω Thus for c components, the number of additional constraints is c(p 1) ( ) ( )

Corrosion-induced cracking of model train zincaluminium

The study about as cast microstructure and solidification

Engine Bearing Materials

RAPIDLY SOLIDIFIED COPPER ALLOYS RIBBONS

Iron-Carbon Phase Diagram (a review) see Callister Chapter 9

POURING THE MOLTEN METAL

Ch. 4: Imperfections in Solids Part 1. Dr. Feras Fraige

Objectives/Introduction Extraction of zinc Physical properties of zinc Zinc casting alloys Wrought zinc alloys Engineering design with zinc alloys

Phase Equilibrium: Fugacity and Equilibrium Calculations. Fugacity

LN Introduction to Solid State Chemistry. Lecture Notes No. 10 PHASE EQUILIBRIA AND PHASE DIAGRAMS

Figure 1: Typical S-N Curves

MSE PRECIPITATION HARDENING IN 7075 ALUMINUM ALLOY

In order to solve this problem it is first necessary to use Equation 5.5: x 2 Dt. = 1 erf. = 1.30, and x = 2 mm = m. Thus,

Technical Note Recommended Soldering Parameters

Chapter 18 Temperature, Heat, and the First Law of Thermodynamics. Problems: 8, 11, 13, 17, 21, 27, 29, 37, 39, 41, 47, 51, 57

Defects Introduction. Bonding + Structure + Defects. Properties

Thermodynamic database of the phase diagrams in copper base alloy systems

Interface Reaction and Mechanical Properties of Lead-free Sn Zn Alloy/Cu Joints

The atomic packing factor is defined as the ratio of sphere volume to the total unit cell volume, or APF = V S V C. = 2(sphere volume) = 2 = V C = 4R

Continuous Cooling Transformation (CCT) Diagrams

Binary phase diagrams

Lecture: 33. Solidification of Weld Metal

FEATURES AND BENEFITS OF DIFFERENT PLATINUM ALLOYS. Kris Vaithinathan and Richard Lanam Engelhard Corporation

6. 2. Unit 6: Physical chemistry of spectroscopy, surfaces and chemical and phase equilibria

Experiment 1: Colligative Properties

Chem 115 POGIL Worksheet - Week 4 Moles & Stoichiometry

III. RESULTS AND DISCUSSION 10 vol pct H 3 PO 4 at 50 C for 60 seconds. The phases as Figure 2 shows the DTA curves of various filler metals

Friction Surfacing of Austenitic Stainless Steel on Low Carbon Steel: Studies on the Effects of Traverse Speed

The mechanical properties of metal affected by heat treatment are:

CENTRIFUGAL CASTING.

Appendix I: Cryogenic Reference Tables

Lecture 35: Atmosphere in Furnaces

B) atomic number C) both the solid and the liquid phase D) Au C) Sn, Si, C A) metal C) O, S, Se C) In D) tin D) methane D) bismuth B) Group 2 metal

IDEAL AND NON-IDEAL GASES

FUNDAMENTALS OF ENGINEERING THERMODYNAMICS

High Strength and Wear Resistant Aluminum Alloy for High Temperature Applications

Graphing Linear Equations

CHEMISTRY STANDARDS BASED RUBRIC ATOMIC STRUCTURE AND BONDING

Finite Element Modeling of Heat Transfer in Salt Bath Furnaces

Determination of the heat storage capacity of PCM and PCM objects as a function of temperature

Chapter Outline: Phase Transformations in Metals

Integration of manufacturing process simulation in to the process chain

HYDROGEN STORAGE AND MICROSTRUCTURE INVESTIGATIONS OF La 0.7- Av. Prof. Lineu Prestes, 2242, ZIP , São Paulo, Brazil.

Avoiding Shrinkage Defects and Maximizing Yield in Ductile Iron

Type: Single Date: Homework: READ 12.8, Do CONCEPT Q. # (14) Do PROBLEMS (40, 52, 81) Ch. 12

Heat Treatment of Steel

APPLICATION OF X-RAY COMPUTED TOMOGRAPHY IN SILICON SOLAR CELLS

Lecture 3: Models of Solutions

STUDY OF PROCESS PARAMETERS OF GRAVITY DIE CASTING DEFECTS

Liquid-Liquid Extraction (LLX)

DSC Differential Scanning Calorimeter

The Point-Slope Form

Der Einfluss thermophysikalischer Daten auf die numerische Simulation von Gießprozessen

vap H = RT 1T 2 = kj mol kpa = 341 K

Heat Treatment of Steels : Spheroidize annealing. Heat Treatment of Steels : Normalizing

Martensite in Steels

Chapter 5: Diffusion. 5.1 Steady-State Diffusion

Some generalization of Langmuir adsorption isotherm

How do single crystals differ from polycrystalline samples? Why would one go to the effort of growing a single crystal?

Results of cooling of dies with water mist

Crystal Structure of Aluminum, Zinc, and their Alloys By: Omar Fajardo Sebastian Henao Devin Baines ENGR45, F2014, SRJC

Temperature Scales. The metric system that we are now using includes a unit that is specific for the representation of measured temperatures.

Ionic and Metallic Bonding

Objectives. Experimentally determine the yield strength, tensile strength, and modules of elasticity and ductility of given materials.

Physical Properties of a Pure Substance, Water

Fundamentals of the Heat Treating of Steel

North American Stainless

EXAMPLE EXERCISE 4.1 Change of Physical State

Phase Diagram of tert-butyl Alcohol

Chapter 1 The Atomic Nature of Matter

Correlation key concepts:

Modern Construction Materials Prof. Ravindra Gettu Department of Civil Engineering Indian Institute of Technology, Madras

Module 5: Combustion Technology. Lecture 33: Combustion air calculation

To measure the solubility of a salt in water over a range of temperatures and to construct a graph representing the salt solubility.

Current Staff Course Unit/ Length. Basic Outline/ Structure. Unit Objectives/ Big Ideas. Properties of Waves A simple wave has a PH: Sound and Light

Carbon Dioxide and an Argon + Nitrogen Mixture. Measurement of C p /C v for Argon, Nitrogen, Stephen Lucas 05/11/10

ORGANIC LABORATORY TECHNIQUES NEVER distill the distillation flask to dryness as there is a risk of explosion and fire.

PRECIPITATION HARDENING OF ZINC ALLOYS CASTINGS PRECIPITAČNÍ VYTVRZOVÁNÍ ODLITKŮ SLITIN ZINKU

Review - After School Matter Name: Review - After School Matter Tuesday, April 29, 2008

Experiment #3, Ohm s Law

Chemistry. The student will be able to identify and apply basic safety procedures and identify basic equipment.

A Solutal Interaction Mechanism for the Columnarto-Equiaxed Transition in Alloy Solidification

We will study the temperature-pressure diagram of nitrogen, in particular the triple point.

Experiment: Heat Treatment - Quenching & Tempering

A Multilayer Clad Aluminum Material with Improved Brazing Properties

Transcription:

Estimating the Eutectic Composition of Simple Binary Alloy System Using Linear Geometry Muhammed Olawale Hakeem AMUDA * and Raymond Otito AKABEKWA Department of Metallurgical and Materials Engineering University of Lagos, Lagos, Nigeria mohrabiat2000@yahoo.com ( * Corresponding Author), roakabekwa@yahoo.com Abstract A simple linear equation was developed and applied to a hypothetical binary equilibrium diagram to evaluate the eutectic composition of the binary alloy system. Solution of the equations revealed that the eutectic composition of the case study Pb Sn, Bi Cd and Al Si alloys are 39.89% Pb, 60.11% Sn, 58.01% Bi, 41.99% Cd and 90.94% Al, 9.06% Si respectively. These values are very close to experimental values. The percent deviation of analytical values from experimental values ranged between 2.87 and 5% for the three binary systems considered, except for Si Al alloy in which the percent deviation for the silicon element was 22%. It is concluded that equation of straight line could be used to predict the eutectic composition of simple binary alloys within tolerable experimental deviation range of 2.5%. Keywords Estimating; Eutectic Composition; Binary Alloy System; Linear geometry. Introduction Alloys are developed from combination of two or more metallic and/or non-metallic element [1]. The primary objective of alloying is to improve mechanical properties, though 232 http://lejpt.academicdirect.org

Estimating the Eutectic Composition of Simple Binary Alloy System Using Linear Geometry Muhammed O. H. AMUDA and Raymond O. AKABEKWA reduction in some other properties such as conductivity and corrosion resistance do accompany the process. Alloy systems are designated by the number of elemental component that made up the system. Thus, a 2-element component alloy system is referred to as binary alloy system and a 3-element component system is called ternary alloy system. The characteristic and thermal behaviour of the alloy system are captured in the phase diagram. The phase diagram describe the relationship between composition and temperature in determining the phase fields of the various constituents of the diagram. The phase diagram is constructed from the temperature time (cooling curve) history of each of the constituents [2]. The cooling curve of systems is evaluated by measuring the rate of thermal gradient between the start and end of solidification for each individual component of the cooling curve system [3]. This is in turn transferred to the temperature-composition axes to construct the phase diagram. For instance, the binary phase diagram of two components, A and B (Figure 1) depicts the temperature of the system as a function of percent composition of the component. Tm A Liquidus Tm B Temperature ( 0 C) T E A + liquid E Liquid + B Solidus A + B (all solid) A 100 % wt Composition B 100 Figure 1. Binary Phase diagram of two-components [4] 233

When components A and B are mixed in varying proportion (0-100%), and heated until all the components are completely melted, the melting point is found to be lowered compared to the melting temperature of the pure components [4]. The plotting of the temperature against the corresponding composition of the component mixture outlined the trajectory Tm 2 ET mb known as the liquidus curve. The lowest melting point E of the curve defines the eutectic temperature [T E ] and the corresponding composition is called the eutectic composition or alternatively, eutectic point for both temperature and composition. The point is called eutectoid point when the transformation is from homogenous solid solution to two different solids. This is common in iron carbon equilibrium diagram [5]. At this point, components A and B melt uniformly at the same temperature and the liquid phase co-exist with the solid phase of A and B. The eutectic point is equally available in phase diagrams of many other alloy systems. The eutectic point has much significance in metallurgy and materials science. It is the most desirable point in foundry/casting as it ensures that casting is accomplished at minimum temperature. This help to reduce energy cost. The eutectic point equally impact optimum properties in alloy system [6]. Before now, most efforts at determining the eutectic point had been experimental based. This is done through any of differential scanning calometry [7,8], metallographic technique [9,10] and x-ray diffraction techniques [11]. Each of these systems shares their unique limitations. Besides, they are cumbersome and expensive. In the present work, a new analytical method is explored to estimate the eutectic composition of simple binary alloy system. The analytical model is validated against some known experimental eutectic compositions. The percent variation is less than five percent. The central element in the developed analytical model is that the eutectic temperature must be known in order to be able to estimate the eutectic composition using linear geometry. Basis of the Analysis The mixture of two or more substance that melt at the lowest possible temperature is called the eutectic mixture. The eutectic mixture is approximated by two metals such as lead 234

Estimating the Eutectic Composition of Simple Binary Alloy System Using Linear Geometry Muhammed O. H. AMUDA and Raymond O. AKABEKWA and tin, bismuth and cadmium, aluminum-silicon. The lead and tin binary system is reproduced in Figure 2. Temperature ( C) 400 - - B A 327 Liquid (L) L + β L + α C 183 Eutectic Line D E solid( α + β ) O 100 Sn. 62 Sn. 38 Pb 100 Pb Composition (% wt.) Figure 2. Equilibrium diagram of Sn. -Pb. alloy system The freezing point of lead is 400 C while that of tin 327 C. Figure 2 revealed that adding increasing amount of lead to tin progressively depresses the freezing point of tin along the line ZE. Similarly, the freezing point of lead progressively depresses along the line WE when increasing amount of tin is added to lead. These depressions of freezing point lines meet at a point called the eutectic point. The eutectic point for a tin-lead binary system is 38% wt Pb, 62%wt Sn at 183 C [1]. 235

The Development of the Model The tin-lead alloy system is deployed in this analysis. The liquidus lines start from the melting point of the two metals and terminate at an assumed eutectic point E. In the developed model, the eutectic temperature is taken as the reference temperature and is assigned zero on the temperature scale. The basis for the assumption is that representing the eutectic temperature (183 C) as 0 C and subtracting it from the melting points of lead and tin to get lower values will not affect the result that is generated. The essence of the scaling down is to get an origin for the reference Y-axis used for the analysis (Figure 3). Y F Temperature ( C) Z (144) 90 0 V G H 90 W (217) Q r E (100 r) R 100% Sn. Composition (% wt) 100% Pb Figure 3. Scaled down diagram of the Sn-Pb alloy system showing the reference Y-axis with the intercepting straight lines used for the analysis 236

Estimating the Eutectic Composition of Simple Binary Alloy System Using Linear Geometry Muhammed O. H. AMUDA and Raymond O. AKABEKWA Consequently, W (melting point of lead) is represented by the value 400 183 = 217 C and Z (melting point of tin) by the value of 327-183 = 144 C. The two liquidus lines were joined from points 217 C and 144 C respectively to meet at the assumed eutectic point E. A reference Y-axis line EY was drawn from E. A line WF perpendicular to WE was drawn from W to cut EY at F. A similar line ZV perpendicular to ZE cut EY at V. The scales of the composition and temperature axis are 1cm represent 1 unit of either composition or temperature. Therefore from Figure 3; If QE = r cm; ER= (100 r) cm, the gradient of WE 217 m = 100 r = (1) 144 ZE = n = (2) r Relating eqn. (1) and (2) gives n m ( 144r) 144 100 r 14400 144r m 14400 = = n = (3) r 217 217r 217r The equation of a straight line is generally given as Y = Px + C where P = gradient of the line; C = its intercept on Y-axis; Y = dependent variable; X = independent variable. If the gradient of a straight line is P; then the gradient of another straight line perpendicular to it is given as -1/P. Therefore, the equation of line WE is given as Y = mx + 0 (since the intercept of WE on the Y-axis is 0) Y = mx (4) The equation of the perpendicular line WF is given as x Y = + 217 + K (5) m where K = FG. 237

Similar analysis gives the equation of line ZE as m(14400 144r)x Y = + 0 217r Intercept of ZE on the Y-axis = 0 m(14400 144r)x Y = (6) 217r The equation of perpendicular line ZV is given as (217r)x Y = + 144 + J (7) m(14400 144r) where J = VH. Subtracting eqn. (7) from eqn. (5) x (217r)x 0 = + + 73 + K J (8) m m(14400 144r) Subtracting eqn. (6) from eqn. (5) x m(14400 144r)x 0 = + 217 + K (9) m 217r Subtracting eqn. (9) from eqn. (8) 217r)x m(14400 144r)x 0 = + 144 J (10) m(14400 144r) 217r Subtracting eqn. (7) from eqn. (4) (217r)x 0 = mx + 144 J (11) m(14400 144r) Subtracting eqn. (11) from eqn. (10) gives 14400 144r)x 0 = m mx (12) 217r Dividing eqn. (12) by mx gives 238

Estimating the Eutectic Composition of Simple Binary Alloy System Using Linear Geometry Muhammed O. H. AMUDA and Raymond O. AKABEKWA (14400 144r) 0 = 1 (13) 217 Rearranging eqn. (13) gives 14400 144r 217r = 0 316r = 14400 r = 14400/316 = 39.89 (cm) = QE (14) Since 1cm represent 1 unit of composition; 39.89 cm 39.89% Relating this to the lever rule implies that Pb eutectic composition is 39.89%. Thus, the eutectic composition of Tin (Sn) is (100 39.89) % = 60.11%. Therefore analytical eutectic composition for tin-lead binary system (E C ) is 39.89% Pb, 60.11% Sn. However, the experimental eutectic composition for tin-lead system are 38% Pb; 62% Sn [1]. The method was applied to other eutectic alloy systems. These are the bismuthcadmium and aluminum-silicon alloys systems. For the bismuth-cadmium alloy system, the freezing points of bismuth and cadmium are 271 C and 321 C respectively. The eutectic temperature is 140 C. The experimental eutectic composition is 60% Bi, 40% Cd. For the aluminum-silicon alloy system, the freezing points of aluminium and silicon are 660 C and 1410 C respectively [12]. The experimental eutectic composition of the Al-Si alloy system is 11.6% Si, 88.4% Al [1]. The governing equation developed in the present work for the calculation of the eutectic composition of an alloy by analytical method is given in equation (15). 14400-144r - 217r (15) This can be generally written as A(100) Ar Br = 0 (16) where: r = composition of the metal that has the higher freezing point; A = thermal gradient of the metal that has the lower freezing (freezing point minus eutectic temperature); B = thermal gradient of the metal that has the higher freezing (freezing point minus eutectic temperature) Therefore for Bi Cd system (Figure 4) 239

A = (271-140) = 131; A(100) = 13100 B = (321-140 = 181 Therefore substituting for the various values of A & B in eqn. (16) gives 13100 131r 181r r = 41.99% Thus, eutectic composition of cadmium, Cd = 41.99% Therefore, Bismuth is given as 100 41.99 = 58.01% For the aluminum silicon alloy system A = (660-577) = 83; A(100) = 8300 B = 1410-577 = 833 Substituting these values in the general eqn. (16), gives 8300 83r 833r = 0 r = 9.06% The eutectic composition of silicon = 9.06% Wt Si Therefore aluminum = (100-9.06%) wt Al = 90.94% wt Al Therefore, eutectic composition to Al Si alloy by analytical method using linear geometry is 9.06% wt Si, 90.94% wt Al. The analysis of the result relative to experimental values is tabulated in Table 1. Table 1. Differential Analysis of Experiment and Analytical Methods of Determining Eutectic Composition of Simple Binary Alloy Systems % Variation Alloy System Experimental Values Analytical Values Sn Pb Bi Cd Si Al 62% Sn 38% Pb 60% Bi 40% Cd 11.6% Si 88.4% Al 60.11% Sn 39.89% Pb 58.01% Bi 41.99% Cd 9.06% Si 90.94% Al Sn = 3% Pb = 5% Bi = 3.3% Cd = 5% Si = 21.89% Al = 2.87% The analysis of Table 1 revealed that the percent deviation of analytical value from experimental value ranged between 2.87 and 5% for the three systems considered, except for the Si-Al alloy where the percent deviation of the silicon composition was rather high at 22%. This apparent exceptional high percent deviation from experimental value might be due to the partial solubility of silicon element in aluminum. 240

Estimating the Eutectic Composition of Simple Binary Alloy System Using Linear Geometry Muhammed O. H. AMUDA and Raymond O. AKABEKWA Attempt was made to extend the work to iron-carbon phase diagrams. The method has not been successful yet owing to the various polymorphic transformations that exist in ironcarbon system in the temperature range 910 C and 1400 C. Conclusion A simple linear general equation of the form A (100) Ar + Br = 0 has been developed and applied to analytically estimate the eutectic composition of simple binary alloy system. The solution of the equation revealed that the eutectic composition of the case study Pb-Sn, Bi-Cd and Al-Si alloy systems are 39.89%Pb, 60.11%Sn, 58.01% Bi, 41.99% Cd and 90.94% Al 9.06% Si respectively. These values are very close to experimental values. The percent deviation of analytical value from experimental value ranged between 2.87 and 5% for the three binary systems considered except for Si-Al alloy in which the percent deviation for the silicon element was 22% owing probably to the partial solubility of silicon in aluminum. It is concluded that eutectic composition of simple binary system could be analytically determined by using linear geometry. This probably is a novel approach to removing the difficulty encountered in the conventional differential thermal analysis, metallographic and crystallographic techniques. References 1. Higgins R. A., Engineering Metallurgy Part 1: Physical Metallurgy, 2 nd Edition Arnold Publishers, London, pp. 422, 1993. 2. Cottrel A., Introduction to Metallurgy, 2 nd Edition, Institute of Materials, London, pp. 578, 1995. 3. Haasen P., Physical Metallurgy, 3 rd Edition, Cambridge University Press, Cambridge, pp. 420, 1997. 241

4. Nelson S. A., Two Component (Binary) Phase Diagrams, www.tulane.edu/~banelson/eens211/2 comphasd.ag.htmt, 2004. 5. Sinha A. K., Ferrous Physical Metallurgy, Butterworths, 1989. 6. Leslie W. C., The Physical Metallurgy of Steel, McGraw Hill. Inc., New York, 1995. 7. Ding M. X. U. K, Jow T., Phase Diagram of EC-DMC Binary System and Enthalpic Determination of its Eutectic Composition, Journal of Thermal Analysis and Calorimetry, 2000, 62(1), p. 177-186. 8. Ramkumer K. L., Saxena M. K., Deb S. B., Experimental Evaluation of Procedures for Heat Capacity Measurements by Differential Scanning Calorimetry, Journal of Thermal Analysis and Calorimetry, 2001, 66, p. 387-397. 9. Li S.-P., Zhao S.-X., Pan M.-X., Zhao D.-Q., Ci-en X.-C., Barabash O. M., Eutectic Reaction and Microstructural Characteristics of Al (Li)-Mg 2 Si Alloys, Journal of Materials Science, 2001, 36(6), p. 1569-1575. 10. Lewis D., Allen S., Notis M., Scotch A., Determination of the Eutectic Structure in the Ag-Cu-Sn System, Journal of Electronic Materials, 2002, 31(2), p. 161-168. 11. Luo Ch. H., Martin M., Investigation of the Phase Diagram and the Defect structure of Non stochiometric Li Mn-O spiral, In Proceedings of the European Materials Research Society Spring Meeting May 24-28, 2004, Strasbourg. 12. ASM Alloy Phase Diagram Center, Introduction to Phase diagrams www.asminternational.org/asmenterprise/apd/help retrieved on Wednesday, 27 th June 2007 242