Appendix I: Cryogenic Reference Tables
|
|
|
- Angel Poole
- 9 years ago
- Views:
Transcription
1 Appendix I: Cryogenic Reerence Tables Appendices 217 Appendix I: Cryogenic Reerence Tables Cryogenic heat low calculations The heat low Q conducted across small temperature dierences can be calculated using the ormula: Q = -KA dt ~ = -KA T Eqn. 1 dx L where K is the thermal conductivity, A is the cross-sectional area, T is the temperature dierence, and L is the length o the heat conduction path. Thermal conduction across signiicant temperature dierences should be calculated using thermal conductivity integrals. Note that the thermal conductivity and the thermal conductivity integral o a material can depend strongly on composition and abrication history. Without veriication, the data in the accompanying igures should be used only or qualitative heat low calculations. Calculating the heat conduction through a body with its ends at greatly dierent temperatures is made diicult by the strong temperature dependence o the thermal conductivity between absolute zero and room temperature. The use o thermal conductivity integrals (called thermal boundary potentials by Garwin) allows the heat low to be calculated as Q = -G(Θ 2 Θ 1 ) Eqn. 2 where Θ is the integral o the temperature-dependent thermal conductivity, K, calculated as Θ 1 = T 1 0 KdT Eqn. 3 and G is a geometry actor calculated as 1 Θ 1 = x 2 G x 1 dx A where A(x) is the cross sectional area at position x along the path o heat low. Note that G=A/L in the case o a body o length L and uniorm cross-sectional area A. Equation 1 is only applicable to bodies within which a common thermal conductivity integral unction applies. Reerence: R. L. Garwin, Rev. Sci. Instrum. 27 (1956) 826. Eqn. 4
2 218 Appendices Appendix I: Cryogenic Reerence Tables Figure 1 Thermal conductivity o selected materials
3 Appendix I: Cryogenic Reerence Tables Appendices 219 Figure 2 Thermal conductivity integral o selected materials
4 220 Appendices Appendix I: Cryogenic Reerence Tables Table 1 Thermodynamic properties or various cryogenic liquids Temperature (K) pressure Normal boiling point Critical point (kpa) Critical point (kpa) Latent heat o vaporization Critical density (kg/m 3 ) Helium a Hydrogen Neon Nitrogen Oxygen Argon Krypton Xenon CO Methane Ethane Propane Ammonia a values or helium are those o the lambda point L (J/g) Density (g/ml) Table 2 Gamma radiation-induced calibration osets as a unction o temperature or several types o cryogenic temperature sensors Radiation-induced oset (mk) at temperature Model 4.2 K 20 K 77 K 200 K 300 K Platinum b PT-103 NA d 10 d 10 d Rhodium-iron b RF-100-AA 2 d 15 d 15 d 5 d 5 d Cernox b CX-1050-SD d 5 d 25 d 25 d Carbon-glass b CGR Germanium b GR-1400-AA NA NA Ruthenium oxide b RO d d NA GaAlAs diode b TG-120P Silicon diode b DT-470-SD Silicon diode b DT-500P-GR-M Silicon diode b SI-410-NN Platinum c PT-103 NA 50 5 d Rhodium-iron c RF d 15 d d 15 d Rhodium-iron c RF-100-AA 5 d 5 d 5 d 10 d 5 d Carbon-glass c CGR Germanium c GR-1400-AA 2 d 2 d 5 d NA NA GaAlAs diode c TG-120P Silicon diode c DT-470-SD Silicon diode c DT-500P-GR-M 10 d 10 d 5 d 5 d 100 b c d Sensors were irradiated in situ at 4.2 K with a cobalt-60 gamma source at a dose rate o 3,000 Gy/hr to a total dose o 10,000 Gy ( rad) Sensors were irradiated at room temperature with a cesium-137 gamma source at a dose o 30 Gy/hr to a total dose o 10,000 Gy ( rad) Deviations smaller than calibration uncertainty
5 Appendix I: Cryogenic Reerence Tables Appendices 221 Table 3 Vapor pressure o some gases at selected temperatures in Pascal (Torr) 4 K 20 K 77 K 150 K Triple e point temperature Water (10 7 ) 273 K Carbon dioxide (10 8 ) 1333 (10) 217 K Argon (10 13 ) (160) h 84 K Oxygen (10 13 ) (150) h 54 K Nitrogen (10 11 ) (730) g 63 K Neon 4000 (30) g g 25 K Hydrogen (10 7 ) 101,325 (760) g g 14 K Note: estimates useul or comparison purposes only (1 Torr = Pa) e Solid and vapor only at equilibrium below this temperature; no liquid Less than Torr g Greater than 1 atm h Above the critical temperature, liquid does not exist Table 4 Thermal contraction o selected materials between 293 K and 4 K Contraction (per 10 4 ) Telon 214 Nylon 139 Stycast SP22 Vespel 63.3 Stycast 2850FT 50.8 Stycast 2850GT 45 Al 41.4 Brass (65% Cu/35% Zn) 38.4 Cu 32.6 Stainless steel 30 Quartz a-axis 25 Quartz c-axis 10 Quartz mean, 15 or typical transducer Titanium 15.1 Ge 9.3 Pyrex 5.6 Si 2.2 Table 5 Electrical resistivity o alloys (in µω cm) Resistivity (295 K) (4.2 K) Brass Constantan CuNi (80% Cu/20% Ni) Evanohm Manganin Stainless steel 71 to to 51
6 222 Appendices Appendix I: Cryogenic Reerence Tables Table 6 Deining ixed points o the ITS-90 Temperature (T 90 /K) Substance i State j Deining instrument 0.65 to 3 3He Vapor pressure point He vapor pressure 3 to 5 He Vapor pressure point thermometer e-he 2 ~17 e-he 2 (or He) Vapor pressure point or gas thermometer point ~20.3 e-he 2 (or He) Vapor pressure point or gas thermometer point Ne O Ar Hg H 2 O Ga Melting point In Freezing point Sn Freezing point Zn Freezing point Al Freezing point Ag Freezing point Au Freezing point Cu Freezing point Constant volume gas thermometer Platinum resistance thermometer i All substances except 3He are o natural isotopic composition; e-h 2 is hydrogen at the equilibrium concentration o the ortho- and para-molecular orms j For complete deinitions and advice on the realization o these various states, see Supplementary Inormation or the ITS-90 Radiation Table 7 Saturated vapor pressure o helium T (K) P (Pa) T (K) P (Pa) T (K) P (Pa)
Chapter Outline. 3 Elements and Compounds. Elements and Atoms. Elements. Elements. Elements 9/4/2013
3 Elements and Compounds Chapter Outline 3.1 Elements A. Distribution of Elements Foundations of College Chemistry, 14 th Ed. Morris Hein and Susan Arena Copyright This reclining Buddha in Thailand is
B) atomic number C) both the solid and the liquid phase D) Au C) Sn, Si, C A) metal C) O, S, Se C) In D) tin D) methane D) bismuth B) Group 2 metal
1. The elements on the Periodic Table are arranged in order of increasing A) atomic mass B) atomic number C) molar mass D) oxidation number 2. Which list of elements consists of a metal, a metalloid, and
7. 1.00 atm = 760 torr = 760 mm Hg = 101.325 kpa = 14.70 psi. = 0.446 atm. = 0.993 atm. = 107 kpa 760 torr 1 atm 760 mm Hg = 790.
CHATER 3. The atmosphere is a homogeneous mixture (a solution) of gases.. Solids and liquids have essentially fixed volumes and are not able to be compressed easily. have volumes that depend on their conditions,
Gases and Kinetic-Molecular Theory: Chapter 12. Chapter Outline. Chapter Outline
Gases and Kinetic-Molecular heory: Chapter Chapter Outline Comparison of Solids, Liquids, and Gases Composition of the Atmosphere and Some Common Properties of Gases Pressure Boyle s Law: he Volume-Pressure
CHEM 105 HOUR EXAM III 28-OCT-99. = -163 kj/mole determine H f 0 for Ni(CO) 4 (g) = -260 kj/mole determine H f 0 for Cr(CO) 6 (g)
CHEM 15 HOUR EXAM III 28-OCT-99 NAME (please print) 1. a. given: Ni (s) + 4 CO (g) = Ni(CO) 4 (g) H Rxn = -163 k/mole determine H f for Ni(CO) 4 (g) b. given: Cr (s) + 6 CO (g) = Cr(CO) 6 (g) H Rxn = -26
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Chapter 10 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A gas at a pressure of 10.0 Pa exerts a force of N on an area of 5.5 m2. A) 1.8 B) 0.55
CHEMISTRY GAS LAW S WORKSHEET
Boyle s Law Charles Law Guy-Lassac's Law Combined Gas Law For a given mass of gas at constant temperature, the volume of a gas varies inversely with pressure PV = k The volume of a fixed mass of gas is
ESSAY. Write your answer in the space provided or on a separate sheet of paper.
Test 1 General Chemistry CH116 Summer, 2012 University of Massachusetts, Boston Name ESSAY. Write your answer in the space provided or on a separate sheet of paper. 1) Sodium hydride reacts with excess
Chem 338 Homework Set #5 solutions October 10, 2001 From Atkins: 5.2, 5.9, 5.12, 5.13, 5.15, 5.17, 5.21
Chem 8 Homework Set #5 solutions October 10, 2001 From Atkins: 5.2, 5.9, 5.12, 5.1, 5.15, 5.17, 5.21 5.2) The density of rhombic sulfur is 2.070 g cm - and that of monoclinic sulfur is 1.957 g cm -. Can
All answers must use the correct number of significant figures, and must show units!
CHEM 10113, Quiz 2 September 7, 2011 Name (please print) All answers must use the correct number of significant figures, and must show units! IA Periodic Table of the Elements VIIIA (1) (18) 1 2 1 H IIA
Gas Laws. The kinetic theory of matter states that particles which make up all types of matter are in constant motion.
Name Period Gas Laws Kinetic energy is the energy of motion of molecules. Gas state of matter made up of tiny particles (atoms or molecules). Each atom or molecule is very far from other atoms or molecules.
= 1.038 atm. 760 mm Hg. = 0.989 atm. d. 767 torr = 767 mm Hg. = 1.01 atm
Chapter 13 Gases 1. Solids and liquids have essentially fixed volumes and are not able to be compressed easily. Gases have volumes that depend on their conditions, and can be compressed or expanded by
CHEMISTRY 113 EXAM 4(A)
Summer 2003 1. The molecular geometry of PF 4 + ion is: A. bent B. trigonal planar C. tetrahedral D. octahedral CHEMISTRY 113 EXAM 4(A) 2. The Cl-C-Cl bond angle in CCl 2 O molecule (C is the central atom)
AS1 MOLES. oxygen molecules have the formula O 2 the relative mass will be 2 x 16 = 32 so the molar mass will be 32g mol -1
Moles 1 MOLES The mole the standard unit of amount of a substance the number of particles in a mole is known as Avogadro s constant (L) Avogadro s constant has a value of 6.023 x 10 23 mol -1. Example
Chem 115 POGIL Worksheet - Week 4 Moles & Stoichiometry
Chem 115 POGIL Worksheet - Week 4 Moles & Stoichiometry Why? Chemists are concerned with mass relationships in chemical reactions, usually run on a macroscopic scale (grams, kilograms, etc.). To deal with
Review - After School Matter Name: Review - After School Matter Tuesday, April 29, 2008
Name: Review - After School Matter Tuesday, April 29, 2008 1. Figure 1 The graph represents the relationship between temperature and time as heat was added uniformly to a substance starting at a solid
Chapter 18 Temperature, Heat, and the First Law of Thermodynamics. Problems: 8, 11, 13, 17, 21, 27, 29, 37, 39, 41, 47, 51, 57
Chapter 18 Temperature, Heat, and the First Law of Thermodynamics Problems: 8, 11, 13, 17, 21, 27, 29, 37, 39, 41, 47, 51, 57 Thermodynamics study and application of thermal energy temperature quantity
Lecture 35: Atmosphere in Furnaces
Lecture 35: Atmosphere in Furnaces Contents: Selection of atmosphere: Gases and their behavior: Prepared atmospheres Protective atmospheres applications Atmosphere volume requirements Atmosphere sensors
47374_04_p25-32.qxd 2/9/07 7:50 AM Page 25. 4 Atoms and Elements
47374_04_p25-32.qxd 2/9/07 7:50 AM Page 25 4 Atoms and Elements 4.1 a. Cu b. Si c. K d. N e. Fe f. Ba g. Pb h. Sr 4.2 a. O b. Li c. S d. Al e. H f. Ne g. Sn h. Au 4.3 a. carbon b. chlorine c. iodine d.
Stoichiometry. 1. The total number of moles represented by 20 grams of calcium carbonate is (1) 1; (2) 2; (3) 0.1; (4) 0.2.
Stoichiometry 1 The total number of moles represented by 20 grams of calcium carbonate is (1) 1; (2) 2; (3) 01; (4) 02 2 A 44 gram sample of a hydrate was heated until the water of hydration was driven
F321 MOLES. Example If 1 atom has a mass of 1.241 x 10-23 g 1 mole of atoms will have a mass of 1.241 x 10-23 g x 6.02 x 10 23 = 7.
Moles 1 MOLES The mole the standard unit of amount of a substance (mol) the number of particles in a mole is known as Avogadro s constant (N A ) Avogadro s constant has a value of 6.02 x 10 23 mol -1.
CHAPTER 9 Part 1. = 5 wt% Sn-95 wt% Pb C β. = 98 wt% Sn-2 wt% Pb. = 77 wt% Ag-23 wt% Cu. = 51 wt% Zn-49 wt% Cu C γ. = 58 wt% Zn-42 wt% Cu
CHAPTER 9 Part 1 9.5 This problem asks that we cite the phase or phases present for several alloys at specified temperatures. (a) For an alloy composed of 15 wt% Sn-85 wt% Pb and at 100 C, from Figure
Unit 19 Practice. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.
Name: Class: Date: Unit 19 Practice Multiple Choice Identify the choice that best completes the statement or answers the question. 1) The first law of thermodynamics can be given as. A) E = q + w B) =
Find a pair of elements in the periodic table with atomic numbers less than 20 that are an exception to the original periodic law.
Example Exercise 6.1 Periodic Law Find the two elements in the fifth row of the periodic table that violate the original periodic law proposed by Mendeleev. Mendeleev proposed that elements be arranged
Exam 4 Practice Problems false false
Exam 4 Practice Problems 1 1. Which of the following statements is false? a. Condensed states have much higher densities than gases. b. Molecules are very far apart in gases and closer together in liquids
Unit 3 Notepack Chapter 7 Chemical Quantities Qualifier for Test
Unit 3 Notepack Chapter 7 Chemical Quantities Qualifier for Test NAME Section 7.1 The Mole: A Measurement of Matter A. What is a mole? 1. Chemistry is a quantitative science. What does this term mean?
Name Class Date. In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question.
Assessment Chapter Test A Chapter: States of Matter In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question. 1. The kinetic-molecular
HOW TO SIZE A PRESSURE REGULATOR
CHOOSING THE CORRECT REGULATOR HOW TO SIZE A PRESSURE REGULATOR In order to choose the correct regulator the following information is needed: - Function: Pressure reducing or backpressure control? - Pressure:
Physics Notes Class 11 CHAPTER 2 UNITS AND MEASUREMENTS
1 P a g e Physics Notes Class 11 CHAPTER 2 UNITS AND MEASUREMENTS The comparison of any physical quantity with its standard unit is called measurement. Physical Quantities All the quantities in terms of
4. Using the data from Handout 5, what is the standard enthalpy of formation of BaO (s)? What does this mean?
HOMEWORK 3A 1. In each of the following pairs, tell which has the higher entropy. (a) One mole of liquid water or one mole of water vapor (b) One mole of dry ice or one mole of carbon dioxide at 1 atm
Untitled Document. 1. Which of the following best describes an atom? 4. Which statement best describes the density of an atom s nucleus?
Name: Date: 1. Which of the following best describes an atom? A. protons and electrons grouped together in a random pattern B. protons and electrons grouped together in an alternating pattern C. a core
Module 5: Combustion Technology. Lecture 33: Combustion air calculation
1 P age Module 5: Combustion Technology Lecture 33: Combustion air calculation 2 P age Keywords: Heat of combustion, stoichiometric air, excess air, natural gas combustion Combustion air calculation The
Chem 112 Intermolecular Forces Chang From the book (10, 12, 14, 16, 18, 20,84,92,94,102,104, 108, 112, 114, 118 and 134)
Chem 112 Intermolecular Forces Chang From the book (10, 12, 14, 16, 18, 20,84,92,94,102,104, 108, 112, 114, 118 and 134) 1. Helium atoms do not combine to form He 2 molecules, What is the strongest attractive
Chapter 8 Atomic Electronic Configurations and Periodicity
Chapter 8 Electron Configurations Page 1 Chapter 8 Atomic Electronic Configurations and Periodicity 8-1. Substances that are weakly attracted to a magnetic field but lose their magnetism when removed from
Periodic Table Questions
Periodic Table Questions 1. The elements characterized as nonmetals are located in the periodic table at the (1) far left; (2) bottom; (3) center; (4) top right. 2. An element that is a liquid at STP is
Chem 115 POGIL Worksheet - Week 4 Moles & Stoichiometry Answers
Key Questions & Exercises Chem 115 POGIL Worksheet - Week 4 Moles & Stoichiometry Answers 1. The atomic weight of carbon is 12.0107 u, so a mole of carbon has a mass of 12.0107 g. Why doesn t a mole of
87 16 70 20 58 24 44 32 35 40 29 48 (a) graph Y versus X (b) graph Y versus 1/X
HOMEWORK 5A Barometer; Boyle s Law 1. The pressure of the first two gases below is determined with a manometer that is filled with mercury (density = 13.6 g/ml). The pressure of the last two gases below
Chapter 4 Practice Quiz
Chapter 4 Practice Quiz 1. Label each box with the appropriate state of matter. A) I: Gas II: Liquid III: Solid B) I: Liquid II: Solid III: Gas C) I: Solid II: Liquid III: Gas D) I: Gas II: Solid III:
ATOMS. Multiple Choice Questions
Chapter 3 ATOMS AND MOLECULES Multiple Choice Questions 1. Which of the following correctly represents 360 g of water? (i) 2 moles of H 2 0 (ii) 20 moles of water (iii) 6.022 10 23 molecules of water (iv)
CHAPTER 12. Gases and the Kinetic-Molecular Theory
CHAPTER 12 Gases and the Kinetic-Molecular Theory 1 Gases vs. Liquids & Solids Gases Weak interactions between molecules Molecules move rapidly Fast diffusion rates Low densities Easy to compress Liquids
Bonding Practice Problems
NAME 1. When compared to H 2 S, H 2 O has a higher 8. Given the Lewis electron-dot diagram: boiling point because H 2 O contains stronger metallic bonds covalent bonds ionic bonds hydrogen bonds 2. Which
UNIT (2) ATOMS AND ELEMENTS
UNIT (2) ATOMS AND ELEMENTS 2.1 Elements An element is a fundamental substance that cannot be broken down by chemical means into simpler substances. Each element is represented by an abbreviation called
3 - Atomic Absorption Spectroscopy
3 - Atomic Absorption Spectroscopy Introduction Atomic-absorption (AA) spectroscopy uses the absorption of light to measure the concentration of gas-phase atoms. Since samples are usually liquids or solids,
CHAPTER 3: MATTER. Active Learning Questions: 1-6, 9, 13-14; End-of-Chapter Questions: 1-18, 20, 24-32, 38-42, 44, 49-52, 55-56, 61-64
CHAPTER 3: MATTER Active Learning Questions: 1-6, 9, 13-14; End-of-Chapter Questions: 1-18, 20, 24-32, 38-42, 44, 49-52, 55-56, 61-64 3.1 MATTER Matter: Anything that has mass and occupies volume We study
Unit 3 Study Guide: Electron Configuration & The Periodic Table
Name: Teacher s Name: Class: Block: Date: Unit 3 Study Guide: Electron Configuration & The Periodic Table 1. For each of the following elements, state whether the element is radioactive, synthetic or both.
Chem 1A Exam 2 Review Problems
Chem 1A Exam 2 Review Problems 1. At 0.967 atm, the height of mercury in a barometer is 0.735 m. If the mercury were replaced with water, what height of water (in meters) would be supported at this pressure?
3. What would you predict for the intensity and binding energy for the 3p orbital for that of sulfur?
PSI AP Chemistry Periodic Trends MC Review Name Periodic Law and the Quantum Model Use the PES spectrum of Phosphorus below to answer questions 1-3. 1. Which peak corresponds to the 1s orbital? (A) 1.06
Phys222 W11 Quiz 1: Chapters 19-21 Keys. Name:
Name:. In order for two objects to have the same temperature, they must a. be in thermal equilibrium.
Section 1: Arranging the Elements Pages 106-112
Study Guide Chapter 5 Periodic Table Section 1: Arranging the Elements Pages 106-112 DISCOVERING A PATTERN 1. How did Mendeleev arrange the elements? a. by increasing density b. by increasing melting point
Page 2. Base your answers to questions 7 through 9 on this phase diagram
1. The normal boiling point of water is often depressed at high altitudes. Which of the following explains this phenomenon? t high altitudes, the lower atmospheric pressure equals the equilibrium water
Stoichiometry. 1. The total number of moles represented by 20 grams of calcium carbonate is (1) 1; (2) 2; (3) 0.1; (4) 0.2.
Stoichiometry 1 The total number of moles represented by 20 grams of calcium carbonate is (1) 1; (2) 2; (3) 01; (4) 02 2 A 44 gram sample of a hydrate was heated until the water of hydration was driven
Chapter 2 Atoms, Ions, and the Periodic Table
Chapter 2 Atoms, Ions, and the Periodic Table 2.1 (a) neutron; (b) law of conservation of mass; (c) proton; (d) main-group element; (e) relative atomic mass; (f) mass number; (g) isotope; (h) cation; (i)
Chapter 8 - Chemical Equations and Reactions
Chapter 8 - Chemical Equations and Reactions 8-1 Describing Chemical Reactions I. Introduction A. Reactants 1. Original substances entering into a chemical rxn B. Products 1. The resulting substances from
Chapter 3 Mass Relationships in Chemical Reactions
Chapter 3 Mass Relationships in Chemical Reactions Student: 1. An atom of bromine has a mass about four times greater than that of an atom of neon. Which choice makes the correct comparison of the relative
Test 5 Review questions. 1. As ice cools from 273 K to 263 K, the average kinetic energy of its molecules will
Name: Thursday, December 13, 2007 Test 5 Review questions 1. As ice cools from 273 K to 263 K, the average kinetic energy of its molecules will 1. decrease 2. increase 3. remain the same 2. The graph below
Final Exam CHM 3410, Dr. Mebel, Fall 2005
Final Exam CHM 3410, Dr. Mebel, Fall 2005 1. At -31.2 C, pure propane and n-butane have vapor pressures of 1200 and 200 Torr, respectively. (a) Calculate the mole fraction of propane in the liquid mixture
IB Chemistry. DP Chemistry Review
DP Chemistry Review Topic 1: Quantitative chemistry 1.1 The mole concept and Avogadro s constant Assessment statement Apply the mole concept to substances. Determine the number of particles and the amount
Cryogenic Fluids. European Advanced Cryogenics School. Henri Godfrin. European Advanced Cryogenics School Chichilianne 2011 1
Cryogenic Fluids European Advanced Cryogenics School Henri Godfrin European Advanced Cryogenics School Chichilianne 2011 1 Fluids : basic concepts 3 states of matter: solid / liquid / gas Influence of
MEMORANDUM GRADE 11. PHYSICAL SCIENCES: CHEMISTRY Paper 2
MEMORANDUM GRADE 11 PHYSICAL SCIENCES: CHEMISTRY Paper 2 MARKS: 150 TIME: 3 hours Learning Outcomes and Assessment Standards LO1 LO2 LO3 AS 11.1.1: Plan and conduct a scientific investigation to collect
MODERN ATOMIC THEORY AND THE PERIODIC TABLE
CHAPTER 10 MODERN ATOMIC THEORY AND THE PERIODIC TABLE SOLUTIONS TO REVIEW QUESTIONS 1. Wavelength is defined as the distance between consecutive peaks in a wave. It is generally symbolized by the Greek
Chemistry CP Unit 2 Atomic Structure and Electron Configuration. Learning Targets (Your exam at the end of Unit 2 will assess the following:)
Chemistry CP Unit 2 Atomic Structure and Electron Learning Targets (Your exam at the end of Unit 2 will assess the following:) 2. Atomic Structure and Electron 2-1. Give the one main contribution to the
EXPERIMENT 13: THE IDEAL GAS LAW AND THE MOLECULAR WEIGHT OF GASES
Name Section EXPERIMENT 13: THE IDEAL GAS LAW AND THE MOLECULAR WEIGHT OF GASES PRE-LABORATORY QUESTIONS The following preparatory questions should be answered before coming to lab. They are intended to
Thermochemistry. r2 d:\files\courses\1110-20\99heat&thermorans.doc. Ron Robertson
Thermochemistry r2 d:\files\courses\1110-20\99heat&thermorans.doc Ron Robertson I. What is Energy? A. Energy is a property of matter that allows work to be done B. Potential and Kinetic Potential energy
Chemistry 13: States of Matter
Chemistry 13: States of Matter Name: Period: Date: Chemistry Content Standard: Gases and Their Properties The kinetic molecular theory describes the motion of atoms and molecules and explains the properties
13.1 The Nature of Gases. What is Kinetic Theory? Kinetic Theory and a Model for Gases. Chapter 13: States of Matter. Principles of Kinetic Theory
Chapter 13: States of Matter The Nature of Gases The Nature of Gases kinetic molecular theory (KMT), gas pressure (pascal, atmosphere, mm Hg), kinetic energy The Nature of Liquids vaporization, evaporation,
5. Which temperature is equal to +20 K? 1) 253ºC 2) 293ºC 3) 253 C 4) 293 C
1. The average kinetic energy of water molecules increases when 1) H 2 O(s) changes to H 2 O( ) at 0ºC 3) H 2 O( ) at 10ºC changes to H 2 O( ) at 20ºC 2) H 2 O( ) changes to H 2 O(s) at 0ºC 4) H 2 O( )
Regulator Options and Accessories
Regulator Options and Accessories Regulator accessories are available separately or mounted on Swagelok regulators. Some accessories limit regulator pressure or temperature ratings. Additional materials,
THE KINETIC THEORY OF GASES
Chapter 19: THE KINETIC THEORY OF GASES 1. Evidence that a gas consists mostly of empty space is the fact that: A. the density of a gas becomes much greater when it is liquefied B. gases exert pressure
Thermodynamics AP Physics B. Multiple Choice Questions
Thermodynamics AP Physics B Name Multiple Choice Questions 1. What is the name of the following statement: When two systems are in thermal equilibrium with a third system, then they are in thermal equilibrium
= 800 kg/m 3 (note that old units cancel out) 4.184 J 1000 g = 4184 J/kg o C
Units and Dimensions Basic properties such as length, mass, time and temperature that can be measured are called dimensions. Any quantity that can be measured has a value and a unit associated with it.
Solution. Practice Exercise. Concept Exercise
Example Exercise 9.1 Atomic Mass and Avogadro s Number Refer to the atomic masses in the periodic table inside the front cover of this textbook. State the mass of Avogadro s number of atoms for each of
CHAPTER 8: CHEMICAL COMPOSITION
CHAPTER 8: CHEMICAL COMPOSITION Active Learning: 1-4, 6-8, 12, 18-25; End-of-Chapter Problems: 3-4, 9-82, 84-85, 87-92, 94-104, 107-109, 111, 113, 119, 125-126 8.2 ATOMIC MASSES: COUNTING ATOMS BY WEIGHING
THE HUMIDITY/MOISTURE HANDBOOK
THE HUMIDITY/MOISTURE HANDBOOK Table of Contents Introduction... 3 Relative Humidity... 3 Partial Pressure... 4 Saturation Pressure (Ps)... 5 Other Absolute Moisture Scales... 8 % Moisture by Volume (%M
Temperature. Number of moles. Constant Terms. Pressure. Answers Additional Questions 12.1
Answers Additional Questions 12.1 1. A gas collected over water has a total pressure equal to the pressure of the dry gas plus the pressure of the water vapor. If the partial pressure of water at 25.0
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
General Chemistry PHS 1015 Practice Exam 4 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Which of the following statements about pressure
a) Use the following equation from the lecture notes: = ( 8.314 J K 1 mol 1) ( ) 10 L
hermodynamics: Examples for chapter 4. 1. One mole of nitrogen gas is allowed to expand from 0.5 to 10 L reversible and isothermal process at 300 K. Calculate the change in molar entropy using a the ideal
Type: Single Date: Homework: READ 12.8, Do CONCEPT Q. # (14) Do PROBLEMS (40, 52, 81) Ch. 12
Type: Single Date: Objective: Latent Heat Homework: READ 12.8, Do CONCEPT Q. # (14) Do PROBLEMS (40, 52, 81) Ch. 12 AP Physics B Date: Mr. Mirro Heat and Phase Change When bodies are heated or cooled their
Humid Air. Water vapor in air. Trace Glasses 1% Argon (A) Water vapor (H 2
Humid Air Water vapor in air Oxygen 21% Trace Glasses 1% Argon (A) Water vapor (H 2 O) Carbon dioxide (CO 2 ) Neon (Ne) Helium (He) Krypton (Kr) Hydrogen (H) Ozone (O 3 ) Nitrogen 78% Humid Air Water vapor
States of Matter and the Kinetic Molecular Theory - Gr10 [CAPS]
OpenStax-CNX module: m38210 1 States of Matter and the Kinetic Molecular Theory - Gr10 [CAPS] Free High School Science Texts Project This work is produced by OpenStax-CNX and licensed under the Creative
CHEM 120 Online Chapter 7
CHEM 120 Online Chapter 7 Date: 1. Which of the following statements is not a part of kinetic molecular theory? A) Matter is composed of particles that are in constant motion. B) Particle velocity increases
Module 5: Combustion Technology. Lecture 34: Calculation of calorific value of fuels
1 P age Module 5: Combustion Technology Lecture 34: Calculation of calorific value of fuels 2 P age Keywords : Gross calorific value, Net calorific value, enthalpy change, bomb calorimeter 5.3 Calculation
Electronegativity and Polarity MAIN Idea A chemical bond s character is related to each atom s
Section 8.5 Objectives Describe how electronegativity is used to determine bond type. Compare and contrast polar and nonpolar covalent bonds and polar and nonpolar molecules. Generalize about the characteristics
Review: Balancing Redox Reactions. Review: Balancing Redox Reactions
Review: Balancing Redox Reactions Determine which species is oxidized and which species is reduced Oxidation corresponds to an increase in the oxidation number of an element Reduction corresponds to a
Electron Beam and Sputter Deposition Choosing Process Parameters
Electron Beam and Sputter Deposition Choosing Process Parameters General Introduction The choice of process parameters for any process is determined not only by the physics and/or chemistry of the process,
Lecture Notes: Gas Laws and Kinetic Molecular Theory (KMT).
CHEM110 Week 9 Notes (Gas Laws) Page 1 of 7 Lecture Notes: Gas Laws and Kinetic Molecular Theory (KMT). Gases Are mostly empty space Occupy containers uniformly and completely Expand infinitely Diffuse
PERIODIC TABLE OF GROUPS OF ELEMENTS Elements can be classified using two different schemes.
1 PERIODIC TABLE OF GROUPS OF ELEMENTS Elements can be classified using two different schemes. Metal Nonmetal Scheme (based on physical properties) Metals - most elements are metals - elements on left
Ionic and Metallic Bonding
Ionic and Metallic Bonding BNDING AND INTERACTINS 71 Ions For students using the Foundation edition, assign problems 1, 3 5, 7 12, 14, 15, 18 20 Essential Understanding Ions form when atoms gain or lose
Chapter 12 - Liquids and Solids
Chapter 12 - Liquids and Solids 12-1 Liquids I. Properties of Liquids and the Kinetic Molecular Theory A. Fluids 1. Substances that can flow and therefore take the shape of their container B. Relative
Give all answers in MKS units: energy in Joules, pressure in Pascals, volume in m 3, etc. Only work the number of problems required. Chose wisely.
Chemistry 45/456 0 July, 007 Midterm Examination Professor G. Drobny Universal gas constant=r=8.3j/mole-k=0.08l-atm/mole-k Joule=J= Nt-m=kg-m /s 0J= L-atm. Pa=J/m 3 =N/m. atm=.0x0 5 Pa=.0 bar L=0-3 m 3.
Chapter 8. Phase Diagrams
Phase Diagrams A phase in a material is a region that differ in its microstructure and or composition from another region Al Al 2 CuMg H 2 O(solid, ice) in H 2 O (liquid) 2 phases homogeneous in crystal
The Mole. Chapter 10. Dimensional Analysis. The Mole. How much mass is in one atom of carbon-12? Molar Mass of Atoms 3/1/2015
The Mole Chapter 10 1 Objectives Use the mole and molar mass to make conversions among moles, mass, and number of particles Determine the percent composition of the components of a compound Calculate empirical
The Mole. Chapter 2. Solutions for Practice Problems
Chapter 2 The Mole Note to teacher: You will notice that there are two different formats for the Sample Problems in the student textbook. Where appropriate, the Sample Problem contains the full set of
EDEXCEL INTERNATIONAL GCSE CHEMISTRY EDEXCEL CERTIFICATE IN CHEMISTRY ANSWERS SECTION C
EDEXCEL INTERNATIONAL GCSE CHEMISTRY EDEXCEL CERTIFICATE IN CHEMISTRY ANSWERS SECTION C Chapter 16 1. Burn sulfur in air to give sulfur dioxide. S(s) + O 2 (g) ----> SO 2 (g) Pass this with more air over
Thermochemical equations allow stoichiometric calculations.
CHEM 1105 THERMOCHEMISTRY 1. Change in Enthalpy ( H) Heat is evolved or absorbed in all chemical reactions. Exothermic reaction: heat evolved - heat flows from reaction mixture to surroundings; products
Answer, Key Homework 6 David McIntyre 1
Answer, Key Homework 6 David McIntyre 1 This print-out should have 0 questions, check that it is complete. Multiple-choice questions may continue on the next column or page: find all choices before making
KINETIC THEORY AND THERMODYNAMICS
KINETIC THEORY AND THERMODYNAMICS 1. Basic ideas Kinetic theory based on experiments, which proved that a) matter contains particles and quite a lot of space between them b) these particles always move
EXPERIMENT 15: Ideal Gas Law: Molecular Weight of a Vapor
EXPERIMENT 15: Ideal Gas Law: Molecular Weight of a Vapor Purpose: In this experiment you will use the ideal gas law to calculate the molecular weight of a volatile liquid compound by measuring the mass,
10 g 5 g? 10 g 5 g. 10 g 5 g. scale
The International System of Units, or the SI Units Vs. Honors Chem 1 LENGTH In the SI, the base unit of length is the Meter. Prefixes identify additional units of length, based on the meter. Smaller than
The Gas Laws. Our Atmosphere. Pressure = Units of Pressure. Barometer. Chapter 10
Our Atmosphere The Gas Laws 99% N 2 and O 2 78% N 2 80 70 Nitrogen Chapter 10 21% O 2 1% CO 2 and the Noble Gases 60 50 40 Oxygen 30 20 10 0 Gas Carbon dioxide and Noble Gases Pressure Pressure = Force
We will study the temperature-pressure diagram of nitrogen, in particular the triple point.
K4. Triple Point of Nitrogen I. OBJECTIVE OF THE EXPERIMENT We will study the temperature-pressure diagram of nitrogen, in particular the triple point. II. BAKGROUND THOERY States of matter Matter is made
