Chemistry 20 Chapters 13 Lipids

Similar documents
Lipids. Classes of Lipids. Types of Lipids. Saturated and Unsaturated Fatty Acids. Fatty Acids Lipids 15.2 Fatty Acids

Lipids. There are 2 types of lipids; those that contain the structural component of a fatty acid; and

CHEM 121. Chapter 19, Name: Date:

(Woods) Chem-131 Lec Lipids 1. Lipids:

The Structure and Function of Macromolecules: Carbohydrates, Lipids & Phospholipids

Ch24_PT MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Waxes. From the head of sperm whales Structural material of beehives Coating on the leaves of Brazilian palm. Fats and Oils

I The THREE types of LIPIDS

Carbohydrates, proteins and lipids

Exam 4 Outline CH 105 Spring 2012

Lipids. Classifying Lipids

Biochemistry of Cells

BIOLOGICAL MOLECULES OF LIFE

Chapter 3 Molecules of Cells

Nutrients: Carbohydrates, Proteins, and Fats. Chapter 5 Lesson 2

Organic Compounds. Essential Questions: What is Organic? What are the 4 major Organic Compounds? How are they made? What are they used for?

Elements in Biological Molecules

How To Understand The Chemistry Of Organic Molecules

Disaccharides consist of two monosaccharide monomers covalently linked by a glycosidic bond. They function in sugar transport.

UNIT (11) MOLECULES OF LIFE: LIPIDS AND PROTEINS

A disaccharide is formed when a dehydration reaction joins two monosaccharides. This covalent bond is called a glycosidic linkage.

Chapter 5. The Structure and Function of Macromolecule s

Lecture Overview. Hydrogen Bonds. Special Properties of Water Molecules. Universal Solvent. ph Scale Illustrated. special properties of water

Unit 2: Cells, Membranes and Signaling CELL MEMBRANE. Chapter 5 Hillis Textbook

Biological molecules:

Chapter 3: Biological Molecules. 1. Carbohydrates 2. Lipids 3. Proteins 4. Nucleic Acids

Figure 3-1-1: Alkaline hydrolysis (saponification) of oil to make soaps.

An introduction to the biochemistry of diet.

Chemical Basis of Life Module A Anchor 2

Lab 2 Biochemistry. Learning Objectives. Introduction. Lipid Structure and Role in Food. The lab has the following learning objectives.

Organic Chemistry Lab Experiment 4 Preparation and Properties of Soap

Chapter 5: The Structure and Function of Large Biological Molecules

The Molecules of Cells

CORPORATE HEALTH LOWERING YOUR CHOLESTEROL & BLOOD PRESSURE

Fats, Oils, and Other Lipids

Reactions of Fats and Fatty Acids

Carbon-organic Compounds

Fatty Acids carboxylic acids

Cholesterol and Triglycerides What You Should Know

Macromolecules 1 Carbohydrates, Lipids & Nucleic Acids

Let s Talk Oils and Fats!

Chapter 2. The Chemistry of Life Worksheets

Carbohydrates Lipids Proteins Nucleic Acids

4. Which carbohydrate would you find as part of a molecule of RNA? a. Galactose b. Deoxyribose c. Ribose d. Glucose

1. The diagram below represents a biological process

Worksheet Chapter 13: Human biochemistry glossary

Name: Hour: Elements & Macromolecules in Organisms

BSC Exam I Lectures and Text Pages. The Plasma Membrane Structure and Function. Phospholipids. I. Intro to Biology (2-29) II.

Nomenclature of fatty acids. Fatty Acids. Chapter 9: Lipids. Fatty acids are carboxylic acids with a long hydrocarbon chain

Keystone Review Practice Test Module A Cells and Cell Processes. 1. Which characteristic is shared by all prokaryotes and eukaryotes?

Endocrine System: Practice Questions #1

Overview of Lipid Metabolism

I. Chapter 5 Summary. II. Nucleotides & Nucleic Acids. III. Lipids

Chapter 48. Nutrients in Food. Carbohydrates, Proteins, and Lipids. Carbohydrates, Proteins, and Lipids, continued

1. Essay: The Digestive and Absorption Processes of Macronutrients

Health Maintenance: Controlling Cholesterol

Determination of Specific Nutrients in Various Foods. Abstract. Humans need to consume food compounds such as carbohydrates, proteins, fats,

Elements & Macromolecules in Organisms

Chapter 25: Metabolism and Nutrition

Anatomy and Physiology Placement Exam 2 Practice with Answers at End!

10.1 The function of Digestion pg. 402

Lab 3 Organic Molecules of Biological Importance

BIOLOGICAL MEMBRANES: FUNCTIONS, STRUCTURES & TRANSPORT

thebiotutor. AS Biology OCR. Unit F211: Cells, Exchange & Transport. Module 1.2 Cell Membranes. Notes & Questions.

OVERVIEW OF LIPID METABOLISM

Blood clot in atheroma. help make vitamin D and hormones, like oestrogen and testosterone, in your body.

Elevated Cholesterol and Homocysteine

Six major functions of membrane proteins: Transport Enzymatic activity

1. (U4C1L4:G9) T or F: The human body is composed of 60 to 70 percent water. 2. (U4C1L4:G13) Another name for fiber in a diet is.

CELL MEMBRANES, TRANSPORT, and COMMUNICATION. Teacher Packet

Lipid Metabolism. Dr. Howaida Nounou Biochemistry department Sciences college

Laboratory 28: Properties of Lipids

LAB 3: DIGESTION OF ORGANIC MACROMOLECULES

Chemistry 20 Chapters 15 Enzymes

Chapter 2 Chemical Principles

Sinclair Community College, Division of Allied Health Technologies

The Molecules of Life - Overview. The Molecules of Life. The Molecules of Life. The Molecules of Life

Cholesterol made simple!

Biology 12 June 2003 Provincial Examination

Ch. 8 - The Cell Membrane

FIGURE A. The phosphate end of the molecule is polar (charged) and hydrophilic (attracted to water).

How To Understand The Human Body

Chapter 6. Solution, Acids and Bases

Digestive System Why is digestion important? How is food digested? Physical Digestion and Movement

Membrane Structure and Function

Biological cell membranes

Types of Cooking Fats and Oils - Smoking Points of Fats and Oils

Using the Nutrition Facts Label

Plasma Membrane hydrophilic polar heads

Overview of Fat Digestion and Metabolism in Dairy Cows

18.2 Protein Structure and Function: An Overview

Nutritional Glossary. Index of Contents

Organic Molecules of Life - Exercise 2

Preliminary MFM Quiz

Introduction to Biodiesel Chemistry Terms and Background Information

Macromolecules in my food!!

Cell Membrane Coloring Worksheet

Trans Fats Lessons Learned

Chapter 49 - Nutrients and the Digestive System I. Nutrients (chemical substances necessary for organisms to grow and function properly)

The chemical reactions inside cells are controlled by enzymes. Cells may be specialised to carry out a particular function.

Transcription:

Chemistry 20 Chapters 13 ipids ipids: are family of biomolecules that have the common property of being soluble in organic solvents but not in water. Role of lipids: they have three important roles in nature: 1. They store energy and protect and insulate internal organs. In human bodies they are stored as fat cells and in animal bodies as starch. 2. They are found in nerve fibers and hormones as steroids, which act as chemical messengers. 3. Because they are not soluble in water, a major function of lipids is to build the cell membranes that separate the internal contents of cells from the surrounding aqueous environment. ipids are divides into the four groups: 1. Simple lipids (waxes, fats and oils). 2. Complex lipids (glycerophospholipids). 3. Steroid (Cholesterol and steroid hormones). 4. Prostaglandins. s (review): a fatty acid contains a long chain attached to carboxylic acid group at one end. They are insoluble in water because the size of the nonpolar portion is bigger than the size of polar portion (carboxyl group). Normally, fatty acid contains an even number of carbon atoms, usually between 12 and 20. They can be either saturated fatty acids with only single bonds between the carbons or unsaturated fatty acids with one (monounsaturated fatty acid) or more (polyunsaturated fatty acid) double bonds. Note (review): Unsaturated fatty acids can be cis or trans (trans is rare). Unsaturated fatty acids are liquid at room temperature because the cis double bond causes the carbon chain to bend, which gives the molecules an irregular shape. As a result, fewer attractions occur between carbon chain and they have lower melting point. n the other hand, saturated fatty acids are solid at room temperature because they are linear (no bend) and they can pack together in close parallel alignment and the have higher ondon dispersion forces than unsaturated fatty acids. Essential fatty acids: human body is capable of synthesizing most fatty acids from carbohydrates or other fatty acids. However, humans do not synthesize sufficient amounts of fatty acids that have more than one double bond. These fatty acids are called essential fatty acids because they must be provided by the diet (a deficiency of essential fatty acids can cause skin dermatitis in infants. Waxes: are found in many plants and animals. Coating of carnauba wax on fruits and the leaves and stems of plants help to prevent loss of water and damage from pests. Waxes on the skin, fur, and feathers of animals and birds provide a waterproof coating. A wax is an ester of a saturated fatty acid and a long-chain alcohol, each containing from 14 to 30 carbon atoms.

ong-chain alcohol Ester bond Note: Beeswax obtained from honeycombs and carnauba wax obtained from palm trees are used to give a protective coating to furniture, cars, and floors. Jojoba wax is used making candles and cosmetics such as lipstick. anolin, a mixture of waxes obtained from wool, is used in hand and facial lotions to aid retention of water, which softens the skin. Fats and oils (Triacylglycerols): in the body, fatty acids are stored as fats and oils known as triacylglycerols (or triglycerides). Triglycerides are trimesters of glycerol (a trihyroxyl alcohol) and fatty acids. A triacylglycerol is produced by esterification (a reaction in which the hydroxyl groups of glycerol form ester bonds with the carboxyl groups of fatty acids. Most fats and oils are mixed triacylglycerols that contain two or three different fatty acids. Note: Triacylglycerols are the major form of energy storage for animals. Animal that hibernate eat large quantities of plants, seed, and nuts that contain high levels of fats and oils. They gain as much as 14 kilograms a week. As the external temperature drop, the animal goes into hibernation. The body temperature drops to nearly freezing and there is a dramatic reduction in cellular activity, respiration, and heart rate. They will hibernate for 4-7 months and during this time, stored fat is the only source of energy. Difference between fat and oil: a fat is a triacylglycerol that is solid at room temperature, such as fats in meat, whole milk, butter, and cheese. Most fats come from animal sources. An oil is a triacylglycerol that is usually liquid at room temperature. The most commonly used oils come from plant sources. live oil and peanut oil are monounsaturated (one double bond C=C). ils from corn, cottonseed, safflower, and sunflower are polyunsaturated (two or more double bond C=C). A few oils such as palm oil and coconut oil are solid at room temperature because they consist mostly of saturated fatty acids (single bond C-C). Animal fats usually contain more saturated fatty acids than do vegetable oils. Dr. Behrang Madani Chemistry 20 Mt SAC

Chemical properties of triacylglycerols: the chemical reactions of the triacylglycerols (fats and oils) are the same as we discussed for alkenes, carboxylic acids and esters: 1. Hydrogenation: hydrogenation of unsaturated fats converts carbon-carbon double bonds to single bonds. The hydrogen gas bubbled through the heated oil the presence of a nickel catalyst (or another transition metal). Note: Most of the time the liquid oil hydrogenate to produce solid oil. This process has two advantages: increasing the period of consumption and transporting easer the solid product. In commercial hydrogenation, the addition of hydrogen is stopped before all the double bonds in an oil become completely saturated. As a result, we can obtain a soft and semisolid product instead of a brittle product. This control of hydrogenation gives the various products such as soft margarines, solid stick margarine, and solid shortenings. 2. Hydrolysis: triacylglycerol are hydrolysed (split by water) in the presence of strong acids or digestive enzymes called lipases. The products of hydrolysis of the ester bonds are glycerol and three fatty acids. 3. Saponification: when a fat is heated with a strong base such as sodium hydroxide, saponification of the fat gives glycerol and the sodium salts of the fatty acids, which are soaps. KH produces a softer, liquid soap. ils that are polyunsaturated produce softer soaps. Names like coconut or avocado shampoo tell you the sources of the oil used in the reaction. Fat or oil + Strong base glycerol + salts of fatty acids (soaps) Dr. Behrang Madani Chemistry 20 Mt SAC

Glycerophospholipids: are similar to triacylglycerols except that one hydroxyl group of glycerol is replaced by the ester of phosphoric acid and amino alcohol, bonded through a phosphodiester bond. G Y C E R Triacylglycerol (triglyceride) G Y C E R phosphate Glycerophospholipid amino alcohol Three amino alcohols found in glycerophospholipids are clorine, serine, and ethanolamine. Because these compounds exist in the body at physiological ph of 7.4, they are ionized. CH 3 + NH 3 H-CH 2 -CH 2 -N + -CH 3 H-CH 2 -CH-C - + H-CH 2 -CH 2 -NH 3 P CH 3 - Choline Serine Ethanolamine Phosphate Glycerophospholipids contain both polar and nonpolar regions, which allow them to interact with both polar and nonpolar substances. The ionized alcohol and phosphate portion called the head is polar and can hydrogen bond with water. The two fatty acids connected to the glycerol molecule represent the nonpolar tails of the phospholipids. Glycerophospholipids are the most abundant lipids in cell membranes, where they play an important role in cellular permeability. In the body fluids, they combine with the less polar triglycerides and cholesterol to make them more soluble as they are transported in the body. Steroids: are compounds containing the steroid nucleus, which consists of three cyclohexane rings and one cyclopentane ring fused together (no fatty acids). The four rings in the steroid nucleus are designated A, B, C, and D. The carbon atoms are numbered beginning with the carbons in ring A and, in types of steroids like cholesterol, ending with two methyl groups (attached groups make a wide variety of steroid compounds).

Cholesterols: is one of the most important and abundant steroids in the body. Cholesterol has methyl groups, alkyl chain and hydroxyl group (-H) attached to the steroid nucleus. Cholesterol in the body: Cholesterol is a component of cellular membranes, myelin sheath, and brain and nerve tissue. It is also found in the liver, bile salts, and skin, where it forms vitamin D. In the adrenal gland, it is used to synthesize steroid hormones. Cholesterol in the body in obtained from eating meats, milk, and eggs, and it is also synthesized by the liver from fats, carbohydrates, and proteins. There is no cholesterol in vegetable and plant products. If the diet is high in cholesterol, the liver produces less. A typical American daily diet includes 400-500 mg of cholesterol (one of the highest in the world). However, we should consume no more than 300 mg of cholesterol a day. Note: When cholesterol exceeds its saturation level in the bile, gallstones may form. High levels of cholesterol are also associated with the accumulation of lipid deposits (plaque) that line and narrow the coronary arteries. Some research indicates that saturated fats in the diet may stimulate the production of cholesterol by the liver. Steroid hormones: hormones are chemical messengers that serve as a kind of communication system from one part of the body to another. The steroid hormones, which include the sex hormones are closely related in structure to cholesterol and depend on cholesterol for their synthesis. Two important male sex hormones, testosterone and androsterone, promote the growth of muscle and of facial hair and the maturation of the male sex organs and of sperm. The estrogens, a group of female sex hormones, direct the development of female characteristics: the uterus increases in size, fat is deposited in the breasts, and the pelvis broadens. Progesterone prepares the uterus for the implantation of a fertilized egg. ipoproteins: in the body, lipids must be transported through the bloodstream to tissues where they are stored, used for energy, or to make hormones. However, most lipids are nonpolar and insoluble in the aqueous environment of blood. They are made more soluble by combining them with phospholipids and proteins to form water-soluble complexes called lipoproteins. Dr. Behrang Madani Chemistry 20 Mt SAC

In general, lipoproteins are spherical particles with an outer surface of polar proteins and phospholipids that surround hundreds of nonpolar molecules of triacylglycerols and cholesteryl esters (formed by the esterification of the hydroxyl group in cholesterol with a fatty acid). Triacylglycerols There are several types of lipoproteins that differ in density, lipid composition, and function: 1. Chylomicrons 2. Very-low-density lipoprotein (VD) 3. ow-density lipoprotein (D) 4. High-density lipoprotein (HD). The chylomicrons formed in the mucosal cells of the small intestine and the VDs formed in the liver transport triacylglycerol, phospholipids, and cholesterol to the tissues for storage or to the muscles for energy. The Ds transport cholesterol to tissues to be used for the synthesis of cell membranes, steroid hormones, and bile salts. When the level of D exceeds the amount of cholesterol needed by the tissues, the Ds deposit cholesterol in the arteries and/or myocardial infarctions (heart stacks). This is why D cholesterol is called bad cholesterol. The HDs remove excess cholesterol from the tissues and carry it to the liver where it is converted to bile salts and eliminated. When HD levels are high, cholesterol that is not needed by the tissues is carried to the liver for elimination rather than deposited in the arteries, which gives the HDs the name of good cholesterol. Most of the cholesterol in the body is synthesized in the liver, although some comes from the diet. Higher HD levels are found in people who exercise regularly and eat less saturated fat. VD Intestine and elimination iver Fat storage cells D HD Heart and muscle Energy Cell membranes: the membrane of a cell separates the contents of a cell from the external fluids. It is semipermeable so that nutrients can enter the cell and waste products can leave. There are two rows of phospholipids in a cell membrane, that they are arranged like a sandwich. Their nonpolar tails, which are hydrophobic (water-fearing), move to the center, while their polar heads, which are hydrophilic (water-loving) align on the outer edge of the membrane. This double row arrangement of phospholipids is called a lipid bilayer.

Most of the phospholipids in the lipid bilayer contain unsaturated fatty acids. Due to the kinks in the carbon chains at the cis double bonds, the phospholipids do not fit closely together. As a result, the lipid bilayer is not a rigid, fixed structure, but one that is dynamic and fluid-like. In this liquid-like bilayer, there are also proteins, carbohydrates, and cholesterol molecules. For this reason, the model of biological membranes is referred to as the fluid mosaic model of membranes. Note: In the fluid mosaic model, proteins known as peripheral proteins emerge on just one of the surface, outer or inner. The integral proteins extend through the entire lipid bilayer and appear on both surfaces of membrane. Some carbohydrates are attached to proteins and lipids and they are responsible for cell recognition and communication with chemical messengers such as hormones. Carbohydrate Phospholipid bilayer Nonpolar Polar