Lecture 2: Ray theory transmission in optical fibers

Similar documents
What are Fibre Optics?

GLOBAL COLLEGE OF ENGINEERING &TECHNOLOGY: YSR DIST. Unit VII Fiber Optics Engineering Physics

Fiber Optics: Fiber Basics

Lecture 3: Fibre Optics

TELECOMMUNICATION SYSTEMS AND TECHNOLOGIES Vol. I -Optical Fibers - Atousa Vali Sichani and Hussein T. Mouftah

Different Types of Dispersions in an Optical Fiber

Optical Communications

Polarization of Light

Diffraction and Young s Single Slit Experiment

AP Physics B Ch. 23 and Ch. 24 Geometric Optics and Wave Nature of Light

Fiber optic communication

Refractive Index Measurement Principle

P R E A M B L E. Facilitated workshop problems for class discussion (1.5 hours)

OPTICAL FIBERS INTRODUCTION

4.4 WAVE CHARACTERISTICS 4.5 WAVE PROPERTIES HW/Study Packet

Introduction to Optics

EXPERIMENT O-6. Michelson Interferometer. Abstract. References. Pre-Lab

v = fλ PROGRESSIVE WAVES 1 Candidates should be able to :

SINGLEMODE OR MULTIMODE FIBER OPTIC PATCHCORDS

Reflection and Refraction

Physical Science Study Guide Unit 7 Wave properties and behaviors, electromagnetic spectrum, Doppler Effect

Modern Classical Optics

Diffraction of a Circular Aperture

DOING PHYSICS WITH MATLAB COMPUTATIONAL OPTICS RAYLEIGH-SOMMERFELD DIFFRACTION INTEGRAL OF THE FIRST KIND

Interference. Physics 102 Workshop #3. General Instructions

and LP 11 are illustrated at right.

WAVELENGTH OF LIGHT - DIFFRACTION GRATING

Procedure: Geometrical Optics. Theory Refer to your Lab Manual, pages Equipment Needed

INTRODUCTION FIGURE 1 1. Cosmic Rays. Gamma Rays. X-Rays. Ultraviolet Violet Blue Green Yellow Orange Red Infrared. Ultraviolet.

Attenuation: Bending Loss

Geometric Optics Converging Lenses and Mirrors Physics Lab IV

Study Guide for Exam on Light

A NEW LOOK AT RISLEY PRISMS. By Craig Schwarze Senior Systems Engineer OPTRA Inc.

Signal directionality Lower frequency signals are omnidirectional Higher frequency signals can be focused in a directional beam

CHAPTER - 1. Chapter ONE: WAVES CHAPTER - 2. Chapter TWO: RAY OPTICS AND OPTICAL INSTRUMENTS. CHAPTER - 3 Chapter THREE: WAVE OPTICS PERIODS PERIODS

Refraction of Light at a Plane Surface. Object: To study the refraction of light from water into air, at a plane surface.

Module 13 : Measurements on Fiber Optic Systems

Scanning Near Field Optical Microscopy: Principle, Instrumentation and Applications

12.1 What is Refraction pg Light travels in straight lines through air. What happens to light when it travels from one material into another?

Synthetic Sensing: Proximity / Distance Sensors

Volumes. Goal: Drive optical to high volumes and low costs

A Guide to Acousto-Optic Modulators

Physics 441/2: Transmission Electron Microscope

CREOL, College of Optics & Photonics, University of Central Florida

PUMPED Nd:YAG LASER. Last Revision: August 21, 2007

HIGH POWER FIBER OPTIC PATCHCORDS

WHITE PAPER. 50 versus 62.5 micron multimode fiber

GRID AND PRISM SPECTROMETERS

Using light scattering method to find The surface tension of water

Helium-Neon Laser. Figure 1: Diagram of optical and electrical components used in the HeNe laser experiment.

Fiber Optics: Fiber Preparation and Fiber Connectors

Crystal Optics of Visible Light

Near-field scanning optical microscopy (SNOM)

Science In Action 8 Unit C - Light and Optical Systems. 1.1 The Challenge of light

1. Basics of LASER Physics

A More Efficient Way to De-shelve 137 Ba +

Laboratory #3 Guide: Optical and Electrical Properties of Transparent Conductors -- September 23, 2014

Bandwidth analysis of multimode fiber passive optical networks (PONs)

Physics 10. Lecture 29A. "There are two ways of spreading light: to be the candle or the mirror that reflects it." --Edith Wharton

Plastic Optical Fiber for In-Home communication systems

Overview. What is EMR? Electromagnetic Radiation (EMR) LA502 Special Studies Remote Sensing

LASER TO FIBER SOURCE COUPLERS APPLICATION NOTES

OPTICAL FIBER CABLES

Various Technics of Liquids and Solids Level Measurements. (Part 3)

ELECTRICAL POWER OVER FIBER OPTICS

Basic Geometrical Optics

104 Practice Exam 2-3/21/02

Physics 25 Exam 3 November 3, 2009

Teacher s Resource. 2. The student will see the images reversed left to right.

Hard Clad Silica (Standard OH) Radius

Convex Mirrors. Ray Diagram for Convex Mirror

Revision problem. Chapter 18 problem 37 page 612. Suppose you point a pinhole camera at a 15m tall tree that is 75m away.

Raman spectroscopy Lecture

waves rays Consider rays of light from an object being reflected by a plane mirror (the rays are diverging): mirror object

FIFTH GRADE TECHNOLOGY

Waves Sound and Light

Light and its effects

Advancements in High Frequency, High Resolution Acoustic Micro Imaging for Thin Silicon Applications

With the advent of Gigabit Ethernet

Limiting factors in fiber optic transmissions

C) D) As object AB is moved from its present position toward the left, the size of the image produced A) decreases B) increases C) remains the same

LINOS distributors: Refer to Service Worldwide at the end of this catalog

INTERFERENCE OBJECTIVES PRE-LECTURE. Aims

Atomic Structure Ron Robertson

A down-under undergraduate optics and photonics laboratory

Integrated Photonic. Electronic. Optics. Optoelettronics. Integrated Photonic - G. Breglio L1. Quantum Mechanics Materials Science Nano/Bio-photonic

DIRECTIONAL FIBER OPTIC POWER MONITORS (TAPS/PHOTODIODES)

Acousto-optic modulator

Code number given on the right hand side of the question paper should be written on the title page of the answerbook by the candidate.

PHYSICS PAPER 1 (THEORY)

Development of Optical Wave Microphone Measuring Sound Waves with No Diaphragm

ME 472 Engineering Metrology

First let us consider microscopes. Human eyes are sensitive to radiation having wavelengths between

Theremino System Theremino Spectrometer Technology

Simulation of Gaussian Pulses Propagation Through Single Mode Optical Fiber Using MATLAB . MATLAB

Implementation of Short Reach (SR) and Very Short Reach (VSR) data links using POET DOES (Digital Opto- electronic Switch)

PHYS 222 Spring 2012 Final Exam. Closed books, notes, etc. No electronic device except a calculator.

The following terms are defined within the context of the fiber optic industry

PHOTOELECTRIC EFFECT AND DUAL NATURE OF MATTER AND RADIATIONS

Transcription:

Lecture 2: Ray theory transmission in optical fibers Nature of light Ray optics Refractive indices Snell s Law Total internal reflection Acceptance angle Numerical Aperture Optical fiber structures Reading: Senior 2.1 2.2 Keiser 2.1 2.2 Part of the lecture materials were adopted from powerpoint slides of Gerd Keiser s book 2010, Copyright The McGraw-Hill Companies, Inc. 1

A Brief Historical Note Beyond the middle ages: Newton (1642-1726) and Huygens (1629-1695) fight over nature of light 18 th 19 th centuries Fresnel, Young experimentally observe diffraction, defeat Newton s particle theory Maxwell formulates electro-magnetic equations, Hertz verifies antenna emission principle (1899) 20 th century Quantum theory explains wave-particle duality Invention of holography (1948) Invention of laser principle (1954) 1 st demonstration of laser (1960) Proposal of fiber optic communications (1966) 1 st demonstration of low-loss optical fibers (1970) Optical applications proliferate into the 21 st century: nonlinear optics, fiber optics, laser-based spectroscopy, computing, communications, fundamental science, medicine, biology, manufacturing, entertainment, (Let all flowers blossom!) 2

The nature of light 3

Light as waves, rays and photons Light is an electromagnetic wave. While light is a wave, it nevertheless travels along straight lines or rays, enabling us to analyze simple optical components (e.g. lenses and mirrors) and instruments in terms of geometrical optics. Light is also a stream of photons, discrete particles carrying packets of energy and momentum. (We will cover this after mid-term.) 4

Spherical waves and their associated rays e.g. a point source (like a stone dropped in water) Light is emitted in all directions as a spherical wave series of crests and troughs forming spherical wavefronts Distance between adjacent crests is the wavelength λ λ Rays lines perpendicular to wavefronts Wavefront - Surface of constant phase 5

Plane waves and their associated rays Spherical waves wavefronts are spherical (rays are perpendicular to the wavefronts and point radially outwards) Plane waves wavefronts are planes (rays are perpendicular to plane wavefronts in the direction of propagation) Spherical waves from a point source at a far distance from an observer appears as a plane wave Planes parallel to x-y plane Rays are collimated z 6

Ray Optics or Geometrical Optics ray λ Wavelength λ << size of the optical component wavefront In many applications of interest the wavelength λ of light is short compared with the relevant length scales of the optical components or system (e.g. mirrors, prisms, lenses). This branch of optics is referred to as Ray optics or Geometrical Optics, where energy of light is propagated along rays. The rays are perpendicular to the wavefronts. 7

Ray Optics: basic laws n i sin θ i = n t sin θ t 8

When a ray is incident on the interface between two dielectrics of different refractive indices (e.g. glass-air), reflection and refraction occur. normal low index n 2 (air) high index n 1 (glass) Snell s Law θ 2 θ 1 θ 1 refraction Plane of incidence plane that comprises the incident ray and the plane normal reflection The angle of incidence θ 1 and the angle of refraction θ 2 are related to each other, and to the refractive indices of the dielectrics by Snell s law of refraction: n 1 sin θ 1 = n 2 sin θ 2 9

Refractive index In any dielectric medium, the speed of light becomes v = c/n The factor n is the index of refraction (or refractive index) of the medium. e.g. For air and gases, v ~ c, so that n ~ 1. At optic frequencies, the refractive index of water is 1.33. e.g. Glass has many compositions, each with a slightly different n. An approximate refractive index of 1.5 is representative for the silica glasses used in fibers; more precise values for these glasses lie between ~1.45 and ~1.48. 10

Index of refraction for some materials Air 1.0 Water 1.33 Magnesium fluoride 1.38 Fused silica (SiO 2 ) 1.46 Sapphire (Al 2 O 3 ) 1.8 Lithium niobate (LiNbO 3 ) 2.25 Indium phosphide (InP) 3.21 Gallium arsenide (GaAs) 3.35 Silicon (Si) 3.48 Indium gallium arsenide phosphide (InGaAsP) 3.51 Aluminum gallium arsenide (AlGaAs) 3.6 Germanium (Ge) 4.0 *The index varies with a number of parameters, such as wavelength and temperature. 11

Critical angle For n 1 > n 2, the angle of refraction θ 2 is always greater than the angle of incidence θ 1. When the angle of refraction θ 2 is 90 o, the refracted ray emerges parallel to the interface between the media. This is the limiting case of refraction and the angle of incidence is known as the critical angle θ c. low index n 2 (air) θ 2 refraction sin θ c = n 2 / n 1 high index n 1 (glass) θ c θ c reflection 12

At angles of incidence θ > θ c, the light is totally reflected back into the incidence higher refractive index medium. This is known as total internal reflection. low index n 2 (air) Total internal reflection normal high index n 1 (glass) θ 1 > θ c TIR e.g. n 1 = 1.44, n 2 = 1, then θ c = sin -1 (1/1.44) = 44 o Total internal reflection: θ 1 > θ c 13

Light ray guiding condition Light ray that satisfies total internal reflection at the interface of the higher refractive index core and the lower refractive index cladding can be guided along an optical fiber. cladding n 2 core n 1 θ θ e.g. Under what condition will light be trapped inside the fiber core? n 1 = 1.46; n 2 = 1.44 θ > θ c θ c = sin -1 (n 2 /n 1 ) = sin -1 (1.44/1.46) = 80.5 o 14

Optical fiber structures A typical bare fiber consists of a core, a cladding and a polymer jacket (buffer coating). The polymer coating is the first line of mechanical protection. typically 250 µm including jacket for glass fibers The coating also reduces the internal reflection at the cladding, so light is only guided by the core. *In Lab1, we shall learn how to strip off the jacket to expose the cladding. This is necessary in order to cleave the fiber for a smooth 15 end face for light coupling.

Silica optical fibers Both the core and the cladding are made from a type of glass known as silica (SiO 2 ) which is almost transparent in the visible and near-ir. In the case that the refractive index changes in a step between the core and the cladding. This fiber structure is known as step-index fiber. The higher core refractive index (~ 0.3% higher) is typically obtained by doping the silica core with germanium dioxide (GeO 2 ). *In Lab 1, we should be able to see the step boundary between the core and the cladding, by end-illuminating the fiber and imaging the output-end cross-section using a microscope. 16

Numerical aperture An important characteristic of an optic system is its ability to collect light incident over a wide range of angles. f θ f The numerical aperture (NA) is defined as: NA = n o sin θ where n o is the refractive index of the medium between the lens and the image plane (e.g. a photodetector) and θ is the maximum acceptance angle. 17

The definition of numerical aperture applies to all light-collecting systems, including optical fibers. e.g. Light rays incident at angles outside the collection cone for a fiber will not propagate along the fiber (instead will attenuate rapidly). The numerical aperture is often measured in air, n o = 1 NA = sin θ A low NA indicates a small acceptance angle. Light coupling to a low-na optical system (e.g. fiber) is more difficult (alignment is more sensitive) and less efficient (some of the rays are outside the acceptance angle) than is coupling to a high-na optical system. 18

Acceptance angle Only rays with a sufficiently shallow grazing angle (i.e. with an angle to the normal greater than θ c ) at the core-cladding interface are transmitted by total internal reflection. A θ a n 1 n 2 n a α c θ c Ray A incident at the critical angle θ c at the core-cladding interface enters the fiber core at an angle θ a to the fiber axis, and is refracted at the air-core interface. 19

θ < θ a θ a n 1 n 2 n a α c θ c θ > θ a θ a n 1 n 2 n a α c θ c Any rays which are incident into the fiber core at an angle > θ a have an incident angle less than θ c at the core-cladding interface. These rays will NOT be totally internal reflected, thus eventually loss to radiation (at the cladding-jacket interface). 20

Light rays will be confined inside the fiber core if it is input-coupled at the fiber core end-face within the acceptance angle θ a. e.g. What is the fiber acceptance angle when n 1 = 1.46 and n 2 = 1.44? θ c = sin -1 (n 2 /n 1 ) = 80.5 o => α c = 90 o - θ c = 9.5 o using sin θ a = n 1 sin α c (taking n a = 1) θ a = sin -1 (n 1 sin α c ) = sin -1 (1.46 sin 9.5 o ) ~ 14 o => the acceptance angle θ a ~ 14 o 21

Fiber numerical aperture In fiber optics, we describe the fiber acceptance angle using Numerical Aperture (NA): NA = n a sin θ a = sin θ a = (n 1 2 - n 22 ) 1/2 θ a n 1 n 2 n a α c θ c We can relate the acceptance angle θ a and the refractive indices of the core n 1, cladding n 2 and air n a. 22

Assuming the end face at the fiber core is flat and normal to the fiber axis (when the fiber has a nice cleave), we consider the refraction at the air-core interface using Snell s law: At θ a : n a sin θ a = n 1 sin α c launching the light from air: (n a ~ 1) sin θ a = n 1 sin α c = n 1 cos θ c = n 1 (1 - sin 2 θ c ) 1/2 = n 1 (1 - n 22 /n 12 ) 1/2 = (n 1 2 - n 22 ) 1/2 23

Fiber NA therefore characterizes the fiber s ability to gather light from a source and guide the light. e.g. What is the fiber numerical aperture when n 1 = 1.46 and n 2 = 1.44? NA = sin θ a = (1.46 2-1.44 2 ) 1/2 = 0.24 It is a common practice to define a relative refractive index Δ as: Δ = (n 1 - n 2 ) / n 1 (n 1 ~ n 2 ) => NA = n 1 (2Δ) 1/2 i.e. Fiber NA only depends on n 1 and Δ. 24

Lens coupling to fiber end faces Microscope objective lens collimated laser beam θ a few mm focal length θ a θ a focusing objective lens fiber under test collecting objective lens By measuring the output couple ray cone angle, we can measure the fiber acceptance angle. (This is like part of Lab 1 but without using lenses.) 25

Large-NA fibers? Developing ways for fiber to collect light efficiently was an important early step in developing practical fiber optic communications (particularly in the 1970s) It seems logical to have optical fibers with NA as large as possible with as large Δ as possible in order to couple maximum amount of light into the fiber. Soon, we will find out that such large-na fibers tend to be multimode and are unsuitable for high-speed communications because of a limitation known as modal dispersion. Relatively small-na fibers are therefore used for high-speed optical communication systems. 26

Typical fiber NA Silica fibers for long-haul transmission are designed to have numerical apertures from about 0.1 to 0.3. The low NA makes coupling efficiency tend to be poor, but turns out to improve the fiber s bandwidth! (details later) Plastic, rather than glass, fibers are available for short-haul communications (e.g. within an automobile). These fibers are restricted to short lengths because of the relatively high attenuation in plastic materials. Plastic optical fibers (POFs) are designed to have high numerical apertures (typically, 0.4 0.5) to improve coupling efficiency, and so partially offset the high propagation losses and also enable alignment tolerance. 27

Limitation of ray optics For smaller fiber diameters that are only few times of the wavelength, geometrical optics approach becomes inadequate. This is because ray optics only describes the direction a plane wave component takes in the fiber, but does not take into account interference among such components. When interference phenomena are considered it is found that only rays with certain discrete characteristics propagate in the fiber core. Thus the fiber will only support a discrete number of guided modes. This becomes critical in small core diameter fibers which only support one (singlemode) or a few modes (multimode). Electromagnetic theory must be applied in this case. 28

Op#cal Fiber Type Comparisons Cladding 2a Core Cladding 2a Core n 1 n 1 n 2 Step-index fiber n 1 n 1 n 2 Graded-index fiber (a) Basic fiber types (b) Sample tailored profiles 29

Numerical Aperture Example 30