Attenuation: Bending Loss
|
|
|
- Kristian Randall
- 9 years ago
- Views:
Transcription
1 Consequences of Stress Optical Communications Systems Stress Bending Loss and Reliability in Optical Fibres Increased Loss in the Fibre Increased Probability of Failure Bending Loss in Fibres At a bend the propagation conditions alter and light rays which would propagate in a straight fibre are lost in the cladding. Macrobending, for example due to tight bends Attenuation: Bending Loss Microbending, due to microscopic fibre deformation, commonly caused by poor cable design Microbending is commonly caused by poor cable design Macrobending is commonly caused by poor installation or handling
2 Ray Diagram View of Macrobending Recall that macrobending is caused typically by poor handling or installation. Ray diagram view used with multimode fibre provides approximate explanation. At a sharp bends light rays which propagate by TIR on straight fibre are lost into the cladding. Result is optical power loss and thus attenuation. Mode Field View of Macrobending Mode field view is more accurate but harder to visualise, a must for singlemode In a fibre a wavefront perpendicular to the direction of travel must be maintained At a sharp bend the outer part of the mode field must travel faster than the inner part to maintain the wavefront Thus outer part of mode field may be forced to travel faster than the velocity of light in the material As this is not possible the energy in the outer part of the mode field is lost through radiation Cladding At a bend loss occurs where TIR fails Loss of a portion of the mode field at a sharp bend Core Power lost via radiation from cladding Mode field Macrobending in Multimode Fibre Critical radius is the bend radius below which loss increases rapidly Critical radius of curvature R c for multimode fibre is given approximately by: R c = 4π 2 3 n 1 λ 2 2 n 1 n 2 32 / Macrobending in Singlemode Fibre In a singlemode fibre as the spot size or mode field radius (MFR) increases the loss at a bend increases Qualitatively this is because a greater proportion of the mode field is lost if the MFR is larger Full analysis of loss is complex and beyond the scope of current discussions Low MFR = Lower Loss Larger MFR = Higher Loss Cladding Cladding Loss can be reduced by using larger refractive index differences For a given bend radius a larger NA will result in a lower R c and thus lower loss Core Power lost via radiation from cladding Core More power lost via radiation from cladding While R c is influenced by wavelength it is found that above R c the loss is not a a strong function of wavelength (multimode fibre only) Mode field Mode field
3 Quantifying Macrobending in Singlemode Fibre (I) Macrobending can be characterised in SM fibres by the empirical formula: Quantifying Macrobending in Singlemode Fibre (II) Influence of Mac# on loss in db/m at 1320 nm Loss = exp x D mm 1 λ x Mac# 3 db/m The Mac# (Macrobending Number) is a function of the MFR and the "effective fibre cutoff wavelength λ ce ": Mac# = 2 x MFR λ ce Quantifying Macrobending in Singlemode Fibre (III) The higher the operating wavelength above the cutoff wavelength the lower the V-value Quantifying Macrobending in Singlemode Fibre (IV) Influence of wavelength on loss in db/m for a Mac# of 9 A lower V-value means a larger MFR So for longer wavelengths the MFR and thus the loss increases Thus the loss due to bending can be expected to increase at 1550 nm relative to 1330 nm Typical Mac#'s in singlemode fibre are 8-9 and >10 in so called weakly guiding fibres
4 Microbending in Fibres Bending Loss Tests for Cables Minimum bend radius for a cable is typically 10 to 20 times the outer diameter of the cable. Microbending in Fibres More critical than macrobending Due to processing rather than mishandling. Loss can occur due to distortion of the core cladding interface, induced by manufacture or poor cable design Common value used in Cabling Standards is 15 times the cable diameter Fibre Reliability Fibre Reliability Fibre is intrinsically very reliable in a benign environment Few documented failure mechanisms Most failures are caused by poor cable choice, poor installation or accidental damage Intrinsic tensile fibre strength exceeds that of an equivalent steel wire Theoretical strength is 20 GPa (2,900,000 Psi) Due to surface defects such as cracks strength in practice is much lower, typically 5 GPa (725 kpsi) Fibre showing surface cracks and flaws (exaggerated) 1kPa = Psi
5 Fibre Proof Testing Crack and Flaw Growth Weak fibres are those with large surface defects after production All produced fibres are proof tested after production Typical proof test stress is three times normal service maximum Failure occurs when under stress a crack grows to some critical dimension Crack growth is depended on the so-called fatigue susceptibility parameter, "n" Larger values of n mean faster crack growth, shorter lifetime Stress accelerates crack growth Simplified proof test apparatus Moisture and high temperatures also accelerate crack growth and reduce lifetime Fibre Failure Examples (I) Minimum Time to Failure Photo shows an end view of a failed fibre Magnification is 2000x Failure caused by small flaw on the fibre surface Two distinct areas visible: Smooth area near flaw were crack propagated quickly but cleanly Jagged area were fibre failed completely Most important parameter for cable designers Assume cable is under a constant stress "s" The time to failure t f is given by: t = A s f A is constant and n is the fatigue susceptibility parameter (15 to 50 for glass, typically 20) As stress grows the time to failure drops rapidly Problem: For n = 20 develop an argument to show that a stress "s" applied for 1 second is equivalent to a stress of 0.35s applied for 40 years -n
6 Typical industry test Higher reliability tests Proof test stress 50 kpsi (0.35 GPa) 100 kpsi (0.7 GPa) Proof Testing Results Maximum flaw size Predicted lifetime at maximum service stress 2.3 micron 30 Years 0.7 micron >>100 Years Higher proof test stress means longer lifetime But higher stress means more fibres are rejected, lower yield/higher cost Lifetimes assume no moisture ingress and normal temperatures Effect of Moisture Effect of Temperature Effect of Moisture and Temperature Moisture does not penetrate silica glass, so it does not affect propagation Presence of water as OH ions on the fibre surface accelerates crack growth This process is called stress corrosion Moisture protection is important in fibre cables At 90 degrees centigrade the fatigue susceptibility parameter is significantly higher than that at 25 degrees Fibre strength decreases by 25% at 90 degrees compared to 25 degrees High tensile strength and zero moisture ingress cables are essential at elevated temperatures
Fiber Optics: Fiber Basics
Photonics Technical Note # 21 Fiber Optics Fiber Optics: Fiber Basics Optical fibers are circular dielectric wave-guides that can transport optical energy and information. They have a central core surrounded
Fiber Optic Specifications
Fiber Optic Specifications All Fiber Optic shall be Corning Altos Single Mode OS1 Outdoor Loose Tube Gel Free Cable Corning Fiber Products only will be accepted and no substitutions or alternates will
The Mechanical Properties of Glass
The Mechanical Properties of Glass Theoretical strength, practical strength, fatigue, flaws, toughness, chemical processes Glass Engineering 150:312 Professor Richard Lehman Department of Ceramics and
Module 13 : Measurements on Fiber Optic Systems
Module 13 : Measurements on Fiber Optic Systems Lecture : Measurements on Fiber Optic Systems Objectives In this lecture you will learn the following Measurements on Fiber Optic Systems Attenuation (Loss)
What are Fibre Optics?
Fibre Optics Fibre Optics? Fibre optics (optical fibres) are the guiding channels through which light energy propagates. These are long, thin strands of very pure glass about the diameter of a human hair
OFS AllWave Zero Water Peak (ZWP) single-mode
The New Standard for Single-Mode Fiber Product Description OFS AllWave Zero Water Peak (ZWP) single-mode optical fiber is the industry s first full-spectrum fiber designed for optical transmission systems
INTERNATIONAL TELECOMMUNICATION UNION #/.3425#4)/. ).34!,,!4)/.!.$ 02/4%#4)/. /& #!",%3!.$ /4(%2 %,%-%.43 /& /543)$% 0,!.43
INTERNATIONAL TELECOMMUNICATION UNION )454, TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU #/.3425#4)/. ).34!,,!4)/.!.$ 02/4%#4)/. /& #!",%3!.$ /4(%2 %,%-%.43 /& /543)$% 0,!.43 /04)#!, &)"2% #!",%3 &/2
INTERNATIONAL TELECOMMUNICATION UNION SERIES L: CONSTRUCTION, INSTALLATION AND PROTECTION OF CABLES AND OTHER ELEMENTS OF OUTSIDE PLANT
INTERNATIONAL TELECOMMUNICATION UNION )454, TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU (10/96) SERIES L: CONSTRUCTION, INSTALLATION AND PROTECTION OF CABLES AND OTHER ELEMENTS OF OUTSIDE PLANT /PTICAL
200-Micron Single-Mode Fiber Enables New Cable Designs Copyright 2014 OFS FITEL, LLC
200-Micron Single-Mode Fiber Enables New Cable Designs Copyright 2014 OFS FITEL, LLC Since single-mode optical fiber was first introduced in the early 1980 s, little has changed in its basic geometric
Lecture 3: Fibre Optics
Lecture 3: Fibre Optics Lecture aims to explain: 1. Fibre applications in telecommunications 2. Principle of operation 3. Single- and multi-mode fibres 4. Light losses in fibres Fibre is a transparent
ESPECIFICACIÓN DE PRODUCTO
ESPECIFICACIÓN DE PRODUCTO CABLE DE FIBRA ÓPTICA MONO MODO All Dielectric Self Supporting Single Mode Optical Fiber Cable Product Name: All Dielectric Self Supporting Single Mode Optical Fiber Cable Product
GLOBAL COLLEGE OF ENGINEERING &TECHNOLOGY: YSR DIST. Unit VII Fiber Optics Engineering Physics
Introduction Fiber optics deals with the light propagation through thin glass fibers. Fiber optics plays an important role in the field of communication to transmit voice, television and digital data signals
Explanation of Reflection Features in Optical Fiber as Sometimes Observed in OTDR Measurement Traces
Explanation of Reflection Features in Optical Fiber as Sometimes Observed in OTDR Measurement Traces WP1281 Issued: November 2015 Supersedes: 2012 Author: Dr. Russell Ellis ISO 9001 Registered Background
Radiation-Resistant Single-Mode Optical Fibers
Radiation-Resistant Single-Mode Optical Fibers Kazuhiko Aikawa, 1 Katsuaki Izoe, 1 Naoki Shamoto, 1 Manabu Kudoh, 1 and Takashi Tsumanuma 1 Loss of silica-based optical fibers increases when they are exposed
The Conversion Technology Experts. Fiber Optics Basics
The Conversion Technology Experts Fiber Optics Basics Introduction Fiber optic technology is simply the use of light to transmit data. The general use of fiber optics did not begin until the 1970s. Robert
Removing the Mystery from OTDR Measurements. Keith Foord Product Manager Greenlee Communications
Removing the Mystery from OTDR Measurements Keith Foord Product Manager Greenlee Communications Why an OTDR? Terminology Theory Standards Key specifications Trade-offs Cleaning and Inspection Measurements
Fiber optic communication
Fiber optic communication Fiber optic communication Outline Introduction Properties of single- and multi-mode fiber Optical fiber manufacture Optical network concepts Robert R. McLeod, University of Colorado
Optical Fibers Fiber Optic Cables Indoor/Outdoor
presents Optical Fibers Fiber Optic Cables Indoor/Outdoor Content Optical fiber function, types optical effects applications production of optical fibre Cable - general types Indoor Indoor / outdoor Outdoor
12 Fibre MTP Jumper, MTP (non-pinned) to MTP (pinned)
1 1 9.41 115 0 Patch cables are used 143 12 Fibre MTP Jumper, MTP (non-pinned) to Patch cables are used for non -permanent connections between patch panels, transmission equipment, etc. Pre -assembled
Different Types of Dispersions in an Optical Fiber
International Journal of Scientific and Research Publications, Volume 2, Issue 12, December 2012 1 Different Types of Dispersions in an Optical Fiber N.Ravi Teja, M.Aneesh Babu, T.R.S.Prasad, T.Ravi B.tech
CORNING CABLE SYSTEMS GENERIC SPECIFICATION FOR TIGHT BUFFER OPTICAL FIBER CABLES FOR INTER- AND INTRABUILDING APPLICATIONS.
CORNING CABLE SYSTEMS GENERIC SPECIFICATION FOR TIGHT BUFFER OPTICAL FIBER CABLES FOR INTER- AND INTRABUILDING APPLICATIONS September 2006 Revision 7 Corning Cable Systems reserves the right to update
OPTICAL FIBER CABLES
OPTICAL FIBER CABLES CONTENTS INTRODUCTION QUALITY ASSURANCE RECOMMENDED ORDERING PARAMETERS GENERALITIES :. Advantage. General Description.. Construction.. Principle TYPICAL SPECIFICATIONS OF OPTICAL
EXPERIMENT O-6. Michelson Interferometer. Abstract. References. Pre-Lab
EXPERIMENT O-6 Michelson Interferometer Abstract A Michelson interferometer, constructed by the student, is used to measure the wavelength of He-Ne laser light and the index of refraction of a flat transparent
A-LEVEL PHYSICS A. PHYA2 mechanics, materials and waves Mark scheme. 2450 June 2014. Version: 1.0 Final
A-LEVEL PHYSICS A PHYA2 mechanics, materials and waves Mark scheme 2450 June 2014 Version: 1.0 Final Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions,
An Overview of Macrobending and Microbending of Optical Fibers
An Overview of Macrobending and Microbending of Optical Fibers John A. Jay WP1212 Issued: December 2010 Introduction Properties of Optical Fiber Macrobending Macrobending Background Fiber parameters &
WOOD WEAR TESTING USING TRIBOMETER
WOOD WEAR TESTING USING TRIBOMETER Prepared by Duanjie Li, PhD 6 Morgan, Ste156, Irvine CA 92618 P: 949.461.9292 F: 949.461.9232 nanovea.com Today's standard for tomorrow's materials. 2015 NANOVEA INTRO
DOUBLE STAINLESS STEEL TUBE DTS FIBER OPTIC CABLE FTSF-FSUTS(DTS)
DOUBLE STAINLESS STEEL TUBE DTS FIBER OPTIC CABLE FTSF-FSUTS(DTS) Double Jelly Filled Stainless Steel Tube General Description This document specifies non armour sensing fiber cable with double stainless
GOWN. Central Loose Tube Cables Outdoor, Steel Wire Armor (SWA) A-DQ(ZN)2YB2Y Full Rodent Protection. Ordering Information.
GOWN Central Loose Tube Cables Outdoor, Steel Wire Armor (SWA) A-DQ(ZN)2YB2Y Full Rodent Protection Ordering Information Belden European Part Numbers Fibre type / count 2 4 6 8 12 16 24 62.5/125-OM1 GOWN102
ELECTRICAL POWER OVER FIBER OPTICS
International Journal on Technical and Physical Problems of Engineering (IJTPE) Published by International Organization on TPE (IOTPE) ISSN 077-358 IJTPE Journal www.iotpe.com [email protected] December
SERIES G: TRANSMISSION SYSTEMS AND MEDIA, DIGITAL SYSTEMS AND NETWORKS Transmission media and optical systems characteristics Optical fibre cables
International Telecommunication Union ITU-T G.657 TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU (11/2009) SERIES G: TRANSMISSION SYSTEMS AND MEDIA, DIGITAL SYSTEMS AND NETWORKS Transmission media and
Effect of ageing conditions on performance properties of selected commercial fibers
Effect of ageing conditions on performance properties of selected commercial fibers Pratik Shah, Long Han, Ed Murphy, Steve Schmid, Daniel Peterson DSM Functional Materials, St. Charles St., Elgin, IL
FIBRA OPTICA INTERIOR/EXTERIOR TIGHT BUFFER
FIBRA OPTICA INTERIOR/EXTERIOR TIGHT BUFFER 1. Applications - Be suitable for the cable of communication,communication device pigtail and the movable connection wire jumper wire - Short and medium distance,
A-level PHYSICS (7408/1)
SPECIMEN MATERIAL A-level PHYSICS (7408/1) Paper 1 Specimen 2014 Morning Time allowed: 2 hours Materials For this paper you must have: a pencil a ruler a calculator a data and formulae booklet. Instructions
Optical fiber basics in a nutshell
Optical fiber basics in a nutshell Nuphar Lipkin, Lambda Crossing, Israel Talk outline (a taste of): (Late 70-s: 1 st phone lines, 1988: 1 st TAT, now: FTTH) Optical communication systems- basic concepts,
INTRODUCTION FIGURE 1 1. Cosmic Rays. Gamma Rays. X-Rays. Ultraviolet Violet Blue Green Yellow Orange Red Infrared. Ultraviolet.
INTRODUCTION Fibre optics behave quite different to metal cables. The concept of information transmission is the same though. We need to take a "carrier" signal, identify a signal parameter we can modulate,
Refraction of Light at a Plane Surface. Object: To study the refraction of light from water into air, at a plane surface.
Refraction of Light at a Plane Surface Object: To study the refraction of light from water into air, at a plane surface. Apparatus: Refraction tank, 6.3 V power supply. Theory: The travel of light waves
SINGLE MODE OPTICAL FIBER FTTH CABLE
Specification No: RE650/660-- FTTH CABLE DEC 2001 SINGLE MODE OPTICAL FIBER FTTH CABLE Renka Corporation Two Corporation Way Peabody, MA 01960 USA 1.0 INTRODUCTION TO RENKA SINGLE MODE OPTICAL FIBER FTTH
EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES OUTCOME 2 ENGINEERING COMPONENTS TUTORIAL 1 STRUCTURAL MEMBERS
ENGINEERING COMPONENTS EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES OUTCOME ENGINEERING COMPONENTS TUTORIAL 1 STRUCTURAL MEMBERS Structural members: struts and ties; direct stress and strain,
ALL-DIELECTRIC LOOSE TUBE FIBER OPTIC CABLE
ALL-DIELECTRIC LOOSE TUBE FIBER OPTIC CABLE PRODUCT SPECIFICATIONS City of Denver March 2006 Notice: Every effort has been made to ensure that the information contained in this document is complete and
3. Test Methods for Evaluation of ESCR of Plastics
3. Test Methods for Evaluation of ESCR of Plastics A common laboratory request for ESC-prone polymers is to check ESCR performance for quality control, competitive product evaluations, and research and
EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQF LEVEL 3 OUTCOME 1 - LOADING SYSTEMS TUTORIAL 3 LOADED COMPONENTS
EDEXCEL NATIONAL CERTIICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQ LEVEL 3 OUTCOME 1 - LOADING SYSTEMS TUTORIAL 3 LOADED COMPONENTS 1. Be able to determine the effects of loading in static engineering
Items Supplied. Frequency. Designation Description / Delivery Unit Order Number
Fiber Optic Cleaver D6 For Single- and Multimode Fibers Diamond blade for highest cleave quality and long life (typically > 10,000 cleaves) Fiber cleave length: 3.5 to 15 mm Fiber diameter: 125 µm nominal
Hard Clad Silica (Standard OH) Radius
guide Industries DESCRIPTION With numerical aperture (N.A.) of 0.39 and a hard polymer cladding that allows a high core-to-clad ratio, the is the low cost fiber of choice. The pure fused silica (SiO 2
Diffraction of a Circular Aperture
Diffraction of a Circular Aperture Diffraction can be understood by considering the wave nature of light. Huygen's principle, illustrated in the image below, states that each point on a propagating wavefront
Corning Specialty Fiber. Product Information Sheets
Corning Specialty Fiber Product Information Sheets Table of Contents High Bend / Bend Insensitive Fibers Corning HI 780 & 780 C Specialty Optical Fibers 1 Corning HI 980 & RC HI 980 Specialty Optical Fibers
SINGLEMODE OR MULTIMODE FIBER OPTIC PATCHCORDS
Features: SINGLEMODE OR MULTIMODE FIBER OPTIC PATCHCORDS Low insertion loss < 0.2 db Excellent repeatability FC/PC, SC, ST, LC, MU, E2000 termination available Custom ferrule termination available Designed
Fibre Optic Indoor/Outdoor Cable
Volition TM Fibre Optic Indoor/Outdoor Cable Tough enough to take it. Easy to handle. The Volition Network Solutions Indoor/Outdoor Fibre Optic Cable from 3M includes horizontal and backbone cable with
waves rays Consider rays of light from an object being reflected by a plane mirror (the rays are diverging): mirror object
PHYS1000 Optics 1 Optics Light and its interaction with lenses and mirrors. We assume that we can ignore the wave properties of light. waves rays We represent the light as rays, and ignore diffraction.
Refractive Index Measurement Principle
Refractive Index Measurement Principle Refractive index measurement principle Introduction Detection of liquid concentrations by optical means was already known in antiquity. The law of refraction was
Measuring of optical output and attenuation
Measuring of optical output and attenuation THEORY Measuring of optical output is the fundamental part of measuring in optoelectronics. The importance of an optical power meter can be compared to an ammeter
CERAMICS: Properties 2
CERAMICS: Properties 2 (Brittle Fracture Analysis) S.C. BAYNE, 1 J.Y. Thompson 2 1 University of Michigan School of Dentistry, Ann Arbor, MI 48109-1078 [email protected] 2 Nova Southeastern College of Dental
The Suitability of CRA Lined Pipes for Flowlines Susceptible to Lateral Buckling SUT Global Pipeline Buckling Symposium, 23 24 February 2011
The Suitability of CRA Lined Pipes for Flowlines Susceptible to Lateral Buckling SUT Global Pipeline Buckling Symposium, 23 24 February 2011 Duncan Wilmot, Technical Manager, Cladtek International, Australia
How To Use The Visifault Visual Fault Locator
VisiFault Visual Fault Locator Instruction Sheet The VisiFault Visual Fault Locator (VFL) is a visible light source that helps you trace optical fibers, check fiber continuity, and find faults such as
Optical Power Meter. Specification & User Manual
Optical Power Meter Specification & User Manual Page 1 of 9 Copyright 2011 reserves the right to modify specifications without prior notice Table of Contents 1. Description and Features.......3 2. Specification......4
Signal directionality Lower frequency signals are omnidirectional Higher frequency signals can be focused in a directional beam
Transmission Media Transmission medium Physical path between transmitter and receiver May be guided (wired) or unguided (wireless) Communication achieved by using em waves Characteristics and quality of
CH 6: Fatigue Failure Resulting from Variable Loading
CH 6: Fatigue Failure Resulting from Variable Loading Some machine elements are subjected to static loads and for such elements static failure theories are used to predict failure (yielding or fracture).
E/M Experiment: Electrons in a Magnetic Field.
E/M Experiment: Electrons in a Magnetic Field. PRE-LAB You will be doing this experiment before we cover the relevant material in class. But there are only two fundamental concepts that you need to understand.
Discontinued. Volition. Fiber Optic Cable. 3Innovation
Volition Fiber Optic Cable Tough enough to take it. Easy to handle. The Volition Network Solution from 3M includes horizontal and backbone cable with 62.5/125 µm and 50/125 µm multimode fiber, and 9/125
Hardened Concrete. Lecture No. 14
Hardened Concrete Lecture No. 14 Strength of Concrete Strength of concrete is commonly considered its most valuable property, although in many practical cases, other characteristics, such as durability
Trunk Cables. www.teletronik.com
Trunk Cables www.teletronik.com Brief Introduction Teletronik TC series coaxial cable was developed to meet the increasing demand of tomorrow's broadband networks. TC series cable has the highest reliability
PENETRATION OF BITUMINOUS MATERIALS
NANYANG TECHNOLOGICAL UNIVERSITY School of Civil and Structural Engineering LABORATORY - PAVEMENT MATERIALS PENETRATION OF BITUMINOUS MATERIALS OBJECTIVES To examine the consistency of a sample of bitumen
Lab 4: Magnetic Force on Electrons
Lab 4: Magnetic Force on Electrons Introduction: Forces on particles are not limited to gravity and electricity. Magnetic forces also exist. This magnetic force is known as the Lorentz force and it is
Figure 1: Typical S-N Curves
Stress-Life Diagram (S-N Diagram) The basis of the Stress-Life method is the Wohler S-N diagram, shown schematically for two materials in Figure 1. The S-N diagram plots nominal stress amplitude S versus
AP Physics B Ch. 23 and Ch. 24 Geometric Optics and Wave Nature of Light
AP Physics B Ch. 23 and Ch. 24 Geometric Optics and Wave Nature of Light Name: Period: Date: MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Reflection,
9. TIME DEPENDENT BEHAVIOUR: CYCLIC FATIGUE
9. TIME DEPENDENT BEHAVIOUR: CYCLIC FATIGUE A machine part or structure will, if improperly designed and subjected to a repeated reversal or removal of an applied load, fail at a stress much lower than
Geometric Optics Converging Lenses and Mirrors Physics Lab IV
Objective Geometric Optics Converging Lenses and Mirrors Physics Lab IV In this set of lab exercises, the basic properties geometric optics concerning converging lenses and mirrors will be explored. The
TIE-31: Mechanical and thermal properties of optical glass
PAGE 1/10 1 Density The density of optical glass varies from 239 for N-BK10 to 603 for SF66 In most cases glasses with higher densities also have higher refractive indices (eg SF type glasses) The density
INTERNATIONAL TELECOMMUNICATION UNION SERIES L: CONSTRUCTION, INSTALLATION AND PROTECTION OF CABLES AND OTHER ELEMENTS OF OUTSIDE PLANT
INTERNATIONAL TELECOMMUNICATION UNION ITU-T L.87 TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU (07/2010) SERIES L: CONSTRUCTION, INSTALLATION AND PROTECTION OF CABLES AND OTHER ELEMENTS OF OUTSIDE PLANT
ITU-T L.87. Optical fibre cables for drop applications
International Telecommunication Union ITU-T L.87 TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU (07/2010) SERIES L: CONSTRUCTION, INSTALLATION AND PROTECTION OF CABLES AND OTHER ELEMENTS OF OUTSIDE PLANT
Lecture 14. Chapter 8-1
Lecture 14 Fatigue & Creep in Engineering Materials (Chapter 8) Chapter 8-1 Fatigue Fatigue = failure under applied cyclic stress. specimen compression on top bearing bearing motor counter flex coupling
BOTDR Measurement Techniques and Brillouin Backscatter Characteristics of Corning Single-Mode Optical Fibers
BOTDR Measurement Techniques and Brillouin Backscatter Characteristics of Corning Single-Mode Optical Fibers WP4259 Issued: January 2015 Brillouin Optical Time Domain Reflectometry The Brillouin Optical
Structural Integrity Analysis
Structural Integrity Analysis 1. STRESS CONCENTRATION Igor Kokcharov 1.1 STRESSES AND CONCENTRATORS 1.1.1 Stress An applied external force F causes inner forces in the carrying structure. Inner forces
CHARACTERISATION OF A RESONANT BENDING FATIGUE TEST SETUP FOR PIPES
CHARACTERISATION OF A RESONANT BENDING FATIGUE TEST SETUP FOR PIPES J. Claeys 1, J. Van Wittenberghe 2, P. De Baets 2 and W. De Waele 2 2 1 Ghent University, Belgium Ghent University, laboratory Soete,
Fiber Optic Cordage. Interconnect A Furukawa Company. Product Description. Why OFS Interconnect Cordage?
Fiber Optic Cordage Interconnect A Furukawa Company Durable, Flexible Cordage Surpasses Industry Strength Standards for Interconnect Cables Product Description OFS Fiber Optic Interconnect Cordage offers
104 Practice Exam 2-3/21/02
104 Practice Exam 2-3/21/02 1. Two electrons are located in a region of space where the magnetic field is zero. Electron A is at rest; and electron B is moving westward with a constant velocity. A non-zero
Microbend evaluation of selected G652D & G657 fibers and ribbons before cabling
Microbend evaluation of selected G652D & G657 fibers and ribbons before cabling 1 Dr. Bertil Arvidsson, 2 Pratik Shah, 2 Steven R. Schmid, 3 Robert Alexandersson, 3 Anders Björk 1 Fiberson AB, Hudiksvall,
First let us consider microscopes. Human eyes are sensitive to radiation having wavelengths between
Optical Differences Between Telescopes and Microscopes Robert R. Pavlis, Girard, Kansas USA icroscopes and telescopes are optical instruments that are designed to permit observation of objects and details
Best Practices for Ensuring Fiber Optic System Performance. David Zambrano
Best Practices for Ensuring Fiber Optic System Performance David Zambrano Inspect Before You Connect Optical Connectors in our Networks Contamination and Signal Performance Sources of Contamination Process
THE COMPOUND MICROSCOPE
THE COMPOUND MICROSCOPE In microbiology, the microscope plays an important role in allowing us to see tiny objects that are normally invisible to the naked eye. It is essential for students to learn how
Pressure drop in pipes...
Pressure drop in pipes... PRESSURE DROP CALCULATIONS Pressure drop or head loss, occurs in all piping systems because of elevation changes, turbulence caused by abrupt changes in direction, and friction
Four Ways To Test Installed Fiber Optic Cables And How The Results Will Differ With Each Method
Four Ways To Test Installed Fiber Optic Cables And How The Results Will Differ With Each Method Jim Hayes, VDV Works, LLC Abstract: We often are asked questions about testing installed fiber optic cables
Optical Standards. John Nichol BSc MSc
Optical Standards John Nichol BSc MSc The following notes are presented to explain: Spherical Aberration The Airy Disk Peak to Valley, RMS and Strehl Ratio Standards of Optics produced by Nichol Optical
Optical Fiber Strength, Fatigue and Handleability After Aging in a Cable
Optical Fiber Strength, Fatigue and Handleability After Aging in a Cable Anurag Dwivedi, G. Scott Glaesemann TR3290 Issued: January 2011 Introduction Handleability of optical fiber pertains to the ability
Fiber Selection and Standards Guide for Premises Networks
Fiber Selection and Standards Guide for Premises Networks WP1160 Issued: November 2013 Supersedes: November 2012 Authors: Carl Roberts and Dr. Russell Ellis Introduction There are several main types of
High-Concentration Submicron Particle Size Distribution by Dynamic Light Scattering
High-Concentration Submicron Particle Size Distribution by Dynamic Light Scattering Power spectrum development with heterodyne technology advances biotechnology and nanotechnology measurements. M. N. Trainer
home site map help ECMS Project: 70197 Standard / Federal Oversight Advertised
Page 1 of 6 S PECIAL PROVISION home site map help ECMS BP ADMIN Project: 70197 Standard / Federal Oversight Advertised Short Description: US 422 Schuylkill River Bridge - D/B: Retaining Wall; ITS Devices;
SECTION 680 FIBER OPTIC CABLE DESCRIPTION
680 SECTION 680 FIBER OPTIC CABLE DESCRIPTION 680.01.01 GENERAL A. The work under this section shall consist of furnishing, installing, and testing all underground and outdoor fiber optic cables. B. All
Heat-treated Glass. GUARDIAN A Company of Vision PATTERNED GLASS HORTICULTURAL GLASS SUN PERFORMANCE GLASS VISION GLASS SILKSCREENED GLASS THIN GLASS
Heat-treated Heat-treated Glass Glass Heat-treated Glass Heat-treated Heat-treated Glass Glass REFLECTIVE GLASS LAMINATED GLASS TEMPERED GLASS FLOAT GLASS MIRRORS LOW-E GLASS SUNGUARD PATTERNED GLASS HORTICULTURAL
Optical Fiber. Smart cabling: constructing a cost-effective, reliable and upgradeable cable infrastructure for your enterprise network
Optical Fiber Smart cabling: constructing a cost-effective, reliable and upgradeable cable infrastructure for your enterprise network Carl Roberts [email protected] Cabling considerations for DCs and
Naue GmbH&Co.KG. Quality Control and. Quality Assurance. Manual. For Geomembranes
Naue GmbH&Co.KG Quality Control and Quality Assurance Manual For Geomembranes July 2004 V.O TABLE OF CONTENTS 1. Introduction 2. Quality Assurance and Control 2.1 General 2.2 Quality management acc. to
FIBER OPTIC SYSTEM TEST PROCEDURES
FIBER OPTIC SYSTEM TEST PROCEDURES Data Systems Performance Engineering LLC performs three tests in order to determine fiber optic cable adequacy. The order in which the tests are to be performed is not
ITU-T G.652. Characteristics of a single-mode optical fibre cable
INTERNATIONAL TELECOMMUNICATION UNION ITU-T G.652 TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU (10/2000) SERIES G: TRANSMISSION SYSTEMS AND MEDIA, DIGITAL SYSTEMS AND NETWORKS Transmission media characteristics
PAGE 2. Figure 1: Difference between PWL ins and SPL 1m
PAGE 1 Pipe noise J.H. Granneman and R.P.M. Jansen, Peutz Consulting Engineers, The Netherlands, emphasise the need for an adequate pipe noise control procedure, with reference to the design phase, insulation
North American Stainless
North American Stainless Long Products Stainless Steel Grade Sheet 2205 UNS S2205 EN 1.4462 2304 UNS S2304 EN 1.4362 INTRODUCTION Types 2205 and 2304 are duplex stainless steel grades with a microstructure,
Measurement of Charge-to-Mass (e/m) Ratio for the Electron
Measurement of Charge-to-Mass (e/m) Ratio for the Electron Experiment objectives: measure the ratio of the electron charge-to-mass ratio e/m by studying the electron trajectories in a uniform magnetic
Objectives. Experimentally determine the yield strength, tensile strength, and modules of elasticity and ductility of given materials.
Lab 3 Tension Test Objectives Concepts Background Experimental Procedure Report Requirements Discussion Objectives Experimentally determine the yield strength, tensile strength, and modules of elasticity
Environmental Stress Crack Resistance of Polyethylene Pipe Materials
Environmental Stress Crack Resistance of Polyethylene Pipe Materials ROBERT B. TAMPA, Product Development and Service Engineer* Abstract Slow crack growth is a phenomenon that can occur in most plastics.
