Circuits. PHY2049: Chapter 27 1

Similar documents
Circuits. The light bulbs in the circuits below are identical. Which configuration produces more light? (a) circuit I (b) circuit II (c) both the same

Chapter 7 Direct-Current Circuits

CHAPTER 28 ELECTRIC CIRCUITS

People s Physics Book

Chapter 7. DC Circuits

Solutions to Bulb questions

= (0.400 A) (4.80 V) = 1.92 W = (0.400 A) (7.20 V) = 2.88 W

Chapter 13: Electric Circuits

Student Exploration: Circuits

AP1 Electricity. 1. A student wearing shoes stands on a tile floor. The students shoes do not fall into the tile floor due to

Experiment #5, Series and Parallel Circuits, Kirchhoff s Laws

Problem Solving 8: RC and LR Circuits

Direct-Current Circuits

Exercises on Voltage, Capacitance and Circuits. A d = ( ) π(0.05)2 = F

Chapter 19. Electric Circuits

W03 Analysis of DC Circuits. Yrd. Doç. Dr. Aytaç Gören

Chapter 5. Parallel Circuits ISU EE. C.Y. Lee

Electrical Fundamentals Module 3: Parallel Circuits

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

PHYSICS 111 LABORATORY Experiment #3 Current, Voltage and Resistance in Series and Parallel Circuits

Lab 3 - DC Circuits and Ohm s Law

Experiment NO.3 Series and parallel connection

Light Bulbs in Parallel Circuits

STUDY MATERIAL FOR CLASS Physics- CURRENT ELECTRICITY. The flow of electric charges in a particular direction constitutes electric current.

AP Physics Electricity and Magnetism #4 Electrical Circuits, Kirchoff s Rules

Unit: Charge Differentiated Task Light it Up!

ELECTRICAL CIRCUITS. Electrical Circuits

Resistors in Series and Parallel

Parallel and Series Resistors, Kirchoff s Law

CURRENT ELECTRICITY - I

Introduction to Electricity & Magnetism. Dr Lisa Jardine-Wright Cavendish Laboratory

Series and Parallel Circuits

Series and Parallel Circuits

PS-6.2 Explain the factors that determine potential and kinetic energy and the transformation of one to the other.

Objectives 200 CHAPTER 4 RESISTANCE

Σ I in = Σ I out E = IR 1 + IR 2 FXA 2008 KIRCHHOFF S LAWS 1. Candidates should be able to : LAW 1 (K1)

TECH TIP # 37 SOLVING SERIES/PARALLEL CIRCUITS THREE LAWS --- SERIES CIRCUITS LAW # THE SAME CURRENT FLOWS THROUGH ALL PARTS OF THE CIRCUIT

Induced voltages and Inductance Faraday s Law

STUDY GUIDE: ELECTRICITY AND MAGNETISM

Physics, Chapter 27: Direct-Current Circuits

Lecture Notes: ECS 203 Basic Electrical Engineering Semester 1/2010. Dr.Prapun Suksompong 1 June 16, 2010

CLASS TEST GRADE 11. PHYSICAL SCIENCES: PHYSICS Test 3: Electricity and magnetism

Tutorial 12 Solutions

Series-Parallel Circuits. Objectives

Direction of Induced Current

Temperature coefficient of resistivity

13.10: How Series and Parallel Circuits Differ pg. 571

Experiment: Series and Parallel Circuits

Electric Current and Cell Membranes

Current, Resistance and Electromotive Force. Young and Freedman Chapter 25

Ohm's Law and Circuits

Electrical Resistance Resistance (R)

7. What is the current in a circuit if 15 coulombs of electric charge move past a given point in 3 seconds? (1) 5 A (3) 18 A (2) 12 A (4) 45 A

Eðlisfræði 2, vor 2007

Circuit symbol. Each of the cells has a potential difference of 1.5 volts. Figure 1. Use the correct answer from the box to complete the sentence.

Slide 1 / 26. Inductance by Bryan Pflueger

Which Bulb Burns Brighter? One is a 60-watt bulb and the other a 100-watt bulb, and they are connected in an electric circuit.

SERIES-PARALLEL DC CIRCUITS

DIRECT CURRENT GENERATORS

Series and Parallel Circuits

Experiment #3, Ohm s Law

Resistors in Series and Parallel

Resistors in Series and Parallel Circuits

OHM S LAW AND RESISTANCE

Section B: Electricity

Parallel Circuits. Objectives After studying this chapter, you will be able to answer these questions: 1. How are electrical components connected

Maximum value. resistance. 1. Connect the Current Probe to Channel 1 and the Differential Voltage Probe to Channel 2 of the interface.

2 A bank account for electricity II: flows and taxes

Lesson Plan. Parallel Resistive Circuits Part 1 Electronics

Georgia Performance Standards Framework for Physical Science 8 th Grade. Powering Satellites

The Time Constant of an RC Circuit

General Physics (PHY 2140)

CURRENT ELECTRICITY INTRODUCTION TO RESISTANCE, CAPACITANCE AND INDUCTANCE

Series and Parallel Resistive Circuits

17.4 Series and Parallel Circuits

AP2 Magnetism. (c) Explain why the magnetic field does no work on the particle as it moves in its circular path.

Physics 2102 Lecture 19. Physics 2102

( )( 10!12 ( 0.01) 2 2 = 624 ( ) Exam 1 Solutions. Phy 2049 Fall 2011

TEACHER S CLUB EXAMS GRADE 11. PHYSICAL SCIENCES: PHYSICS Paper 1

Unit 4: Electricity (Part 2)


Experiment 4 ~ Resistors in Series & Parallel

Kirchhoff's Current Law (KCL)

I = V/r P = VI. I = P/V = 100 W / 6 V = amps. What would happen if you use a 12-volt battery and a 12-volt light bulb to get 100 watts of power?

Ampere's Law. Introduction. times the current enclosed in that loop: Ampere's Law states that the line integral of B and dl over a closed path is 0

ELECTRICAL FUNDAMENTALS

DC Circuits (Combination of resistances)

The purposes of this experiment are to test Faraday's Law qualitatively and to test Lenz's Law.

RC Circuits and The Oscilloscope Physics Lab X

Method 1: 30x Method 2: 15

Lab E1: Introduction to Circuits

Figure 1. Experiment 3 The students construct the circuit shown in Figure 2.

ElectroMagnetic Induction. AP Physics B

Energy Transfer in a Flash-Light. (Teacher Copy)

Kirchhoff s Laws Physics Lab IX

Solar Energy Discovery Lab

Lab 2: Resistance, Current, and Voltage

Example: Determine the power supplied by each of the sources, independent and dependent, in this circuit:

BSNL TTA Question Paper-Instruments and Measurement Specialization 2007

Experiment 8 Series-Parallel Circuits

Transcription:

Circuits PHY2049: Chapter 27 1

What You Already Know Nature of current Current density Drift speed and current Ohm s law Conductivity and resistivity Calculating resistance from resistivity Power in electric circuits PHY2049: Chapter 27 2

Chapter 27: Electric Circuits Work, energy and EMF Single loop circuits Multiloop circuits Ammeters and voltmeters RC circuits and time constant PHY2049: Chapter 27 3

Reading Quiz for Chapter 27 The electric current is defined as: (1) amount of charge per time (2) amount of charge per area (3) amount of charge per volume When resistors are connected in series (1) the current in each resistor is different (2) the current in each resistor is the same (3) the voltage in each resistor is the same Which of the following is not related to Kirchhoff s Rules? (1) conservation of charge (2) conservation of energy (3) conservation of momentum PHY2049: Chapter 27 4

EMF EMF device performs work on charge carriers Converts energy to electrical energy Moves carriers from low potential to high potential Maintains potential across terminals Various types of EMF devices Battery Generator Fuel cell Solar cell Thermopile Electrolytic reaction Magnetic field Oxidation of fuel Electromagnetic energy Nuclear decay Example: battery Two electrodes (different metals) Immersed in electrolyte (dilute acid) One electrode develops + charge, the other charge PHY2049: Chapter 27 5

Common dry cell battery PHY2049: Chapter 27 6

Electrons in the wire If the electrons move so slowly through the wire, why does the light go on right away when we flip a switch? Household wires have almost no resistance The electric field inside the wire travels much faster Light switches do not involve currents None of the above PHY2049: Chapter 27 7

Electrons in the wire, part 2 Okay, so the electric field in a wire travels quickly. But, didn t we just learn that E = 0 inside a conductor? True, it can t be the electric field after all!! The electric field travels along the outside of the conductor E = 0 inside the conductor applies only to static charges None of the above PHY2049: Chapter 27 8

Kirchhoff s Rules Junction rule (conservation of charge) Current into junction = sum of currents out of it I I 1 I 2 I = I1+ I2 + I3 Loop rule (conservation of energy) Algebraic sum of voltages around a closed loop is 0 I 3 2 1 I3R1 I2R2 E2 I3R1+ E2 = 0 I1R1 E1 I1R1+ E2 + I2R2 = 0 PHY2049: Chapter 27 9

Finding Current in Series Circuit Define current direction Start at some position (a) Define its potential to be 0 E a Move in direction of current, adding voltage sources & drops Voltage source: +E Resistor 1: ir 1 Resistor 2: ir 2 Total voltage change is 0 R 1 R 2 0+ E ir ir = 0 1 2 i = R E + R 1 2 PHY2049: Chapter 27 10

Resistors in series EMF of battery is 12 V, 3 identical resistors. What is the potential difference across each resistor? 12 V 0 V 3 V 4 V PHY2049: Chapter 27 11

Resistors in series If the light bulbs are all the same in each of these two circuits, which circuit has the higher current? circuit A circuit B both the same In which case is each light bulb brighter? circuit A circuit B both the same A B PHY2049: Chapter 27 12

Real EMF Sources: Internal Resistance Real batteries have small internal resistance Lowers effective potential delivered to circuit i E = r + R Vb r V a V = V V = E ir eff b a E = E r r + R V eff R C C E = 1 + r / R This is the voltage measured across the terminals! PHY2049: Chapter 27 13

Internal Resistance Example Loss of voltage is highly dependent on load E = 12V, r = 0.1Ω, R = 100Ω Loss of 0.01V E = 12V, r = 0.1Ω, R = 10Ω Loss of 0.1V E = 12V, r = 0.1Ω, R = 1Ω Loss of 1.1V E = 12V, r = 0.1Ω, R = 0.5Ω Loss of 2.0V Veff = 12 /1.001 = 11.99V Veff = 12 /1.01 = 11.9V Veff = 12 /1.1 = 10.9V Veff = 12 /1.2 = 10.01V PHY2049: Chapter 27 14

Heating From Internal Resistance Heating of EMF source: P = i 2 r Heating is extremely dependent on load E = 12V, r = 0.1Ω R = 100Ω V ba = 11.99V I = 0.12 A P = 0.0014 W R = 10Ω V ba = 11.9V I = 1.19 A P = 0.14 W R = 1.0Ω V ba = 10.9V I = 10.9 A P = 11.9 W R = 0.5Ω V ba = 10.0V I = 20 A P = 40 W PHY2049: Chapter 27 15

Resistors in Parallel Current splits into several branches. Total current is conserved I = I 1 + I 2 Potential difference is same across each resistor V = V 1 = V 2 V V V = + R R R p 1 2 1 1 1 = + R R R p 1 2 R p = equivalent resistance V V a d a d I I I I I 1 I 2 R 1 R 2 I R p PHY2049: Chapter 27 16

As more resistors R are added in parallel to the circuit, how does total resistance between points P and Q change? (a) increases (b) remains the same (c) decreases Resistors in Parallel If the voltage between P & Q is held constant, and more resistors are added, what happens to the current through each resistor? (a) increases (b) remains the same (c) decreases Overall current increases, but current through each branch is still V/R. PHY2049: Chapter 27 17

Resistance What is the net resistance of the circuit connected to the battery? Each resistance has R = 3 kω 1&2 in series 6kΩ 2 3 in parallel with 1&2 2kΩ 4 in series 5kΩ 3 5 in parallel 15/8kΩ = 1.875kΩ 1 6 in series 4.875kΩ 5 4 6 PHY2049: Chapter 27 18

Circuits If the light bulbs are all the same in each of these two circuits, which circuit has the higher current? (a) circuit A (b) circuit B (c) both the same B draws twice the current as A In which case is each light bulb brighter? (a) circuit A (b) circuit B (c) both the same Current through each branch is unchanged (V/R) A B PHY2049: Chapter 27 19

Light Bulb Problem Two light bulbs operate at 120 V, one with a power rating of 25W and the other with a power rating of 100W. Which one has the greater resistance? (a) the one with 25 W (b) the one with 100 W (c) both have the same resistance Which carries the greater current? (a) the one with 25 W (b) the one with 100 W (c) both have the same current P = I 2 R = V 2 /R, so 100W bulb has ¼ the resistance of the 25W bulb and carries 4x the current. PHY2049: Chapter 27 20

Dimmer When you rotate the knob of a light dimmer, what is being changed in the electric circuit? (a) the voltage (b) the resistance (c) the current (d) both (a) and (b) (e) both (b) and (c) House voltage is always 110 120V. Turning the knob increases the circuit resistance and thus lowers the current. PHY2049: Chapter 27 21

Power lines At large distances, the resistance of power lines becomes significant. To transmit maximum power, is it better to transmit high V, low I or high I, low V? (a) high V, low I (b) low V, high I (c) makes no difference Power loss is I 2 R, so want to minimize current. Why do birds sitting on a high-voltage power line survive? They are not touching high and low potential simultaneously to form a circuit that can conduct current PHY2049: Chapter 27 22

All devices are added in parallel. Household Circuits Overload: too many devices that require a lot of current can draw more current than wires can handle. Overheating of wires Fire hazard! PHY2049: Chapter 27 23

Resistors Current flows through a light bulb. If a wire is now connected across the bulb as shown, what happens? (a) All the current continues to flow through the bulb (b) Current splits 50-50 into wire and bulb (c) All the current flows through the wire (d) None of the above The wire shunt has almost no resistance and it is in parallel with a bulb having resistance. Therefore all the current follows the zero (or extremely low) resistance path. PHY2049: Chapter 27 24

Circuits Two light bulbs A and B are connected in series to a constant voltage source. When a wire is connected across B, what will happen to bulb A? (a) burns more brightly than before (b) burns as brightly as before (c) burns more dimly than before (d) goes out The wire shunt effectively eliminates the second resistance, hence increasing the current in the circuit by 2x. The first bulb burns 4x brighter (I 2 R). PHY2049: Chapter 27 25

Circuits Consider the network of resistors shown below. When the switch S is closed, then: What happens to the voltage across R 1, R 2, R 3, R 4? What happens to the current through R 1, R 2, R 3, R 4? What happens to the total power output of the battery? Let R 1 = R 2 = R 3 = R 4 = 90 Ω and V = 45 V. Find the current through each resistor before and after closing the switch. Before I 1 = 45/135 = 1/3 I 2 = 0 I 3 = I 4 = 15/90=1/6 After I 1 = 45/120 = 3/8 I 2 = I 3 = I 4 = 1/8 PHY2049: Chapter 27 26

Circuits The light bulbs in the circuits below are identical. Which configuration produces more light? (a) circuit I (b) circuit II (c) both the same Circuit II has ½ current of each branch of circuit I, so each bulb is ¼ as bright. The total light in circuit I is thus 4x that of circuit II. PHY2049: Chapter 27 27

Circuits The three light bulbs in the circuit are identical. The current flowing through bulb B, compared to the current flowing through bulb A, is a) 4 times as much b) twice as much c) the same d) half as much e) 1/4 as much Branch of circuit A has ½ resistance, thus it has 2x current. PHY2049: Chapter 27 28

Circuits The three light bulbs in the circuit are identical. What is the brightness of bulb B compared to bulb A? a) 4 times as much b) twice as much c) the same d) half as much e) 1/4 as much Use P = I 2 R. Thus 2x current in A means it is 4x brighter. PHY2049: Chapter 27 29

More Complicated Circuits Parallel and series rules are not enough! Use Kirchoff s rules PHY2049: Chapter 27 30

Problem Solving Using Kirchhoff s Rules Label the current in each branch of the circuit Choice of direction is arbitrary Signs will work out in the end (if you are careful!!) Apply the junction rule at each junction Keep track of sign of currents entering and leaving Apply loop rule to each loop (follow in one direction only) Resistors: if loop direction matches current direction, voltage drop Batteries: if loop direction goes through battery in normal direction, voltage gain Solve equations simultaneously You need as many equations as you have unknowns PHY2049: Chapter 27 31

Kirchhoff s rules Determine the magnitudes and directions of the currents through the two resistors in the figure below. Take two loops, 1 and 2, as shown Use I 1 = I 2 + I 3 I 3 9 V 15 Ω 22 Ω I 2 2 1 + 6 15I = 0 22I + 9 + 15I = 0 3 2 3 6 V I 1 1 2 I I 3 2 = 6/15 = 0.40 = 15/ 22 = 0.68 I = I + I = 1.08 1 2 3 PHY2049: Chapter 27 32

Circuit Problem (1) The light bulbs in the circuit are identical. What happens when the switch is closed? a) both bulbs go out b) the intensity of both bulbs increases c) the intensity of both bulbs decreases d) nothing changes Before: Potential at (a) is 12V, but so is potential at (b) because equal resistance divides 24V in half. When the switch is closed, nothing will change since (a) and (b) are still at same potential. (a) (b) PHY2049: Chapter 27 33

Circuit Problem (2) The light bulbs in the circuit shown below are identical. When the switch is closed, what happens to the intensity of the light bulbs? a) bulb A increases b) bulb A decreases c) bulb B increases d) bulb B decreases e) nothing changes (a) (b) Before: Potential at (a) is 12V, but so is potential at (b) because equal resistance divides 24V in half. When the switch is closed, nothing will change since (a) and (b) are still at same potential. PHY2049: Chapter 27 34

Circuit Problem (3) The bulbs A and B have the same R. What happens when the switch is closed? a) nothing happens b) A gets brighter, B dimmer c) B gets brighter, A dimmer d) both go out (a) (b) Before: Bulb A and bulb B both have 18V across them. 24V After: Bulb A has 12V across it and bulb B has 24V across it (these potentials are forced by the batteries). PHY2049: Chapter 27 35

Wheatstone Bridge An ammeter A is connected between points a and b in the circuit below, in which the four resistors are identical. What is the current through the ammeter? a) I / 2 b) I / 4 c) zero d) need more information The parallel branches have the same resistance, so equal currents flow in each branch. Thus (a) and (b) are at the same potential and there is no current flow across the ammeter. PHY2049: Chapter 27 36

Res-Monster Maze (p.725) All batteries are 4V All resistors are 4Ω Find current in R PHY2049: Chapter 27 37

Problem solving Find the value of R that maximizes power emitted by R. I 6Ω I 1 I 2 18V 12Ω R T 1 R 12 12 I 1 1 2 + 12 12 + 4 + R I2 = = = I R R P R I 2 2 = 2 T I R 12R = 12 + R 18 12 + R = = 12R 6 + 4 + R 12 + R P 144R 2 2 = I2R= 2 ( 4 + R) Maximize R = 4Ω P = 9W 2 PHY2049: Chapter 27 38

Circuits Which of the equations is valid for the circuit shown below? a) 2 I 1 2I 2 = 0 b) 2 2I 1 2I 2 4I 3 = 0 c) 2 I 1 4 2I 2 = 0 d) I 3 2I 2 4I 3 = 0 e) 2 2I 1 2I 2 4I 3 = 0 PHY2049: Chapter 27 39

Light Bulbs A three-way light bulb contains two filaments that can be connected to the 120 V either individually or in parallel. A three-way light bulb can produce 50 W, 100 W or 150 W, at the usual household voltage of 120 V. What are the resistances of the filaments that can give the three wattages quoted above? Use P = V 2 /R R 1 = 120 2 /50 = 288Ω (50W) R 2 = 120 2 /100 = 144Ω (100W) PHY2049: Chapter 27 40

Problem What is the maximum number of 100 W light bulbs you can connect in parallel in a 100 V circuit without tripping a 20 A circuit breaker? (a) 1 (b) 5 (c) 10 (d) 20 (e) 100 Each bulb draws a current of 1A. Thus only 20 bulbs are allowed before the circuit breaker is tripped. PHY2049: Chapter 27 41

RC Circuits Charging a capacitor takes time in a real circuit Resistance allows only a certain amount of current to flow Current takes time to charge a capacitor Assume uncharged capacitor initially Close switch at t = 0 Initial current is (no charge on capacitor) Current flows, charging capacitor Generates capacitor potential of q/c E q/ C i = R Current decreases continuously as capacitor charges! Goes to 0 when fully charged i = E/ R E PHY2049: Chapter 27 42

Analysis of RC Circuits Current and charge are related i = dq/ dt So can recast previous equation as differential equation i = E q/ C R General solution is (Check and see!) q = EC+ Ke dq q E + = dt RC R K = EC (necessary to make q = 0 at t = 0) Solve for charge q and current i t/ RC ( t RC 1 ) dq E q= EC e i= = e dt R / t/ RC PHY2049: Chapter 27 43

Charge and Current vs Time (For Initially Uncharged Capacitor) ( ) ( / ) 0 1 t RC = qt q e it ie ( ) / = 0 t RC PHY2049: Chapter 27 44

Exponential Behavior t = RC is the characteristic time of any RC circuit Only t / RC is meaningful t = RC Current falls to 37% of maximum value Charge rises to 63% of maximum value t =2RC Current falls to 13.5% of maximum value Charge rises to 86.5% of maximum value t =3RC Current falls to 5% of maximum value Charge rises to 95% of maximum value t =5RC Current falls to 0.7% of maximum value Charge rises to 99.3% of maximum value PHY2049: Chapter 27 45

Discharging a Capacitor Connect fully charged capacitor to a resistor at t = 0 S C General solution is R dq dt q = Ke t/ RC K = VC (necessary to make have full charge at t = 0) Solve for charge q and current i dq V q= VCe i = = e dt R t/ RC t/ RC q ir = 0 C q + = 0 RC PHY2049: Chapter 27 46

Charge and Current vs Time (For Initially Charged Capacitor) qt qe ( ) / = 0 it ie t RC ( ) / = 0 t RC PHY2049: Chapter 27 47