Intro Physics (Each individual student will complete his or her own lab report) Bottle Rocket Lab

Similar documents
Design Considerations for Water-Bottle Rockets. The next few pages are provided to help in the design of your water-bottle rocket.

Bottle Rockets. Vanderbilt Student Volunteers for Science. Fall 2008

BICYCLE PUMP AIR PRESSURE ROCKETS Credit: Jeff Elmer, Physics Teacher, Oshkosh North High School

Y Prize- Economic and Social effects of Rocket Design

Forces of Motion: Rockets

Warning! BOTTLE ROCKET LAUNCHER

Newton s Laws of Motion

ROYAL CANADIAN AIR CADETS PROFICIENCY LEVEL TWO INSTRUCTIONAL GUIDE SECTION 6 EO C IDENTIFY PARTS OF A ROCKET PREPARATION

Making Paper Rockets

Teacher notes/ activities. Gravity is the attractive force between all objects in the universe. It is the force that pulls objects to the earth.

LESSON 17: Balloon Rockets ESTIMATED TIME Setup: 5 10 minutes Procedure: 5 10 minutes

Chapter 4: Newton s Laws: Explaining Motion

Free Fall: Observing and Analyzing the Free Fall Motion of a Bouncing Ping-Pong Ball and Calculating the Free Fall Acceleration (Teacher s Guide)

How Rockets Work Newton s Laws of Motion

Technical Note T -5 Elementary Mathematics of Model Rocket Flight

Science Project. Ideal Trajectory of Air Pump Rockets

Elements of Physics Motion, Force, and Gravity Teacher s Guide

Section 4: The Basics of Satellite Orbits

Physics and Model Rockets

Two sheets of paper are sufficient for making a rocket. If colored paper is used, students can trade scraps with each other to have different colored

Out of this World Rocketry

Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion

Does currently available technology have the capacity to facilitate a manned mission to Mars?

The Science of Flight

Activity: Building a Catapult

Friction and Gravity. Friction. Section 2. The Causes of Friction

To construct and launch a simple bottle rocket.

G U I D E T O A P P L I E D O R B I T A L M E C H A N I C S F O R K E R B A L S P A C E P R O G R A M

High flyers: thinking like an engineer

AIR ROCKET INSTRUCTION MANUAL

Lift vs. Gravity Questions:

Use the following information to deduce that the gravitational field strength at the surface of the Earth is approximately 10 N kg 1.

Spring Scale Engineering

Gravity SEN. Answers (in the wrong order) Force Isaac Newton Energy Gravity Apple Powerful engines less Newtons Gravity

Forces. When an object is pushed or pulled, we say that a force is exerted on it.

GENERAL SCIENCE LABORATORY 1110L Lab Experiment 3: PROJECTILE MOTION

The Space Shuttle: Teacher s Guide

Pushes and Pulls. TCAPS Created June 2010 by J. McCain

parts of an airplane Getting on an Airplane BOX Museum Aeronautics Research Mission Directorate in a Series

Order of the Weather Experiments

Air and Weather FOSS kit

Saturn V Straw Rocket

engineering is out of this world

SpaceLoft XL Sub-Orbital Launch Vehicle

Potential and Kinetic Energy

5.1 The First Law: The Law of Inertia

Industrial Strength Rocket Launcher

Lab 8: Ballistic Pendulum

Partnerships Implementing Engineering Education Worcester Polytechnic Institute Worcester Public Schools

Work and Energy. Work = Force Distance. Work increases the energy of an object. Energy can be converted back to work.

Wing Loading and its Effects

Lesson 2 The Buoyant Force

SIMPLIFIED METHOD FOR ESTIMATING THE FLIGHT PERFORMANCE OF A HOBBY ROCKET

POW WOW Rocket Fun

Mathematics and Model Rockets

Newton s Law of Gravity

What is Energy? 1 45 minutes Energy and You: Energy Picnic Science, Physical Education Engage

KE =? v o. Page 1 of 12

2 Newton s First Law of Motion Inertia

Physics 125 Practice Exam #3 Chapters 6-7 Professor Siegel

Buoyancy Boats Florida Sunshine State Science Standards: Objectives Engage: Explore:

1. Large ships are often helped into port by using two tug boats one either side of the ship. April 5, 1989 (Anchorage Daily News / Erik Hill)

Barbie Bungee Jump. High School Physics

Educational Innovations

Lesson 3 - Understanding Energy (with a Pendulum)

Name Date Class. As you read about the properties of air, fill in the detail boxes that explain the main idea in the graphic organizer below.

Discover what you can build with ice. Try to keep ice cubes from melting. Create colored ice for painting

8. As a cart travels around a horizontal circular track, the cart must undergo a change in (1) velocity (3) speed (2) inertia (4) weight

Science Grade 06 Unit 05 Exemplar Lesson 01: Advantages and Disadvantages of Energy Resources

Roanoke Pinball Museum Key Concepts

Project-Based Learning Unit Earth/Moon/Sun Systems Marcie Owen Pilot Elementary

Rockets: Taking Off! Racing Balloon

Water Rocket Launch. Provided by TryEngineering -

Fluid Mechanics Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur

Bounce! Name. Be very careful with the balls. Do not throw them DROP the balls as instructed in the procedure.

Balanced and Unbalanced Forces

Name per due date mail box

Conceptual Questions: Forces and Newton s Laws

GRADE 8 SCIENCE INSTRUCTIONAL TASKS. Gravity

Playing with Parachutes

Activities with Paper How To Make and Test a Paper Airplane

SPEED IT UP. Educator Section

Astronomy 110 Homework #04 Assigned: 02/06/2007 Due: 02/13/2007. Name:

WEIGHTLESS WONDER Reduced Gravity Flight

Minnesota Comprehensive Assessments-Series III

PHYS 117- Exam I. Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

Name: Earth 110 Exploration of the Solar System Assignment 1: Celestial Motions and Forces Due in class Tuesday, Jan. 20, 2015

RATIONALE FOR ADVENTURE TAKEAWAYS FOR CUB SCOUTS. Wolf Handbook, page 266 ADVENTURE REQUIREMENTS

Rubber Band Race Car

CHAPTER 6 WORK AND ENERGY

High Flying Balloons

Write True or False in the space provided.

The University of Texas at Austin. Gravity and Orbits

8. Potential Energy and Conservation of Energy Potential Energy: When an object has potential to have work done on it, it is said to have potential

How To Launch A Rocket From A Formica

Solids, Liquids, and Gases

ACOS - CCRS (Science) SC.K.7.1, SC.K.10, SC.1.2, SC.1.3, SC.1.11, SC.2.4, SC.2.7, SC.2.11

PRELAB: NEWTON S 3 RD LAW AND MOMENTUM CONSERVATION

Newton s Laws. Newton s Imaginary Cannon. Michael Fowler Physics 142E Lec 6 Jan 22, 2009

Creation. Then God spoke and Creation came into being. God formed everything: Creation Week God called all that He had created good.

Transcription:

Intro Physics June 013 Name (Each individual student will complete his or her own lab report) Bottle Rocket Lab Group Members: Target Launch Date: Grade: Pre Launch questions (max 0 points) - Due date: launch date Questions 1-10 worth point each, (1 point for accuracy and 1 point for completeness) Challenge questions worth 1 point each, based on effort and thought Construction and Design reflection paragraph (max 15 points) - Due date: launch date Resources (5 points) o Identify websites or resources you looked at o Mention the design elements described there o Mention class data from the prototype round Design (5 points) o Explain your design o o Include a labeled diagram of your design Explain how you implemented the previously cited resources (both research and class data) in your design Format (5 points) o Make sure it is typed o Properly formatted (1.5 interline space) o Includes a title Performance (max 9 points) You get 3 points for attaining each of the following: Looks like a rocket Launches Flies true (doesn t tumble or go out of control) Post Launch questions (max 9 points) Due date: Day 7 Questions 1-3 worth 3 points each based on accuracy and completeness In class work and focus ( points each day) Max. 10 points When you work on the project make sure you: Stay focus in class (teacher doesn t have to call your attention to stay on task) Bring all necessary materials for the completion of the project Teacher will mark this rubric by the end of each day to take one or two points off if you need to improve Day 1 Research Day Rocket building, Pre- Launch questions, and design paragraph Day 3 Rocket building, Pre- Launch questions, and design paragraph Day 4 Launch! Day 5 Post Launch Question record Total : / 63

Water Rockets In 1919 Robert Goddard, a professor at Clark University in Worcester, Massachusetts, claimed that a multistage rocket weighing only ten tons could land on the Moon. After years of research, Goddard built the first liquid-fueled rocket, achieving a height of 90 feet before angry neighbors and local police ordered him to cease rocket experiments in Massachusetts. He moved to New Mexico where he continued his pioneering work in rocketry. It is difficult to say what is impossible, for the dream of yesterday is the hope of today and the reality of tomorrow -- Robert H. Goddard NASA The Introductory Physics students at NNHS are going to revive the Massachusetts tradition of rocket innovation by building and launching our own low-tech rockets, using -liter plastic soda bottles, cardboard, and water. We will use a bicycle pump rocket launcher and release the rockets in one of the fields outside.

Bottle Rocket Construction Procedure Materials (please bring plastic liter soda bottles to school) One liter bottle (Two -liter bottles if you are planning to make a taller rocket) Tape / glue Cardboard / poster board / manila folders Clay Optional for parachute (if you make a second rocket!) String Garbage Bag Rubber Bands Balloon Procedure (look at the diagram in the previous page) 1. Cut out nose cone from cardboard. Place a small handful of clay into tip of nose to vary the location of the center of mass.. Cut and tape fins onto nozzle end of bottle. Shape and orient the fins so that they will increase aerodynamic stability. 3. Optional: Using the top, bottom, or a cylindrical section of your second -l bottle to make your rocket longer. Make sure you attach this extra part to the bottom of the intact bottle, leaving the opening of the intact bottle free (this will be used to pump air inside and pressurize the rocket) 4. Optional: Create an extra compartment for a parachute under the nosecone. Attach the nosecone with a string. As you build the rocket, be sure that the center of mass is above the center of pressure.

Bottle Rocket Pre Launch Questions: These questions should be answered before the launch day, individually. 1. When Robert Goddard proposed a rocket to the Moon in 1919, the New York Times ridiculed the idea, claiming that a rocket could not possibly propel itself through the vacuum of space: after the rocket quits our air and really starts on its longer journey it will neither be accelerated nor maintained by the explosion [Professor Goddard] does not know of the relation of action to reaction and the need to have something better than a vacuum against which to react [He] only seems to lack the knowledge ladled out daily in high schools. The New York Times, 190 Define Newton s Third Law (N3L): Explain how N3L applies to rockets and why Goddard was correct and the New York Times was wrong.. Consider the following diagram of a V- rocket. Each part of the rocket has a specific function. The nose cone reduces drag. The fins add stability. What is the function of the propulsion system?

3. Draw the direction that the net force points in each part of the trajectory. Remember that net force implies acceleration. 4. Draw a free body diagram of the bottle rocket at each of the following stages: At rest on launch pad, during launch, coasting ascent (still rising, but rockets are no longer firing), maximum altitude, coasting descent (rocket is falling, rocket is not firing). At rest During launch (engine firing) Coasting ascent (engine no longer firing) Maximum Altitude Coasting descent 5. Describe the gravitational potential energy and kinetic energy changes at each part of the trajectory. At rest Maximum Altitude During launch (engine firing) Coasting ascent (engine no longer firing) Coasting descent

6. How high would the rocket go on the moon compared to earth? Why? 7. Define Newton s nd Law (NL) here. If you want your rocket to go as fast and high as possible (to attain the maximum possible acceleration), what design decisions should you make? Support your design choices with NL. 8. Based on the law of conservation of momentum, the momentum that the rocket attains is equal and opposite to the momentum of the escaping fluid. Why can we achieve greater speed using a combination of water and air as opposed to just air? Use the Forces on a Rocket Diagram to answer the next questions: 9. Describe how changing the mass would affect the flight of the rocket. 10. If the forces on the rocket are balanced, what acceleration would the rocket experience? State which of Newton s three laws applies to this situation and explain your reasoning.

Challenge questions 11. Describe how the rocket would fly without a nose cone. What would it do differently? Why? 1. Describe how the rocket would fly without fins. What would it do differently? Why? 13. How would the function of the nose cone and fins differ on the moon? References: Most of the NASA pictures in this handout are taken from: http://exploration.grc.nasa.gov/education/rocket/bottlerocket/about.htm More information on water bottle rockets (not all these links work properly) http://quest.nasa.gov/space/teachers/rockets/act11.html http://www.lnhs.org/hayhurst/rockets/ http://www.scioly.org/eventpages/bottlerockets.htm http://ourworld.compuserve.com/homepages/pagrosse/horocketbottlemods.htm http://www.instructables.com/id/soda-bottle-rocket./ http://www.makezine.com/05/rocket/ Research suggested path: My website: www.nnhsrasetti.pbworks.com (and then to rockets unit) to find all the links for the highlighted pages in the NASA website.