Transposition of formulae



Similar documents
Basic numerical skills: EQUATIONS AND HOW TO SOLVE THEM. x + 5 = = (2-2) = = 5. x = 7-5. x + 0 = 20.

3.1. Solving linear equations. Introduction. Prerequisites. Learning Outcomes. Learning Style

Integrating algebraic fractions

3.2. Solving quadratic equations. Introduction. Prerequisites. Learning Outcomes. Learning Style

Factorising quadratics

Equations, Inequalities & Partial Fractions

1.7. formulae and transposition. Introduction. Prerequisites. Learning Outcomes. Learning Style

is identically equal to x 2 +3x +2

3.6. Partial Fractions. Introduction. Prerequisites. Learning Outcomes

Implicit Differentiation

Algebraic expressions are a combination of numbers and variables. Here are examples of some basic algebraic expressions.

1.5. Factorisation. Introduction. Prerequisites. Learning Outcomes. Learning Style

Negative Integer Exponents

Maths Workshop for Parents 2. Fractions and Algebra

0.8 Rational Expressions and Equations

3.1. RATIONAL EXPRESSIONS

Numerical and Algebraic Fractions

is identically equal to x 2 +3x +2

Completing the square

Calculate Highest Common Factors(HCFs) & Least Common Multiples(LCMs) NA1

SIMPLIFYING SQUARE ROOTS

Solving Linear Equations in One Variable. Worked Examples

1.4. Arithmetic of Algebraic Fractions. Introduction. Prerequisites. Learning Outcomes

Determine If An Equation Represents a Function

Tool 1. Greatest Common Factor (GCF)

Part 1 Expressions, Equations, and Inequalities: Simplifying and Solving

This is a square root. The number under the radical is 9. (An asterisk * means multiply.)

Afterreadingthistext,and/orviewingthevideotutorialonthistopic,youshouldbeableto: explainwhycubicequationspossesseitheronerealrootorthreerealroots

Click on the links below to jump directly to the relevant section

MATHEMATICS FOR ENGINEERING BASIC ALGEBRA

Year 9 set 1 Mathematics notes, to accompany the 9H book.

Using a table of derivatives

Mathematical goals. Starting points. Materials required. Time needed

Quadratics - Build Quadratics From Roots

2.3 Solving Equations Containing Fractions and Decimals

1.3 Algebraic Expressions

In order to master the techniques explained here it is vital that you undertake plenty of practice exercises so that they become second nature.

GRAVITATIONAL FIELDS PHYSICS 20 GRAVITATIONAL FORCES. Gravitational Fields (or Acceleration Due to Gravity) Symbol: Definition: Units:

Solving Rational Equations

1.6 The Order of Operations

DIRECT ORBITAL DYNAMICS: USING INDEPENDENT ORBITAL TERMS TO TREAT BODIES AS ORBITING EACH OTHER DIRECTLY WHILE IN MOTION

Fractions and Linear Equations

MBA Jump Start Program

Algebra Practice Problems for Precalculus and Calculus

Supplemental Worksheet Problems To Accompany: The Pre-Algebra Tutor: Volume 1 Section 1 Real Numbers

1.3 Polynomials and Factoring

FACTORISATION YEARS. A guide for teachers - Years 9 10 June The Improving Mathematics Education in Schools (TIMES) Project

GCSE MATHEMATICS H Unit 2: Number and Algebra (Higher) Report on the Examination. Specification 4360 November Version: 1.

MATHEMATICS FOR ENGINEERING BASIC ALGEBRA

Chapter 9. Systems of Linear Equations

5.1 Radical Notation and Rational Exponents

Lesson 9: Radicals and Conjugates

Factoring Polynomials and Solving Quadratic Equations

Conversions between percents, decimals, and fractions

Continued Fractions and the Euclidean Algorithm

Math Review. for the Quantitative Reasoning Measure of the GRE revised General Test

The numerical values that you find are called the solutions of the equation.

Balancing Chemical Equations

Method To Solve Linear, Polynomial, or Absolute Value Inequalities:

CAHSEE on Target UC Davis, School and University Partnerships

3.3. Solving Polynomial Equations. Introduction. Prerequisites. Learning Outcomes

Pre-Algebra Lecture 6

Separable First Order Differential Equations

THE TRANSPOSING METHOD IN SOLVING LINEAR EQUATIONS (Basic Step to improve math skills of high school students) (by Nghi H. Nguyen Jan 06, 2015)

1.2 Linear Equations and Rational Equations

Section 4.1 Rules of Exponents

Common Core Standards for Fantasy Sports Worksheets. Page 1

Solutions of Linear Equations in One Variable

Simplifying Square-Root Radicals Containing Perfect Square Factors

Section 1.5 Exponents, Square Roots, and the Order of Operations

( ) FACTORING. x In this polynomial the only variable in common to all is x.

Welcome to Basic Math Skills!

A.2. Exponents and Radicals. Integer Exponents. What you should learn. Exponential Notation. Why you should learn it. Properties of Exponents

COLLEGE ALGEBRA 10 TH EDITION LIAL HORNSBY SCHNEIDER 1.1-1

SECTION 0.6: POLYNOMIAL, RATIONAL, AND ALGEBRAIC EXPRESSIONS

JUST THE MATHS UNIT NUMBER 1.8. ALGEBRA 8 (Polynomials) A.J.Hobson

Lecture 2 Matrix Operations

Operations with positive and negative numbers - see first chapter below. Rules related to working with fractions - see second chapter below

Indices and Surds. The Laws on Indices. 1. Multiplication: Mgr. ubomíra Tomková

Biggar High School Mathematics Department. National 5 Learning Intentions & Success Criteria: Assessing My Progress

Notes on Orthogonal and Symmetric Matrices MENU, Winter 2013

Lab 8: Ballistic Pendulum

APPLICATIONS AND MODELING WITH QUADRATIC EQUATIONS

Radicals - Multiply and Divide Radicals

Typical Linear Equation Set and Corresponding Matrices

Rational Exponents. Squaring both sides of the equation yields. and to be consistent, we must have

SHORTCUT IN SOLVING LINEAR EQUATIONS (Basic Step to Improve math skills of high school students)

north seattle community college

MATH Fundamental Mathematics IV

STRAND: ALGEBRA Unit 3 Solving Equations

Factoring Special Polynomials

December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B. KITCHENS

Numerical Solution of Differential

The Method of Partial Fractions Math 121 Calculus II Spring 2015

TRIGONOMETRY Compound & Double angle formulae

To give it a definition, an implicit function of x and y is simply any relationship that takes the form:

This is Factoring and Solving by Factoring, chapter 6 from the book Beginning Algebra (index.html) (v. 1.0).

Chapter 6 Work and Energy

Definition 8.1 Two inequalities are equivalent if they have the same solution set. Add or Subtract the same value on both sides of the inequality.

No Solution Equations Let s look at the following equation: 2 +3=2 +7

Transcription:

Transposition of formulae In mathematics, engineering and science, formulae are used to relate physical quantities to each other. They provide rules so that if we know the values of certain quantities, we can calculate the values of others. In this unit we discuss how formulae can be transposed, or transformed, or rearranged. In order to master the techniques explained here it is vital that you undertake plenty of practice exercises so that they become second nature. After reading this text, and/or viewing the video tutorial on this topic, you should be able to: transpose formulae in order to make other variables the subject of the formula Contents 1. Introduction. Solving a simple linear equation 3. Transposition of simple formulae 3 4. The formula for the simple pendulum 5 5. Further examples of useful formulae 6 1 c mathcentre June 11, 004

1. Introduction Consider the formula for the period, T, of a simple pendulum of length l: l T =π g, where l is the length of the pendulum Now, on Earth, we tend to regard g, the acceleration due to gravity, as being fixed. It varies a little with altitude but for most purposes we can regard it as a constant. Just suppose we had a pendulum of a fixed length l, and we took it somewhere else, say the moon, or Mars. The gravity there would not be the same and so the value of g would be different from its value on Earth. Suppose we wanted to measure g. One way would be to take the pendulum, set it swinging and measure the time, T, for one complete cycle. Once we have measured the time, we could then use that to calculate g. But before we could do this, we would need to know what g was, in terms of the rest of the symbols in the formula. So we need to re-arrange the formula so that it states g =?. We will show you how to do this rearrangement later in the video. To rearrange, transform, or tranpose the formula, we need many of the techniques used to solve equations. So, the video Solving Linear Equations in One Variable might be very useful to have a look at.. Solving a simple linear equation Before we look at rearranging more complicated formulae we recap by having a look at a simple linear equation. Suppose we wanted to solve 3x +5=6 3(5 x) Our aim is to end up with an expression for x, that is x =?. brackets on the right. 3x +5 = 6 15 + 6x 3x +5 = 6x 9 We start by expanding the We then proceed to manipulate this to try to get all the terms involving x on to one side. We must preserve the balance in the original equation by doing exactly the same operations to both sides. Subtracting 3x from both sides: 3x 3x +5 = 6x 3x 9 5 = 3x 9 Adding 9 to both sides: 5+9 = 3x 9+9 14 = 3x and so x = 14 3 We have obtained an expression for x as required. c mathcentre June 11, 004

With practice the amount of working written down will reduce because you will be able to carry out many of the stages at the same time. Having gone through the steps of solving an equation, the same technique, particularly the idea of keeping the balance by doing the same thing to both sides, is what we are going to do when we look at the transformation of formulae. 3. Transposition of simple formulae Consider the formula v = u + at. Suppose we wish to transpose this formula to obtain one for t. Because we want to obtain t on its own we start by subtracting u from each side: v = u + at v u = at We now divide everything on both sides by a. v u = at a a = t and so finally t = v u. We have transposed the formula to find an expression for t. a Consider the formula v = u +as and suppose we wish to transpose it to find u. We want to obtain u on its own and so we begin by subtracting as from each side. v = u +as v as = u Finally, taking the square root of both sides: u = v as Notice we need to take the square root of the whole term ( v as) in order to find u. Consider the formula s = ut + 1 at. Suppose we want to transpose it to find a. Because we want a on its own, we begin by subtracting ut from both sides. s = ut + 1 at s ut = 1 at Multiplying both sides by : Dividing both sides by t : and so (s ut) =at (s ut) t a = = a (s ut) t 3 c mathcentre June 11, 004

Suppose we wish to rearrange y(x +1)=x + 1 in order to find x. Notice that x occurs both on the left and on the right. We need to try to get all the terms involving x together. We begin by expanding the brackets on the left: Subtracting x from both sides: y(x +1) = x +1 xy + y = x +1 xy x + y =1 The left-hand side now has two terms involving x. We can factorise these as follows: Then subtracting y from both sides: and finally, dividing both sides by (y 1) x(y 1) + y =1 x(y 1)=1 y x = 1 y y 1 y Suppose we wish to rearrange +5=x to find an expression for y. y + x We begin by multiplying every term on both sides by (y + x) in order to remove the fractions: Next we multiply out the brackets: y +5(y + x) =x(y + x) y +5y +5x = xy + x We try to get all the terms involving y onto the left-hand side. Subtracting xy from both sides: 6y xy +5x = x Subtracting 5x from both sides, and taking out the common factor y we have Finally, dividing both sides by 6 x we obtain y(6 x) =x 5x y = x 5x (6 x) c mathcentre June 11, 004 4

Exercise 1 Rearrange each of the following formulae to make the quantity shown the subject. 1. v = u + at, u. v = u +as, s 3. s = vt 1 at, a 4. p =(w + h), h 5. A =πr +πrh, h 6. E = 1 mv + mgh, v 7. E = 1 mv + mgh, m 8. a(3b 1)=b +, b 9. 10. t t s =3s, t s t s +5=3t, s 4. The formula for the simple pendulum l We began with the formula T =π. Let us now try to rearrange this to find an expression g for g. We begin by squaring both sides of the equation in order to remove the square root. T =(π) l g To remove the fraction we multiply both sides by g: T g =(π) l Dividing both sides by T gives g = (π) l T By observing the two square terms on the right, we note that this formula could be written, if we wish, in the equivalent form ( ) π g = l T 5 c mathcentre June 11, 004

5. Further examples of useful formulae - the lens formula The so-called lens formula, which is used in optics, is given by 1 f = 1 u + 1 v Suppose we want to rearrange this formula to find u. Because we want to isolate u we begin by subtracting 1 v from both sides. 1 f 1 v = 1 u The left-hand side fractions can be combined by expressing them over a common denominator v f fv = 1 u Inverting both sides and so u = fv v f The formula T = as required. to find an expression for v c. fv v f = u T 0 ( 1 v c ) 1/ arises in the study of relativity. Suppose we want to rearrange it We begin by noticing that if we square both sides this will remove the square root term (i.e. the power 1 ) on the right-hand side. So squaring: T = T 0 ( 1 v c ) We remove the fraction by multiplying both sides by (1 v ( ) T 1 v = T c 0 Dividing both sides by T : ( ) 1 v = T 0 c T Adding v c to both sides gives 1= T 0 T + v c c mathcentre June 11, 004 6 c ) :

Subtracting T 0 T from both sides: 1 T 0 T = v c Finally, taking the square root of both sides v c = 1 T 0 T as required. Exercise Rearrange each of the following formulae to make the quantity shown the subject. 1. y = a + 1 x, x. y = a + 1 1 x, x 3. P = P 0 1 r, r 4. m = k a(1 x), x 5. V = V 0 r 1, r Answers Exercise 1 1. u = v at. s = v u 3. a = a 5. h = A πr (E mgh) 6. v = πr m 9. t = 3s 6s 1 10. s = 6t 10t 3t 4. (vt s) 4. h = 1 (p w) t 7. m = E v +gh 8. b = +a 3a Exercise 1. x = 1. x =1 1 y a y a 4. x =1 1 ( m ) 5. r = 1+ a k 3. r = ( ) V0 V 1 P 0 P 7 c mathcentre June 11, 004