A Study on the Reactivity of Zinc-based Sorbents for Hot Gas Desulfurization using Natural Zeolite as the Support



Similar documents
1.- L a m e j o r o p c ió n e s c l o na r e l d i s co ( s e e x p li c a r á d es p u é s ).

Future Trends in Airline Pricing, Yield. March 13, 2013


Chapter 8 - Chemical Equations and Reactions


1. Oblast rozvoj spolků a SU UK 1.1. Zvyšování kvalifikace Školení Zapojení do projektů Poradenství 1.2. Financování

Victims Compensation Claim Status of All Pending Claims and Claims Decided Within the Last Three Years

Chem Highlights of last lecture. This lecture. Australian Mining Sites. A/Prof Sébastien Perrier. Metallurgy: (Extracting metal from ore)

Fly Ash Separation Technology and its Potential Applications

Opis przedmiotu zamówienia - zakres czynności Usługi sprzątania obiektów Gdyńskiego Centrum Sportu

Masters Mens Physique 45+

Transient Voltage Suppressor SMBJ5.0 - SMBJ440CA

C relative to O being abc,, respectively, then b a c.

Chem 115 POGIL Worksheet - Week 4 Moles & Stoichiometry Answers

Chem 115 POGIL Worksheet - Week 4 Moles & Stoichiometry

All answers must use the correct number of significant figures, and must show units!

Sticky News. sticky rice cooking school newsletter

Chapter 8: Chemical Equations and Reactions

Professional Liability Errors and Omissions Insurance Application

Improvement of surface porosity and properties of alumina films by incorporation of Fe micrograins in micro-arc oxidation

NEGLIGENT INFLICTION OF EMOTIONAL DISTRESS IS STILL ALIVE IN TEXAS

Hydrodesulfurization of Thiophene over Platinum Supported on Metal Oxide Catalysts

CLASS TEST GRADE 11. PHYSICAL SCIENCES: CHEMISTRY Test 6: Chemical change

Unit 10A Stoichiometry Notes

Tishreen University Journal for Research and Scientific Studies - Basic Sciences Series Vol. ( ) No. ( )

EDEXCEL INTERNATIONAL GCSE CHEMISTRY EDEXCEL CERTIFICATE IN CHEMISTRY ANSWERS SECTION C

CHAPTER-3: EXPERIMENTAL PROCEDURE

EXTRACTION OF METALS

d e f i n i c j i p o s t a w y, z w i z a n e j e s t t o m. i n. z t y m, i p o jі c i e t o

B I N G O B I N G O. Hf Cd Na Nb Lr. I Fl Fr Mo Si. Ho Bi Ce Eu Ac. Md Co P Pa Tc. Uut Rh K N. Sb At Md H. Bh Cm H Bi Es. Mo Uus Lu P F.

Decomposition. Composition

Gx Tubing. High-quality Gx Glass Tubing for pharmaceutical packaging. Tubular Glass

SEATTLE CENTRAL COMMUNITY COLLEGE DIVISION OF SCIENCE AND MATHEMATICS. Oxidation-Reduction

APPENDIX B: EXERCISES

Testing for Congruent Triangles Examples

APPLICATION OF MODIFIED CALCIUM SORBENTS IN CARBONATE LOOPING

= 11.0 g (assuming 100 washers is exact).

Chemical Equations. Chemical Equations. Chemical reactions describe processes involving chemical change

SIA EVENT CODE LIBRARY

Problem Solving. Stoichiometry of Gases

DATING YOUR GUILD

8. Relax and do well.

California Treasures Phonics Scope and Sequence K-6

k 2f, k 2r C 2 H 5 + H C 2 H 6


DHL EXPRESS CANADA E-BILL STANDARD SPECIFICATIONS

Chemistry B11 Chapter 4 Chemical reactions

CHAPTER 7 THE DEHYDRATION AND SWEETENING OF NATURAL GAS

Chem 1721 Brief Notes: Chapter 19

Missing and Exploited Children

Blended Cement Samples 77 & 78

neutrons are present?

Advancement of Chemical Looping with Oxygen Uncoupling

Acceptance Page 2. Revision History 3. Introduction 14. Control Categories 15. Scope 15. General Requirements 15

An international comparison of energy and climate change policies impacting energy intensive industries in selected countries. Table of Contents.

Melting treatment of waste asbestos using mixture of hydrogen and oxygen produced from water electrolysis

February 3, Scott Cline City College of San Francisco 50 Phelan Avenue San Francisco, CA

CODES FOR PHARMACY ONLINE CLAIMS PROCESSING

Chemistry 12 Worksheet Measuring Reaction Rates

5.111 Principles of Chemical Science

Sticky Rice Cooking School Voted A Top 3 HotSpot in SA Sticky News. sticky rice cooking school newsletter

Campus Sustainability Assessment and Related Literature

100% ionic compounds do not exist but predominantly ionic compounds are formed when metals combine with non-metals.

Development of Cu-Based Oxygen Carriers for Chemical-Looping with Oxygen Uncoupling (CLOU) Process

IUCLID 5 COMPOSITION AND ANALYSIS GUIDANCE DOCUMENT: IRON ORES, AGGLOMERATES [EINECS NUMBER , CAS NUMBER ] IRON ORE PELLETS

RIGHT-OF-WAY ACQUISITION AND BRIDGE CONSTRUCTION BONDS 7/01/ MD ND QR4

Balancing Reaction Equations Oxidation State Reduction-oxidation Reactions

7-6. Choosing a Factoring Model. Extension: Factoring Polynomials with More Than One Variable IN T RO DUC E T EACH. Standards for Mathematical Content

K + Cl - Metal M. Zinc 1.0 M M(NO

Chem 1A Exam 2 Review Problems

BEGINNING ALGEBRA ACKNOWLEDMENTS

Yu. F. Vasyuchkov*, M. Yu. Bykova* NEW TECHNOLOGY OF GAS EXTRACTION ON THE BASE OF A COAL TO A HYDROGEN TRANSFER

Unit 9 Stoichiometry Notes (The Mole Continues)

ELECTRON CONFIGURATION (SHORT FORM) # of electrons in the subshell. valence electrons Valence electrons have the largest value for "n"!

Tests on Portland Cement

Triangles. Triangle. a. What are other names for triangle ABC?

SCO TT G LEA SO N D EM O Z G EB R E-

SEM/EDX Analysis of Deposit Rings and Cyclone Fly Ash

Coating Thickness and Composition Analysis by Micro-EDXRF

Chemical Equations and Chemical Reactions. Chapter 8.1

Moles. Balanced chemical equations Molar ratios Mass Composition Empirical and Molecular Mass Predicting Quantities Equations

CHEM 105 HOUR EXAM III 28-OCT-99. = -163 kj/mole determine H f 0 for Ni(CO) 4 (g) = -260 kj/mole determine H f 0 for Cr(CO) 6 (g)

FORM A is EXAM II, VERSION 1 (v1) Name

State Corporate Income Tax-Calculation

THE EFFECT OF THE HDDR PROCESS ON THE PRODUCTION OF Pr-Fe-Co-B-Nb SINTERED MAGNETS

Phase Characterization of TiO 2 Powder by XRD and TEM

OLD BUILDINGS RESTORATION TECHNIQUE. Dr-Ing JK Makunza University of Dar es Salaam 18 th May 2011

Aging of Zeolite SCR Catalysts

Galileo 360 Fares Booking File Data Validation

Chapter 11. Electrochemistry Oxidation and Reduction Reactions. Oxidation-Reduction Reactions. Oxidation-Reduction Reactions

Electrochemistry Voltaic Cells

Effects of aging on the kinetics of nanocrystalline anatase crystallite growth

Improving Text Entry Performance for Spanish-Speaking Non-Expert and Impaired Users

THREE DIMENSIONAL GEOMETRY

Process Integration of Chemical Looping Combustion with Oxygen Uncoupling in a Coal-Fired Power Plant

I n la n d N a v ig a t io n a co n t r ib u t io n t o eco n o m y su st a i n a b i l i t y

i n g S e c u r it y 3 1B# ; u r w e b a p p li c a tio n s f r o m ha c ke r s w ith t his å ] í d : L : g u id e Scanned by CamScanner

SIA Event Block Data Code Definitions

Moles. Moles. Moles. Moles. Balancing Eqns. Balancing. Balancing Eqns. Symbols Yields or Produces. Like a recipe:

Stoichiometry Review

Transcription:

HWAHAK KONGHAK Vol. 41, No. 5, October, 2003, pp. 667-674 *, 712-749 214-1 * 702-701 1370 (2003 5 6, 2003 8 11 ) A Study on the Reactivity of Zinc-based Sorbents for Hot Gas Desulfurization using Natural Zeolite as the Support No-Kuk Park, Yong-Kgil Jung, Jong-Dae Lee, Tae-Jin Lee and Jae-Chang Kim* National Research Laboratory, School of Chemical Engineering and Technology, Yeungnam University, 214-1 Dae-dong, Gyeongsan, Kyungpook 712-749, Korea *Department of Chemical Engineering, Kyungpook National University 1370 Sankeuk-dong, Bukgu, Daegu 702-701, Korea (Received 6 May 2003; accepted 11 August 2003)! "#$ %. & ' ()*"+,- 480 o C/580 o C(.//01)23 4 567 89 ():; ()<1 =#> $?@! ABC +,:; ABC1 %. & "# +,DE F GH.()<1' F I% JK!, 10 cycle23 = #> 20 gs/100 g sorbent L M NO%. ABC"- AI(BC P)Q 14.7%81%. R S23T U '#"$ VW%. Abstract Two types of zinc-based sorbents using alumina and natural zeolite as the supports for hot-gas desulfurization were prepared, and investigated their desulfurization capability. Their reaction rate and sulfur capacity were compared by Cahn balance and over the fixed bed reactor system at 480 o C/580 o C (sulfidation/regeneration). The attrition resistance was measured by ASTM method. The initial sulfidation rate of ZnO/natural zeolite sorbent was higher than that of ZnO/alumina, and the sulfur capacity of ZnO/natural zeolite sorbent was maintained above 20 gs/100 g sorbent for 10 cycles. A attrition index was 14.7%. The use of natural zeolite as a support of sorbents may be possible for hot gas desulfurization. Key words: Desulfurization, Zinc-Based Sorbent, Natural Zeolite, IGCC, Support 1.! "# $ %&' ()* +,-.. /0 12 34 56 789$ : "# () ; < 8= >?@% +.. 789$ :56 8 9A$ ()* +B CD EF GHIB AJ K $ ()5B 7LA MN OAP(IGCC)Q RS TU 8V OAP(PFBC) W +!, :XL)Y 89 (MCFC) ZB %)[ 89(SOFC)$ :56 $ ()5 To whom correspondence should be addressed. E-mail: tjlee@yu.ac.kr B A 89(IGFC) W 8= @% +B\, ] D ^_ `% +.. 789 Q#4 (5B H 2 S, SO 2, COS, CS 2 WQ a bn[ c# JK d 89 efd gh i + j kl m n Sop q ry S* +.[1-3]. s S 789$ :56 "#$ ()5 t4b 89A n usv.w bxy z{o }t-~.. 789 Q#4 (5B bn[ }5B @% +B %ƒ bc# % y b $ :56 450 o C h %ƒ4 bn[ ˆ Š }5 &' Œ% Ž kl 2E ry (5 B.. Z : b $ cy 4 (* +, x q5.b 6s % +.[4]. 667

668 %ƒ b B ^ )[, +B\, š œ, = Žœ, œ, k8œž a.ÿ x b 8= @! ] n4 )k8 ^ z [ D k8œ b B bn[q z x q56 1 DOE(department of energy) )5 RTI(research triangle institute), METC(morgantown energy technology center) W4.Ÿ x b $ 8= 5!?v +.. ª, )k8q )«L ^ xy 5B MN )[D zinc titanate b B #x q56 650 o C h %ƒ b N b +.[5-12]. /0 123 6s 8= ] %ƒ bc# 650 o C h % ƒ4 ±p q e²œh ³ ž ±, µ³ 500 o C # nƒ ± 5 5 B ¹ 5% +.. ± ƒ 5 ºm nƒ b x» ± Q o@ O¼½.. >1Q 12 8= ] t4 x¾ v zinc titanate b B 650 o C h %ƒ4 q x¾ j~ klm ^z [ D )k8 #x Œ 6^B À +~ nƒ ± 4B Á [ # zã z x Ä À @.. ž a MN ) [(zinc titanate) ³ tå5 56 #x Ä ) k8 Æ Ç VÅÈh /V OÉÃ4 nƒ ± 4 z x q b $ 5 ¹ d ZB Ž Ê W :5% z x 5 56.Ÿ Ë $ : 8= < >?@! 14B. Ì dž +B #.[13-18]. %ƒ bc# z OAP %#U, TU, STU @, +! ÍÍ Î +d /0 @% +B %ƒ bc# z 56 ƒ, SŽ STU bc# Ï @% +.[19]. STUc# :5 t4b 2ÐÑx - 5! 8 (zm :O x¾ S@ t4b 2=x qt-.. Ò 8=4B dž ŽÊ$ TO us5% +B 12) Ó 8 Ôm I$ :56 b $ 5! d$ : b ž z x Ç 2ÐÑ x ÁÂ5.. Õ b z x, 2=x, 2ÐÑx 5% ] ÅQ $ Ö 12) Ó8 Ôm I$ STU: k8œ b x¾»± O5% 5.. 2. 2-1. Ò 8=4B %)[ N (solid oxide mixing method) % ƒ k8œ b $ 5.[17]. Ø Ù 20 µm 5D ) Table 1. Composition of natural zeolite Elements Composition of natural zeolite, wt% SiO 2 65.0 Al 2 O 3 14.8 K 2 O 1.61 Fe 2 O 3 2.64 MgO 0.78 CaO 4.44 Na 2 O 2.65 TiO 2 0.36 MnO 0.08 P 2 O 5 0.33 ZnO 0.15 BaO 0.07 k8q $ 75:25 Ú Á' ÛÜ(ball mill) Ý% 24 OÞ T yß Ç N à Sx ÅN D E.G(ethylene glycol) á w Ë56 Æ9[ âyª zã56 ä,> % N[ Ro x å5.. µ B d(aldrich)ž Ó8 Ôm I(Tæ)ç, ^))$ :5.. Roxå v èé ÑŸ xå$ 150 o C4 24 OÞT 5% 750 o C4 2 OÞT Ž5! á Ù yß56 150-300 µm Ù Ø ~ yž à 750 o C4 2 OÞT.O Ž5.. Z : ºê k 8œ b Æ x ÁÂ5 56 $ :5 % ë )k8~ Tì b $ 5.. 2-2. - z B 2 15 mm 7í; :5! O9$ ÝB sample capacity tubeb 7í î :5 % O9 â>w 50 mg # 56 Æ, b, (?5.. Æ, b, (O Table 2 dï2.. k8œ b nƒ 4 Æ x 5 56 ð-ñò A$ :56 Æ?5.. ë )k8~ b ž Ó8 Ôm I$ N b 56 bv us@ 7LÑ A ÍÍ 10OÞó ¹oOô Ú õ$ ;ö5.. µ ƃ B 480 o C! 7LÑ A S 250 ml/min z 5 4 h øù ú 5.. b z x b Ç ( J û5! z B z OÞ ð-ñòa(cahn instrument) ü# Ú õ J z $ ÁÂ5.. bz cyúå A4 ()@B 7LAž x S Ñ A$ :5! ( AB 5% )V usv V ý7 c$ :5.. µ S Table 2. Experimental conditions for reactivity and durability tests by micro-reactor system Conditions Temperature ( o C) Pressure (atm) Flow rate (ml/min) 41 5 2003 10 This work KRW Reduction Sulfidation Regeneration Sulfidation Regeneration 480 1 250 480 1 250 580 1 250 650-750 15 690-760 Gas composition - H 2 S 1.0 O 2 5.0 H 2 S 0.55 O 2 2.0 (vol.%) H 2 CO CO 2 H 2 O N 2 11.7 19.0 6.8 10.0 balance H 2 CO CO 2 H 2 O N 2 11.7 19.0 6.8 10.0 balance H 2 O N 2 10 balance H 2 CO CO 2 H 2 O N 2 11.65 18.97 6.75 5.12 56.95 N 2 98.0 R P (reducing power) 2.6 2.6 2.58

!"#$ 669 Ø@B z AB 5 4 h 250 ml/min S þ ^! b Ç (z ƒ B ÍÍ 480 o Cž 580 o C S5.. 2-3. Micro-reactor b 8 zm 2=x %#U z 4?5! b b Ç (z ÿ Þ^ 56 ÿ zm u ºê b :¾(sulfur capacity) õ# J 2=x û5.. z B 7í 2 10 mmd %#U øz $ :5 % SØ@B Ñ A ø 250 ml/min 5.. Ò 8=4 : 89A x Table 2 dï ž a KRW cyúå A4 ()@B 7LA x Ñ 5.. (AB 5vol% )Vž u 10 vol% [ N5! b Ç (z ƒ B ÍÍ 480 o C, 580 o C4?5.. z o=b T.C.D.(thermal conductivity detector) Ç PFPD(plused framable photometric detector, O.I Analytical) v G.C.(gas chromatograph, Donam DS6200A)ž ƒ-md 8Å56 z à A x y75 B\, y7: š Chromosil-310 (Supelco) šq GS-GASPRO ÑF; š ÍÍ TCDž PFPD 8Å56 :5.. bz z o=4 H 2 S 2,000 ppm @à 95 % cž V Ž% [ N (A$ SØ5Ã4 bv b $.O (O! z o= A x y756 SO 2 o@ µ (z 95.. 2-4. b 2ÐÑx ASTM[20] ¼v 2ÐÑx O e(attrition tester)4?5.. STAB V(N 2 )$ :5! 2ÐÑü# ST y b 50 g â> 5% STA$ 10 l/min S þ ^! S AJ(wet gas meter)$ :56 ü#5.. µ S Ch (0 o C, 1 atm) #5! û B 30%# S 5.. B 2ÐÑü# e2 #$ }5 À! D ^Ø [ hƒ R t4 (5 ú e5.. F y : I 1OÞ Î Â56 v Fy Ú $ ü#5.. 2-5. b z à [xõ B BET Cà ü#(micromeritics Gemini 2375), XRD(X-Ray Diffractometer, RIGAKU, D/May-2500), EDX (Energy Dispersive X-ray, FISONS, KEVEX SIGMA), SEM(Scanning Electron Microscope, Hitachi, S-4100)W :56 y75! C Ã[xõ CÃ, Å#x, k8 uw, CÃåh W ;ö5.. Fig. 1. Reduction of ZnO and ZnO/Natural zeolite with H 2 at 480 o C. s ÅQ Û µ k8œ b 7LA t4 480 o C # 4 Æ >? D* +!, $ :u4 Æ * +.. )k8 Æ@à ÆV k8(zn) 5 @B\, ÆV k8!b 419.5 o C # Ò 8= b z ƒ. Ä µ³ %ƒz 4 VÅ(sintering)v.. Æv k8 VÅ b z x 5 ÆD p +B\, Ó 8 Ôm Iž a $ : k8œ b (ZnO/natural zeolite) q $ :5 ë )k8 b (ZnO) Á56 Æ " #$ D* +.. Æ "Ž.B À ÆV k8 Æ@,% µ³ VÅK $ VO &Q TO VÅ k8œ b x¾5$ * +.. 3-2.! Õ $ : b b Ç (z O z OÞ Ú õ$ ð-ñòa ü# ÅQ$ Fig. 2ž Fig. 3 dï2.. dž Ó8 Ôm I$ : Õ b bz $ Á ÅQ d$ : ZnO/Al 2 O 3 b Á56 Ó8 Ôm I$ : ZnO/natural zeolite b Öz ž ûå ' h4 b Šw é Œ À dï(.. d q bz 4 bvž z x )d Ó8 Ôm IB bvž z x +B.Ÿ xy 3. 3-1. ZnO Ò 8= bz ƒ D 480 o C4 7LA )k8 (ZnO) Æ x 5 56 ð-ñòa ÅQ$ Fig. 1 dï2.. ë )k8q Ó8 Ôm I$ Ë b $ 480 o C4 ÍÍ 10OÞ T ÆO ÅQ ë )k8 15%#, Ó8 Ôm I$ : b B 3.4% # Æ@.. µ Æ B ÍÍ b us ZnO )V w Ú w Á$ y' œ)5.. Æ Ú Vw Æ (degree of reduction, %)= 100 OÆ w ZnOuw ZnÆ w+oæ w Fig. 2. Sulfidation rates of zinc-based sorbents. HWAHAK KONGHAK Vol. 41, No. 5, October, 2003

670 Fig. 3. Regeneration rates of zinc-based sorbents. Fig. 4. H 2 S breakthrough curve for the sulfidation of ZnO/Al 2 O 3 sorbent at 480 o C. *+ us@, + µ³ Öz ž b:¾ é q À,Îv.. Kim, Lee W[21-23] k8œ b ), ) l-, ).I WQ a )[ Ë :* q z x Ç 2=x * +.% % +.. Ó8 Ôm I us Fe 2 O 3 (2.64 wt%)q Na 2 O(2.65 wt%)b (1-3)Q a z 400 o C 5 ƒ 4 bvž z x q5 µ³ k8œ b Ö z x Q b:¾ í eb Ë ¼:* À,Îv.. 3Fe 2 O 3 +H 2 /2Fe 3 O 4 +H 2 O (1) Fe 3 O 4 +3H 2 S/3FeS+4H 2 O (2) Na 2 O+H 2 S/Na 2 S+H 2 O (3) Õ b (z x z OÞ Ú õ ;ö ÅQ, Fig. 3 dï ž a Ö 80y0 (z B ZnO/natural zeolite b 12d 80y àb ZnO/Al 2 O 3 b Ú õ é 1Ž >?@.. Õ b ÑÕ 250y 2 ( 39@.. 3-3. " b- ( 14 Ov À 1 ÿ 56 ZnO/Al 2 O 3 b ž ZnO/natural zeolite b b- ( 8 ÿ? 5.. bƒ ž (ƒ $ ÍÍ 480 o Cž 580 o C %#OÉ% 10 ÿ O ÅQ H 2 S 5Q6 Fig. 4ž Fig. 5 dï 2.. ZnO/Al 2 O 3 b q 6 ÿ b- ( zm@b T 1 ÿ z O¼ à 150 min, 2 ÿ 180 min, 3 ÿ 220 min, 4 ÿ 210 min, 5 ÿ 200 min, 6 ÿ 170 min0 z o=4 H 2 S 7 o@ 8! 5Q6 9 Á 5.. ZnO/natural zeolite b q 9 ÿ >?@B T 1 ÿ bz O¼ à 140 min, 2 ÿ àb 200 min # 0 H 2 S 7 o@ 8! 5Q6 9 5.. ìz b ž a Š B Š ºê z o= Oõ 5Q6 9 *ú & '! ^xy z :65B Á' Œ.. Õ b ÑÕ Á b&' Œ% ^z [D )k8 z :65B Á' Œ À dï(.. ; Õ b ÑÕ ÿ ºm ÖB b:¾ 5B À dï(b\, s ÆD 1 ÿ4 b Ø 2 0 3ª z :65 8 µ³.. %ƒ b Fig. 5. H 2 S breakthrough curve for the sulfidation of ZnO/natural zeolite sorbent at 480 o C. -% z Szekely W[24] grain model ²f @B\, GibsonQ Harrison W[25] nƒ4 grain )<(grain diffusion resistance) Œ µ³ H 2 S b Ø n= y0 )@ µ³ b >x Ä dï?.% % +.. ; Kang W[18] b- (z zm@b Q#4 b Ø @ AB56 Fc åx@% CÃ.% % +.. ] 8=ÅQ$ ÁÂt Û µ Ö ÿ bz 4 b b:¾ Ä À H 2 S 2 ) "è À ÆD! b- ( zm@ã4 c (x J 2 ) SŽt# µ³ b:¾ 5B À ²f* +.. bz 4 b Š b $ 580 o C, 5vol%)V(O 2 ) (Q#4 (5B SO 2 Oõ$ ;ö 5Q6 Fig. 6Q Fig. 7 dï2.. ZnO/Al 2 O 3 b q (z O¼ à 3%# SO 2 So@! z O¼ à 50-100 min# 4 SO 2 So V5 O¼5B\, SO 2 5Q6 9 3~5! z ÿ *ú 5Q6 9 3~t % TO (9OÞ 8@, 6 ÿ4b 300 min# 4 ( 9@ 8.. ZnO/natural zeolite b qb (z O¼ à 100 min # 0 3%# SO 2 So@! 5Q6 9 5% 250 min àb SO 2 ;ö@ 8.. ž a b ( "è À b)y (x ^ ÆD +.[26]. C, bk8(zns) )V t4 ) 41 5 2003 10

!"#$ 671 Table 3. Sulfur capacity of Zn/natural zeolite and ZnO/Al 2 O 3 sorbents Sulfur capacity(gs/100g sorbent), Number of cycles Sorbents 1 2 3 4 5 6 7 8 9 ZnO/Al 2 O 3 21.1 25.3 27.2 26.1 25.2 22.2 ZnO/natural zeolite 20.2 26.1 25.3 23.2 25.1 26.3 27.4 26.2 26.1 Fig. 6. SO 2 breakthrough curve for the regeneration of ZnO/Al 2 O 3 sorbent at 580 o C. :¾ Table 3 dï2.. ZnO/Al 2 O 3 b q 1 ÿ 4 b:¾ 15 gs/100 g sorbent #, 3 ÿ4 25 gs/ 100 g sorbent#!, 5 ÿ à 20 gs/100 g sorbent # $ S5B À dï(.. ZnO/natural zeolite b B 1 ÿ 4 b:¾ 20 gs/100 g sorbent #! 2 ÿ4 26 gs/ 100 g sorbent # Sv à 4 ÿ0 V@..O 5 6 26 gs/100 g sorbent S@B À dï(.. ÿ º ê b:¾ ZnO/Al 2 O 3 b q 4 ÿ0 5. à V5B dï2! ZnO/natural zeolite b q 25 gs/100 g sorbent h 10 ÿ 0 S@B À dï(.. 2=x q À v ZnO/natural zeolite b 5 6 10 ÿ à x¾ D5% x¾ b- ( 30 ÿ?5.. Fig. 7. SO 2 breakthrough curve for the regeneration of ZnO/natural zeolite sorbent at 580 o C. (@B Q#4 Õ $ B\, 5dB (4)ž a SO 2 )@B À!.ê B (5)ž a b)y(znso 4 ) (x v à b)y %ƒ yt t4 SO 2 @B.. Ò 8 =4 b ( ÐD y4 ( " B SB b )Y (x D5B À,Îv.. 3-4. 30 #$% &'" Ó8 Ôm I$ : ZnO/natural zeolite b 30 ÿ x¾ b :¾ Fig. 8 dï2.. Fig. 8 4 dï ž a 10 ÿ4 b :¾ G 5@ B\, 7íz b â>u y ;ö ÅQ, b AB t4 ÏHI Èh ( À b ž z 5 % JQ 5B bv t4 Ðe b x¾ 5v À D À D@.. b $ â> ÅQ, 10 ÿ4 18 gs/ 100 g sorbent V5 K b :¾ 11 ÿ.o 4M@ B\ b:¾ L(29.6 gs/100 g sorbent) 05B # h@.. sd 4M@ K b :¾ 15 ÿ0 S@. 16, 20, 24 ÿ4 Îœ V@B dï(.. b: ¾ V5B ÿ4 z 2 â>u D5 d ÏH I Û +B M@ 8.. Áú b&' V@ ~ 30 ÿ0 b:¾ 15 gs/100g sorbent h S@ B\, s ÅQB Nª Ë $ :5 % ) k8q Ó8 Ôm I ~ v k8œ b 4B k ZnS+3/2O 2 /ZnSO 3 /ZnO+SO 2 (4) ZnS+3/2O 2 /ZnSO 3 +1/2O 2 /ZnSO 4 /ZnO+SO 2, SO 3 (5) h ÅQ4 ZnO/Al 2 O 3 b Á56 ZnO/natural zeolite b ( ÿ ºm Á #D ( x S 5 B\, Ó8 Ôm I us ) Q a w )[ b ( í ^B Ë E* 5 µ³d À, Îv.. Kim, Lee, Jun W[21-23] b (x 5 5 6 )[ Ë :5 B\, ] 8=ÅQ4 ) (Fe 2 O 3 ) Ë :* q (x @.% % +.. )k8 Á56 ) 450-600 o C=Þ4 ( Fù! k8œ MN)[D zinc titanatež zinc ferrite q zinc ferrite ( é Fê À @.. Ò 8=4B %ƒ b b Ç ( 8 >?p q b:¾ ì#5 S@B # $ b 2=x m #5.. Ò 8=4 Õ k8œ b 8 -z MD b- ( ÿ 4 ÿ ºê b b Fig. 8. Sulfur capacity of ZnO/natural zeolite during 30 cycle reaction. HWAHAK KONGHAK Vol. 41, No. 5, October, 2003

672 Table 4. Attrition resistance of zinc-based sorbents Sorbents AI(5), CAI(5), Initial Flow rate, RH, [%] [%] weight, [g] [slpm] [%] Temp., ZnO/Al 2 O 3 43.1 34.5 50 10 28.3 22 ZnO/natural zeolite 14.7 9.1 50 10 30.2 26 STA S 10 slpm(standard liter per minute) ì µ 20% # D\, Ó8 Ôm I$ : b q Nª Å N $ :5 8$ O=5% Œ 2ÐÑx > À d ï(.. ìz b Ø $ S5 56 UVd I (bentonite)ž V(clay) WQ a Úx ÅN $ :5B\, Ò 8 =4 : Ó8 Ôm I q UVd Id V ž ÐW.Ÿ X+ xy MN Nv Ó8Y[4 OZIž S xy u5% +.. 4 E*Q Úx ÅN E* TO B À,Îv.. ª Ó8 Ôm I 4.44 wt%# usv )š (CaO) dž ŽÊ ^x yd OZI )k8, Yk8WQ u us@, Å ¼:.. )š usv Ó8 Ôm I$ :* q 2ÐÑ x 5B\ í i + À,Îv.. Fig. 9. SEM photography of ZnO/natural zeolite sorbent, (a) fresh, (b) 30 cycle reacted. 3-6. XRD Õ b b- ( 8 z? z à [ŽS x õ$ ;ö5 56 XRD$ :56 b Å#= õ$ 5! ] ÅQ$ Fig. 10Q Fig. 11 dï2.. ZnO/Al 2 O 3 b B z q 2θ L 31.7, 34.3, 36.2D ZnO x@ù~ dï(d z àb ZnOž 2θL 31.22, 36.8D ZnAl 2 O 4 x@ù u dï(.. z >?@B T ^z [ D ZnOž D Al 2 O 3 ÅN56 MN)[D ZnAl 2 O 4 ž a ^ q x¾ ûv.. ; x¾ 4 ;ö@b Á>x ÆD 5 56 z à b Cà ü#5! SEM/EDX$ :56 C Ã[xõ$ ;ö5.. Cà ü#åq, b- ( 8 zm à b Cà 3.7 m 2 /g4 9.4 m 2 /g 5 $ O=5% b:¾ 5@.. EDX y7 b Cà k 8uw z 86.4%# B\, 24 ÿq 30 ÿ z à ÍÍ 90.2%, 94.6% @.. Z 30 ÿ à b Cà SEM ;ö ÅQ Fig. 9(b) dï ÀQ a P[ Q6 + B åh Û +.. h Cà xõ y7åq J k8œ b $ Þ 8 zm : * q 7LA n Nx A(CO, H 2 ) t )k8 Æ@, ÆV k8 @%, ] Cà T(migration) Ç VÅ t Á>x ì,r +$ D* +.. 3-5. # Ó8 Ôm Iž d$ :56 Õ k 8œ b 56 5OÞT Air jet STO b ÐÑ g Ÿ J ä,> ÐÑC(AI: attrition index)ž #ÐÑC (CAI: collected attrition index)$ Table 3 dï2.. d$ : b B 5OÞT ST ÐÑC 43.1%, #ÐÑCB 34.5%#! Ó8 Ôm I$ : b B ÐÑC 14.7%, #ÐÑCB 9.1%#.. 7SS c STU Tz c# :@B FCC T ÐÑg # B Fig. 10. XRD pattern of ZnO/Al 2 O 3 sorbent. 41 5 2003 10

!"#$ 673 m I us.ÿ xy bx¾ eb í hf5 * q %&' %ƒ b h: Ç 1)O$ ^á_ + À v.. Ò 8=B QS 1#8= ç t4?@! 8 =Á Æ {`l.. Fig. 11. XRD pattern of ZnO/natural zeolite sorbent. A@X= [ (x@.. sd ZnAl 2 O 4 B [ [5% #x Œ [ŽS x ~ H 2 Sž z x } )B À +B\, Ò 8= b- (8 z 4 b :¾ E V5B 6s ÆD n 5d Û +.[27]. zã ZnO/natural zeolite b B z Q à XRD y7åq ZnO ~ ;ö@! 8 z t4 ZnO Å#x 5@, @ÙF V À 3.ê Å#= $ \k Û ).. Á d Á56 Ó8 Ôm I 4 #D À,Î v.. 4. dž Ó8 Ôm I$ k8œ b = #x 5 :56 b $ 5!, ] b x ¾ û5 56 z x, 2=x, 2ÐÑx ÁÂ5! ÅQ J.$Q a ÅQ$ ä.. k8œ b b- (8 z x 5 t4b )k8 VÅ * +B $ :5B À SŽ5! Ó 8 Ôm I$ :* q d$ : qž ÐW )k8 VÅ * +.. Z Ó8 Ô m I us Fe 2 O 3, Na 2 O, CaO WQ a )[ Ë Ç ÅN ¼:56 z x, 2=x, 2ÐÑx hoéb í + $ Ó8 Ôm Iž a Ó8Y[ b x¾ SŽ u D5.. Ò 8=4B 12) Ó8 Ôm I$ :56 k8œ b $ u] 5Ã4 x¾ q %ƒ b 1) ¾x D* +B xq$ ä.. Eà Ó8 Ô 1. Park, Y. S., Rhee, Y. W. and Son, J. E., Chemical Industry and Technology, 11(5), 366(1993). 2. Rhee, Y. W. and Son, J. E., Chemical Industry and Technology, 13(1), 53(1995). 3. Yi, C. K. and Wi. Y. H., Chemical Industry and Technology, 13(5), 466(1995). 4. Rutkowski, M. D., Klett, M. G. and Zaharchuk, R., Assesment of Hot Gas Containment Control, Proceeding of the Advanced Coal- Fired Power Systems 96 Review Meeting, METC(1996). 5. Copeland, R. J., Cesario, M., Dubovik, M., Feinberg, D. and Windecker, B., A Long Life ZnO-TiO 2 Sorbent, Proceeding of the Advanced Coal- Fired Power Systems 95 Review Meeting Volume I, 394(1995). 6 Copeland, R. J., Cesario, M., Dubovik, M., Feinberg, D., NacQueen, B., Sibold, J., Windecker, B. and Yang, J., Long Life ZnO-TiO 2 and Novel Sorbent, Proceeding of the Advanced Coal-Fired Power Systems 96 Review Meeting(1996). 7. Rhee, Y. W., Lee, T. J. and Yi, C. K., Chemical Industry and Technology, 15(3), 273(1997). 8. Rhee, Y. W., Lee, T. J. and Yi, C. K., Chemical Industry and Technology, 15(4), 342(1997). 9. Ayala, R. and March, D. W., Cheracterization and Long-Range Reactivity of Zinc Ferrite in High-Temperature Desulfurization Processes, Ind. Eng. Chem. Res., 30(1), 55(1991). 10. Woods, M. C. and Gangwal, S. K., Kinetics of the Reactions of a Zinc Ferrite Sorbent in High-Temperature Coal Gas Desulfurization, Ind. Eng. Chem. Res., 30(1), 100(1991). 11. Gibson, J. B. and Herrison, D. P., The Reaction between Hydrogen Sulfide and Spherical Pellets of Zinc Oxide, Ind. Eng. Chem. Pro. Des. Dev., 19, 231(1980). 12. Sa, L. N., Focht, G. D., Ranade, P. V. and Harrison, D. P., High- Temperature Desulfurization Using Zinc Ferrite: Solid Structural Property Changes, Chem. Eng. Sci., 44(2), 215(1989). 13. Kidd, D. R., Nickel-promoted Absorbing Compositions for Selective Removal of Hydrogen Sulfide, U.S.Patent No. 5,094,996(1992). 14. Kidd, D. R., Delzer, G. A., Kubick, D. H. and Schubert, P. F., Selective Removal of Hydrogen Sulfide over a Zinc Oxide and Silica Absorbing Composition, U.S.Patent No. 5,358,921(1994). 15. Khare, G. P. and Cass, B. W., Fluidizable Sulfur Sorbent and Fluidized Sorption Process, U.S.Patent No. 5,439,867(1995). 16. Kidd, D. R., Selective Removal of Hydrogen Sulfide over a Nickelpromoted Absorbing Composition, U.S.Patent No. 4,990,318(1991). 17. Lim, C. J., Cha, Y. K., Park, N. K., Ryu, S. O., Lee, T. J. and Kim, J. C., A Study of Advanced Zinc Titanate Sorbent for Mid-Temperature Desulfurization, HWAHAK KONGHAK, 38(1), 111-116(2000). 18. Kang, S. C., Jun, H. K., Lee, T. J., Ryu, S. O. and Kim, J. C., The HWAHAK KONGHAK Vol. 41, No. 5, October, 2003

674 Characterization of Zn-based Desulfurization Sorbents on Various Supports, HWAHAK KONGHAK, 40(3), 289-297(2002). 19. Gupta, R. P. and Gangwal, S. K., Enhanced Durability of High-Temperature Desulfurization Sorbents for Fluidized-Bed Applications, Topical Report to DOE/METC, November(1992). 20. ASTM D 5757-95, Standard Method for Detemination of Attrition of Powered Catalysts by Air Jets, (1995). 21. Jun, H.-K., Lee, T.-J. and Kim, J.-C., Role of Iron Oxide in Promotion of Zn-Ti-Based Desulfurization Sorbents during Regeneration at Middle Temperatures, Ind. Eng. Chem. Res., 41, 4733(2002). 22. Lee, H. S., Kang, M. P., Song, Y. S., Rhee, Y. W. and Lee, T. J., Desulfurization Chatacteristics of CuO-Fe 2 O 3 Sorbents, Korean J. Chem. Eng., 18(5), 635(2001). 23. Jun, H. K., Lee, T. J., Ryu, S. O. and Kim, J.C., A Study of Zn-Ti- Based H 2 S Removal Sorbents Promoted with Cobalt Oxides, Ind. Eng. Chem. Res., 40, 3547(2001). 24. Szekely, J., Evans, J. W. and Sohn, H. Y., Gas-Solid Reactions, Academic Press, New York(1976). 25. Gibson, J. B. III, and Harrison, D. P., The Reaction between Hydrogen Sulfide and Spherical Pellets of Zinc Oxide, Ind. Eng. Chem. Process Des. Dev., 19, 231(1980). 26. Sasaoka, E., Hatori, M., Yoshmura, H. and Su, C., Role of H 2 O in Oxidation of Spent High-Temperature Desulfurization Sorbent Fe 2 O 3 and CuO in the Presence of O 2, Ind. Eng. Chem. Res., 40, 2512(2001). 27. Park, N. K., Lee, C. U., Ryu, S. O., Lee, T. J. and Kim, J. C., Preparation and Reactivity of ZnO/Al 2 O 3 Desulfurization Sorbents for Removal H 2 S, Energy Engg. J., 11(2), 136-141(2002). 41 5 2003 10