Luminescence and Optical Properties of Tm 3+ :TeO 2 - ZnO-TiO 2 Glasses for Fiber Optic Applications



Similar documents
Integrated optics Er-Yb amplifier with potassium ion-exchanged glass waveguides

Analytical Testing Services Commercial Price List ManTech International Corporation January 2016

Optical Hyperdoping: Transforming Semiconductor Band Structure for Solar Energy Harvesting

The CVD diamond booklet

Infrared Fiber Lasers

Influence of PbX 2 (X = F, Cl, Br) content and thermal treatment on structure and optical properties of lead borate glasses doped with rare earth ions

Solid State Detectors = Semi-Conductor based Detectors

Supporting Information

PUMPED Nd:YAG LASER. Last Revision: August 21, 2007

Chemical Synthesis. Overview. Chemical Synthesis of Nanocrystals. Self-Assembly of Nanocrystals. Example: Cu 146 Se 73 (PPh 3 ) 30

The study of structural and optical properties of TiO 2 :Tb thin films

From lowest energy to highest energy, which of the following correctly orders the different categories of electromagnetic radiation?

Experiment #5: Qualitative Absorption Spectroscopy

- thus, the total number of atoms per second that absorb a photon is

Applied Physics of solar energy conversion

High power laser glass and its application. Lili Hu Shanghai Institute of Optics and Fine Mechanics,CAS, China

Chapter 5. Second Edition ( 2001 McGraw-Hill) 5.6 Doped GaAs. Solution

IUCLID 5 COMPOSITION AND ANALYSIS GUIDANCE DOCUMENT: IRON ORES, AGGLOMERATES [EINECS NUMBER , CAS NUMBER ] IRON ORE PELLETS

Types of Epitaxy. Homoepitaxy. Heteroepitaxy

The Physics of Energy sources Renewable sources of energy. Solar Energy

2. Molecular stucture/basic

EVALUATION OF CRYSTAL FIELD PARAMETERS OF NEODYMIUM ACTIVATED LASER GLASSES

Spectroscopy. Biogeochemical Methods OCN 633. Rebecca Briggs

Blackbody Radiation References INTRODUCTION

Undergraduate Research Academy (URA) Cover Sheet

Silicon, the test mass substrate of tomorrow? Jerome Degallaix The Next Detectors for Gravitational Wave Astronomy Beijing

Absorption by atmospheric gases in the IR, visible and UV spectral regions.

Preview of Period 3: Electromagnetic Waves Radiant Energy II

Molecular Spectroscopy

Soft lithography for diffractive microfabrications

Back to Basics Fundamentals of Polymer Analysis

Basic principles and mechanisms of NSOM; Different scanning modes and systems of NSOM; General applications and advantages of NSOM.

University of Wisconsin Chemistry 524 Spectroscopic Applications (GFAA, ICP, UV/Vis, Fluorescence)

Aktivitäten des IAP im Bereich Fasern und Faserlaser

Defense & Security Symposium 2004, Kigre Er:glass Publication #144. Eye-Safe Erbium Glass Laser Transmitter Study Q-Switched with Cobalt Spinel

Project 2B Building a Solar Cell (2): Solar Cell Performance

Concept 2. A. Description of light-matter interaction B. Quantitatities in spectroscopy

NANO SILICON DOTS EMBEDDED SIO 2 /SIO 2 MULTILAYERS FOR PV HIGH EFFICIENCY APPLICATION

Forms of Energy. Freshman Seminar

Keywords: Planar waveguides, sol-gel technology, transmission electron microscopy

Formation of solids from solutions and melts

Solar Cell Parameters and Equivalent Circuit

Rate Equations and Detailed Balance

Solidification, Crystallization & Glass Transition

Raman spectroscopy Lecture

Ti:Sapphire Lasers. Tyler Bowman. April 23, 2015

Light as a Wave. The Nature of Light. EM Radiation Spectrum. EM Radiation Spectrum. Electromagnetic Radiation

Monitoring the Ligand-Nanopartcle Interaction for the Development of SERS Tag Materials. Prepared by: George Franklin McKinney Jr.

Laboratory #3 Guide: Optical and Electrical Properties of Transparent Conductors -- September 23, 2014

PUMP WAVELENGTHS FOR AN UPCONVERSION-PUMPED Er:YAG GREEN-EMITTING LASER

A More Efficient Way to De-shelve 137 Ba +

How do single crystals differ from polycrystalline samples? Why would one go to the effort of growing a single crystal?

Industrial Process Monitoring Requires Rugged AOTF Tools

Laser beam sintering of coatings and structures

Components for Infrared Spectroscopy. Dispersive IR Spectroscopy

UNIT I: INTRFERENCE & DIFFRACTION Div. B Div. D Div. F INTRFERENCE

Ionic Diffusion and the Nearest Local Arrangement in Silver Chalcohalide Glasses Studied Using 110m Ag Radio-tracer and 129 I Mössbauer Spectroscopy

Temperature Increase in the. Human Eye When Subjected to a. Laser Source

CURRİCULUM VİTAE Present Assist. Prof. Dr., Material Science and Engineering Department, Cankaya University

Infrared Optical Fiber. Datasheets and Price list. JTIngram Sales and Marketing

Nuclear Magnetic Resonance (NMR) Spectroscopy cont... Recommended Reading:

Special materials. for Precision Optics & Laser Coatings. Oxides for Evaporation

Thermal diffusivity and conductivity - an introduction to theory and practice

Austin Peay State University Department of Chemistry Chem The Use of the Spectrophotometer and Beer's Law

UV/VIS/IR SPECTROSCOPY ANALYSIS OF NANOPARTICLES

Infrared Spectroscopy: Theory

International Journal of Multidisciplinary Research and Modern Education (IJMRME) ISSN (Online): ( Volume I, Issue

Chemistry Instrumental Analysis Lecture 1. Chem 4631

LabRAM HR Evolution. Research Raman Made Easy!

Phase Characterization of TiO 2 Powder by XRD and TEM

Light management for photovoltaics using surface nanostructures

Time out states and transitions

GREEN NANOTECHNOLOGY. Geoffrey. Energy in the Built Environment. Solutions for Sustainability and. B. Smith Claes G. Granqvist.

The study of deep-level emission center in ZnO films grown on c-al 2 O 3 substrates

Porous silicon based optical multilayers

Robert G. Hunsperger. Integrated Optics. Theory and Technology. Fourth Edition. With 195 Figures and 17 Tables. Springer

LabRAM HR. Research Raman Made Easy! Raman Spectroscopy Systems. Spectroscopy Suite. Powered by:

where h = J s

DSC Differential Scanning Calorimeter

3 - Atomic Absorption Spectroscopy

16th International Toki Conference on Advanced Imaging and Plasma Diagnostics

Phase Bulb Refurbation and Optmic Thin Film

Impressing technology of optical Bragg's gratings on planar optical sol-gel waveguides

MCAL Spectrophotometry. Spectrophotometry

Highlights of Solid State Physics. Man of the Year Nobel Prizes

Elemental Analyses by ICP-AES

Corning HPFS 7979, 7980, 8655 Fused Silica. Optical Materials Product Information Specialty Materials Division

Exploring the Properties of the TV Monitor and Remote Control

Crystal Structure of High Temperature Superconductors. Marie Nelson East Orange Campus High School NJIT Professor: Trevor Tyson

Growth and Characterisation of Gudolinium doped Sulphamic acid Single Crystal

FTIR and DSC of polymer films used for packaging: LLDPE, PP and PVDC

A down-under undergraduate optics and photonics laboratory

Preparation of ZnS and SnS Nanopowders by Modified SILAR Technique

NEAR FIELD OPTICAL MICROSCOPY AND SPECTROSCOPY WITH STM AND AFM PROBES

Current Staff Course Unit/ Length. Basic Outline/ Structure. Unit Objectives/ Big Ideas. Properties of Waves A simple wave has a PH: Sound and Light

Zecotek S Light Projection Network Marketing

2. Deposition process

Problem Set 6 UV-Vis Absorption Spectroscopy Express the following absorbances in terms of percent transmittance:

ANALYSIS OF ASPIRIN INFRARED (IR) SPECTROSCOPY AND MELTING POINT DETERMINATION

Important Types of Lasers

Transcription:

Luminescence and Optical Properties of Tm + :TeO - ZnO-TiO Glasses for Fiber Optic Applications İdris Kabalcı 1, Turgay Tay Tuğba Duran, Mustafa Özdemir, Gönül Özen 4 1 Department of Physics Education,, Şanlıurfa, Turkey Department of Chemistry, Anadolu University, Eskişehir, Turkey Department of Physics, Marmara University İstanbul, Turkey 4 Department of Physics, Istanbul Technical University İstanbul, Turkey

Outline Motivation Synthesis of Tm + :TeO -ZnO-TiO glass Thermal, Optical and Spectroscopic Measurements Fluorescence Properties Results

Volume Glass and Structure Stable Liquid Rapidly cooled liquid (a) Crystalline and Amarphous Structures (b) Glass Crystal Temperature T g T m T g : Glass transition T m : Melting temperature Figure: Atomic arrangement in two dimension (a) crystal and (b) glass. Ref: MAP Silva et al., 00, Journal of Physics and Chemistry of Solids,6, 605. Ref: Yamane and Asahara, Glasses for Photonics, Cambridge Un. Press, 000

Glass Types (a) (b) Glass Nonoxide glass Organic polimeric glass Chalco. glass Halogen glass Floride glass Oxide glass Nonsilicate glass Silicate glass (a): Nonsuitable materials for fiber optics (b): Suitable materials for fiber optics TeO glass Low silicate glass

Tm + :TeO -ZnO-TiO Glasses Potential applications Fiber-optic amplifier @1400-000 nm Infrared fiber lasers @1800 nm Physical properties: Low melting temperature High dielectric constant High refractive index Resistant to atmospheric moisture Transmission window in the IR region (0.5-5 m) Low phononenergies: Borate (1400 cm -1 )>Phosphate (1100 cm -1 )>Silica (1000 cm -1 )> Germanate (900 cm -1 )>Tellurite (780 cm -1 ) >Fluorides (500 cm -1 )>Chalcogenides (00 cm -1 ) Ref: http://picses.eu/

Synthesis of Tm + : TeO - ZnO-TiO Glasses Three sets of samples: ytm + : (95-x)TeO -(x) ZnO-5TiO Set 1: x=05, 10, 0, and 0 mol%, undoped. Set : y=1.0 mol, x=05, 10, 0, and 0 mol%. Set : x=0 mol, y=0., 0.5, and 1.0 mol%. Batch size=7 gm Melting temperature=850 0 C (60 minutes, platinum crucible) Rapid quenching between graphite slabs

Laser Photonics Lab., Department of Physics Education, Harran Un. Synthesis of Tm + :TeO -ZnO-TiO Chemicals Furnace TeO : 99.999% purity,sigma- Aldrich ZnO : 99+% purity, Sigma-Aldrich TiO : 99+% purity, Merck Tm O : 99.9% purity, Aldrich

Density (g/cm ) Density measurements Laser Photonics Lab., Department of Physics Education, 5.6 5. 4.8 4.4 4 0 10 0 0 40 x (mol%) x mol% ZnO Tellurite glass samples

Exo Up Thermal Analysis (DTA) DTA @ 0 o C/min (1-x)TeO -(x)zno-5tio T p DTA + (T s -T r ) + (d) T g (c) T g T x T p - (b) T g T p1 T p T p T m T s HEATER T r (a) T g T m 00 00 400 500 600 700 (a): 5mol% ZnO (b): 10mol%ZnO (c): 0mol%ZnO (d): 0mol% ZnO Temperature ( o C) T m T g : Glass transition temperature T p : Crystallization temperature T m : Melting temperature T s : Sample temperature T r : Reference temperature Ref: (DTA) Prof.Dr. Remzi Gürler, Department of Materials Science, Eskişehir Osmangazi University, Eskişehir

Kg Glass Forming Tendency Glass Tendency 0.8 Glass Tendency: K g 0.6 0.4 K g T T c m T T g c 0. 0 0 10 0 0 40 x (mol%) Ref: Maharian N.B., Physc. Stat. Sol. (a), 178. p.66. 000 The glass forming tendency is highest at a composition 0 mol.% ZnO

Intensity (arb.u) X-Ray Diffraction (1-x)TeO -xzno-5tio (c) : -TeO : -TeO (b) (a) 0 5 0 5 40 45 50 55 60 (a): x=5, @ 40 o C, (b): x=10 mol, @ 450 o C, (c): x=10 mol, @ 500 o C Ref: X-Ray Diffraction, Rigaku, Research Lab.

Intensity (arb.u) X-Ray Diffraction (1-x)TeO -xzno-5tio (f) : -TeO : -TeO (e) (d) 0 5 0 5 40 45 50 55 60 (d): x=0 mol, @ 490 o C, and (e): x=0 mol,@ 50 o C, (f): x=0 mol% ZnO, @ 500 o C

Absorbance UV-VIS Absorption Absorption spectrum : (1-x)TeO -xzno-5tio Mott-Davis Theory 0.4 0. 0.4 x=5mol% ZnO x=10mol% ZnO x=0mol% ZnO x=0mol% ZnO ( ) log C( h I 0 l I E n opt ) / h 0.16 0.08 0 400 500 600 700 800 Wavelength (nm) Ref: Perkin Elmer Lamda 5 UV-VIS, M.Durgun, Department of Chemistry,, Şanlıurfa Values of n= ½ and for Direct and indirect transtions, Respectively. Ref: N.F. Mott, E.A. Davis, Electronic Processes in Non-crystalline Materials,Clarendon Press, nd Edition, Oxford, 1979.

Absorption Direct Band Gap, E g Indirect Band Gap, E g 400 00 TZT1 TZT1 TZT TZT TZT TZT TZT4 TZT4 5 4 TZT1 TZT1 TZT TZT TZT TZT TZT4 TZT4 00 100 1 0..4.6.8. TZT1: x=5 mol% ZnO : E g =.94; E g =.6 ev TZT: x=10 mol% ZnO: E g =.96; E g =.67 ev TZT: x=0 mol% ZnO: E g =.97; E g =.7 ev TZT4: x=0 mol% ZnO: E g =.0; E g =.74 ev 0 1. 1.4 1.6 1.8..4.6.8

Absorbance Tm + :TeO -ZnO-TiO Absorption spectrum : 1 mol % Tm + : 0.90TeO -0.05ZnO-0.05TiO Energy Level of Tm + 1 D 1. 1.0mol% Tm + : (95-x)TeO -xzno-5tio 1 G 4 T=00 o K 1 G 4 0.8 F, F F 4 F H 5 F 4 0.4 H 4 785 nm 1470 nm H 5 H 4 0.0 400 800 100 1600 000 Wavelentgth (nm) 1800 nm Ref: M.J.F. Digonnet, Rare-Earth Doped Fiber Lasers and Amplifiers, 199. H 6 Ref: Shimadzu UV-VIS-NIR, T.Tay, Department of Chemistry, Anadolu University, Eskişehir

Absorption 1 G 4 F, F 4 H 5 Tm + :TeO -ZnO-TiO Absorption spectrum : 1 mol % Tm + :(TeO ) (1-x-y) -(ZnO) (x) -(TiO ) (y) T=00 o K 1.0mol% Tm + : (TeO ) (1-x-y) (ZnO) (x) (TiO ) (y) x=5mol% H 4 x=10mol% x=0mol% x=0mol% 400 600 800 1000 100 1400 1600 1800 000 Wavelength (nm)

Judd-Ofelt Theory Tm + : 4f-4f transition Laporte rules: u g ; g u Russel Saunders : S+1 L J Judd-Ofelt theory: Intensity parameters (, 4, ), 6 Radiative transition probability, A(J,J ) Radiative lifetime, R Luminescence quantum efficieny, η Branching ratio, (I,J) Ref: B.M. Walsh, NASA Langley Research Center, Erice, Italy (June 005). Tm + : 1s s p 6...... 4d 10 4f 1 5s 5p 6 Ref: R.C. Powel, Physics of Solid-State Laser Materials.

Einstein s Coefficient E N ij ( E j Ei ) h B 1 A 1 B 1 B 1U 1 N1 A1N B1U 1 N E 1 N 1 Einstein s Coefficients: A 1 : Spontaneous emission prob. B 1 : Stimulated emission pob. B 1 : Absorption transition pob. U 8 h c 1 exp h kt 1 4 64 1 ed A1 B1 S ( J, J ') hc

Judd-Ofelt Parameters Judd-Ofelt intensity 8 e ( parameters n ) N0 ( J, J ) x ch 9n (J 1) ( t) f cal t SLJ U S L J t,4,6 f ( ) d den S ed band ( J, J ) t,4,6 t.0 log 10( I o / I) ( ) l SLJ U ( t) S L J band 8 e ( n ) N0 ed ( )d S ( J, J ) ch 9n (J 1), 4, 6 = Judd-Ofelt intensity parameters c = speed of light, cm/sec; n= refractive index = mean wavelength, SLJ=Quantum number N 0 = Tm + concentration (t) U = irreducible tensor operator

Judd-Ofelt Theory A( J, J ) 4 64 e h(j 1) n( n ) 9 x t,4,6 t SLJ U ( t) S L J 1 R J A ( J, J ) W R A ( J, J ) W R F R

Intensity Parameters TeO -ZnO-TiO glasses 70 60 50 40 Refractive index =.05 Ref: E.R. Taylor, L.N. Ng, N.P. Sessions, J. Appl. Phys.9(1), 11-117, (00). t,10-0 cm 0 0 10 0 0 5 10 15 0 5 0 x, mol%

Luminescence Measurements PbS DETECTOR PREAMPLIFIER LOCK-IN AMPLIFIER SCANNING SPECTROMETER M1 Tm-GLASS L1 CHOPPER DIODE LASER (785 nm) OSCILLOSCOPE COMPUTER Ref: A. Sennaroglu, A. Kurt, Laser Research Lab., Department of Physics,Koç University

Intensity Photoluminescence 0.40 T=00 o K 0. mol% Tm F 4 H 4 0.5 mol% Tm 1.0 mol% Tm (a) 0. Cross relaxation rates Tm + Tm + F 4 F 4 0.4 0.16 (b) Pump (785 nm) 1 H 5 H 4 H 5 H 4 0.08 (c) 100 100 1400 1500 1600 1 Wavelength (nm) H 6 H 6 1470-nm @ y = 0. mol % Tm + (a) 1470-nm @ y = 0.5 mol % Tm + (b) 1470-nm @ y = 1.0 mol % Tm + (c) Ref: Kabalci I., Özen G., Kurt A., and Sennaroglu A., MRS (Material Research Society), Proc. Volume 89, Boston, 004 x=0mol% ZnO

Results 1.0 mol% Tm + Concentration (mol %) R ( s) F 4 R ( s) H 4 E opt1 (ev) E opt (ev) d(g/c m ) 05 050 6.94.60 5.4 10 05 58.96.67 5.1 0 09 678.97.7 4.96 0 04 6.00.74 4.51 Radiative life time decrease for increasing glass compositions Optical energy band gap increases with glass compositions

Conclusions x = 5, 10, 0, and 0 mol.% (95-x)TeO -xzno-5tio new glasses doped with Tm + ion are synthesized, Spectroscopic investigation of luminescence in Tm + :TeO -ZnO-TiO as a function of glass composition. Radiative Lifetimes, Radiative transition probabilities and branching ratios: Judd-Ofelt analysis. Energy band gaps (E g ) calculated, Density, UV-VIS, and UV-VIS-NIR measurements were reported for these samples.

Collaborators Prof. Dr. Gönül Özen, Physics Department, I.T.U., Maslak, İstanbul, Turkey Prof.Dr. Alphan Sennaroğlu, Laser Research Laboratory, Koç University, Sarıyer, İstanbul, Turkey Prof.Dr. M. Lütfi Öveçoğlu, Ress. Asst. Hasan Gökçe, Department of Metallurgical and Materials Engineering, İ.T.Ü., Maslak, İstanbul,Turkey Acknowledgements This research has been supported by TÜBİTAK, under the project number 108T694.