Chapter 4 Multivariate distributions



Similar documents
Overview of some probability distributions.

University of California, Los Angeles Department of Statistics. Distributions related to the normal distribution

Chapter 7 - Sampling Distributions. 1 Introduction. What is statistics? It consist of three major areas:

Properties of MLE: consistency, asymptotic normality. Fisher information.

Chapter 7 Methods of Finding Estimators

THE REGRESSION MODEL IN MATRIX FORM. For simple linear regression, meaning one predictor, the model is. for i = 1, 2, 3,, n

SAMPLE QUESTIONS FOR FINAL EXAM. (1) (2) (3) (4) Find the following using the definition of the Riemann integral: (2x + 1)dx

Sampling Distribution And Central Limit Theorem

UC Berkeley Department of Electrical Engineering and Computer Science. EE 126: Probablity and Random Processes. Solutions 9 Spring 2006

Chapter 6: Variance, the law of large numbers and the Monte-Carlo method

Infinite Sequences and Series

Case Study. Normal and t Distributions. Density Plot. Normal Distributions

I. Chi-squared Distributions

Normal Distribution.

Our aim is to show that under reasonable assumptions a given 2π-periodic function f can be represented as convergent series

Chapter 5: Inner Product Spaces


BASIC STATISTICS. f(x 1,x 2,..., x n )=f(x 1 )f(x 2 ) f(x n )= f(x i ) (1)

FIBONACCI NUMBERS: AN APPLICATION OF LINEAR ALGEBRA. 1. Powers of a matrix

CME 302: NUMERICAL LINEAR ALGEBRA FALL 2005/06 LECTURE 8

A probabilistic proof of a binomial identity

4.3. The Integral and Comparison Tests

Section 11.3: The Integral Test

Maximum Likelihood Estimators.

Convexity, Inequalities, and Norms

THE HEIGHT OF q-binary SEARCH TREES

THE ABRACADABRA PROBLEM

1 Correlation and Regression Analysis

1 Computing the Standard Deviation of Sample Means

Hypothesis testing. Null and alternative hypotheses

1 Review of Probability

CHAPTER 7: Central Limit Theorem: CLT for Averages (Means)

Unbiased Estimation. Topic Introduction

, a Wishart distribution with n -1 degrees of freedom and scale matrix.

Math C067 Sampling Distributions

Lecture 5: Span, linear independence, bases, and dimension

Parameter estimation for nonlinear models: Numerical approaches to solving the inverse problem. Lecture 11 04/01/2008. Sven Zenker

Soving Recurrence Relations

The following example will help us understand The Sampling Distribution of the Mean. C1 C2 C3 C4 C5 50 miles 84 miles 38 miles 120 miles 48 miles

Math 113 HW #11 Solutions

A Mathematical Perspective on Gambling

Chapter 14 Nonparametric Statistics

Output Analysis (2, Chapters 10 &11 Law)

1. MATHEMATICAL INDUCTION

NOTES ON PROBABILITY Greg Lawler Last Updated: March 21, 2016

Theorems About Power Series

1. C. The formula for the confidence interval for a population mean is: x t, which was

Factoring x n 1: cyclotomic and Aurifeuillian polynomials Paul Garrett <garrett@math.umn.edu>

Approximating Area under a curve with rectangles. To find the area under a curve we approximate the area using rectangles and then use limits to find

Lecture 13. Lecturer: Jonathan Kelner Scribe: Jonathan Pines (2009)

Non-life insurance mathematics. Nils F. Haavardsson, University of Oslo and DNB Skadeforsikring

MEI Structured Mathematics. Module Summary Sheets. Statistics 2 (Version B: reference to new book)

Parametric (theoretical) probability distributions. (Wilks, Ch. 4) Discrete distributions: (e.g., yes/no; above normal, normal, below normal)

1 The Gaussian channel

In nite Sequences. Dr. Philippe B. Laval Kennesaw State University. October 9, 2008

How To Calculate A Radom Umber From A Probability Fuctio

5: Introduction to Estimation

3. Greatest Common Divisor - Least Common Multiple

CS103A Handout 23 Winter 2002 February 22, 2002 Solving Recurrence Relations

A PROBABILISTIC VIEW ON THE ECONOMICS OF GAMBLING

GCSE STATISTICS. 4) How to calculate the range: The difference between the biggest number and the smallest number.

Hypergeometric Distributions

Confidence Intervals for One Mean

Confidence Intervals. CI for a population mean (σ is known and n > 30 or the variable is normally distributed in the.

Z-TEST / Z-STATISTIC: used to test hypotheses about. µ when the population standard deviation is unknown

Lecture 4: Cauchy sequences, Bolzano-Weierstrass, and the Squeeze theorem

A gentle introduction to Expectation Maximization

5 Boolean Decision Trees (February 11)

Inverse Gaussian Distribution

S. Tanny MAT 344 Spring be the minimum number of moves required.

5.3. Generalized Permutations and Combinations

10-705/ Intermediate Statistics

PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY AN ALTERNATIVE MODEL FOR BONUS-MALUS SYSTEM

Definition. A variable X that takes on values X 1, X 2, X 3,...X k with respective frequencies f 1, f 2, f 3,...f k has mean

Week 3 Conditional probabilities, Bayes formula, WEEK 3 page 1 Expected value of a random variable

PSYCHOLOGICAL STATISTICS

Lecture 4: Cheeger s Inequality

TO: Users of the ACTEX Review Seminar on DVD for SOA Exam MLC

The Stable Marriage Problem

Chapter 7: Confidence Interval and Sample Size

NATIONAL SENIOR CERTIFICATE GRADE 12

Department of Computer Science, University of Otago

CS103X: Discrete Structures Homework 4 Solutions

Section 8.3 : De Moivre s Theorem and Applications

LECTURE 13: Cross-validation

Universal coding for classes of sources

Central Limit Theorem and Its Applications to Baseball

Probabilistic Engineering Mechanics. Do Rosenblatt and Nataf isoprobabilistic transformations really differ?

Measures of Spread and Boxplots Discrete Math, Section 9.4

Descriptive Statistics

Confidence Intervals

3 Basic Definitions of Probability Theory

Lesson 15 ANOVA (analysis of variance)

Heat (or Diffusion) equation in 1D*

Statistics 100A Homework 7 Solutions

Determining the sample size

Solutions to Selected Problems In: Pattern Classification by Duda, Hart, Stork

Incremental calculation of weighted mean and variance

Overview on S-Box Design Principles

Transcription:

Chapter 4 Multivariate distributios k Multivariate Distributios All the results derived for the bivariate case ca be geeralized to RV. The joit CDF of,,, k will have the form: P(x, x,, x k ) whe the RVs are discrete F(x, x,, x k ) whe the RVs are cotiuous

Joit Probability Fuctio Defiitio: Joit Probability Fuctio Let,,, k deote k discrete radom variables, the p(x, x,, x k ) is joit probability fuctio of,,, k if px x p x x.,,.,, x x 3. P,, A p x,, x x,, x A Joit Desity Fuctio Defiitio: Joit desity fuctio Let,,, k deote k cotiuous radom variables, the f(x, x,, x k ) = δ /δx,δx,,δx k F(x, x,, x k ) is the joit desity fuctio of,,, k if. f x,, x dx,, dx. f x,, x A 3. P,, A f x,, x dx,, dx

Example: The Multiomial distributio Suppose that we observe a experimet that has k possible outcomes {O, O,, O k } idepedetly times. Let p, p,, p k deote probabilities of O, O,, O k respectively. Let i deote the umber of times that outcome O i occurs i the repetitios of the experimet. The the joit probability fuctio of the radom variables,,, k is! p x x p p p x x,, x! x! xk! x k k Example: The Multiomial distributio x x x Note: p p p k k is the probability of a sequece of legth cotaiig x outcomes O x outcomes O x k outcomes O k! x x x x x!! xk! k is the umber of ways of choosig the positios for the x outcomes O, x outcomes O,, x k outcomes O k 3

Example: The Multiomial distributio x x x x k x x x3 xk! x! x x!! x! x! x! x! x! x! xx! x3! xx x3! k x x,, x! x! xk!! p x x p p p x x x This is called the Multiomial distributio k x k k p p x x p x k k Example: The Multiomial distributio Suppose that a earigs aoucemets has three possible outcomes: O Positive stock price reactio (3% chace) O No stock price reactio (5% chace) O 3 - Negative stock price reactio (% chace) Hece p =.3, p =.5, p 3 =.. Suppose today 4 firms released earigs aoucemets ( = 4). Let = the umber that result i a positive stock price reactio, = the umber that result i o reactio, ad Z = the umber that result i a egative reactio. Fid the distributio of, ad Z. Compute P[ + Z] 4! x y z px, y, z.3.5. x yz 4 x! y! z! 4

Table: p(x,y,z) z x y 3 4.6.6.6 3. 4.65.96.7.8 3.5 4.6.8.35 3 4 3.6 3.54 3 3 3 3 4 4.8 4 4 4 3 4 4 P [ + Z] =.978 z x y 3 4.6.6.6 3. 4.65.96.7.8 3.5 4.6.8.35 3 4 3.6 3.54 3 3 3 3 4 4.8 4 4 4 3 4 4 5

Example: The Multivariate Normal distributio Recall the uivariate ormal distributio f x e the bivariate ormal distributio f x, y e x y x xx x x y x y x x x y y Example: The Multivariate Normal distributio The k-variate Normal distributio is give by: f x,, xk f x e k / / where x μ x μ x x x xk μ k k k k k kk 6

Margial joit probability fuctio Defiitio: Margial joit probability fuctio Let,,, q, q+, k deote k discrete radom variables with joit probability fuctio p(x, x,, x q, x q+, x k ) the the margial joit probability fuctio of,,, q is,,,, p x x p x x q q x x q Whe,,, q, q+, k is cotiuous, the the margial joit desity fuctio of,,, q is,,,, f x x f x x dx dx q q q Coditioal joit probability fuctio Defiitio: Coditioal joit probability fuctio Let,,, q, q+, k deote k discrete radom variables with joit probability fuctio p(x, x,, x q, x q+, x k ) the the coditioal joit probability fuctio of,,, q give q+ = x q+,, k = x k is p x,, xk p x,, xq xq,, qq k xk p x,, x q k q k For the cotiuous case, we have: qqk f x,, x x,, x q q k f x,, x f x,, x q k q k k 7

Coditioal joit probability fuctio Defiitio: Idepedece of sects of vectors Let,,, q, q+, k deote k cotiuous radom variables with joit probability desity fuctio f(x, x,, x q, x q+, x k ) the the variables,,, q are idepedet of q+,, k if,, k q,, q qk q,, k f x x f x x f x x A similar defiitio for discrete radom variables. Coditioal joit probability fuctio Defiitio: Mutual Idepedece Let,,, k deote k cotiuous radom variables with joit probability desity fuctio f(x, x,, x k ) the the variables,,, k are called mutually idepedet if,, f x x f x f x f x k k k A similar defiitio for discrete radom variables. 8

Multivariate margial pdfs - Example Let,, Z deote 3 joitly distributed radom variable with joit desity fuctio the f x, y, z K x yz x y z,, otherwise Fid the value of K. Determie the margial distributios of, ad Z. Determie the joit margial distributios of,, Z, Z Multivariate margial pdfs - Example Solutio: Determiig the value of K. f x, y, z dxdydz K x yz dxdydz 3 x x K xyz dydz K yz dydz 3 3 x y y K y z dz K z dz 3 3 y if z z 7 K K K 3 4 3 4 K 7 9

Multivariate margial pdfs - Example The margial distributio of. f x f x, y, zdydz x yzdydz 7 y y x y z dz x z dz 7 7 y z x z x for x 7 4 7 4 Multivariate margial pdfs - Example The margial distributio of,. f xy, fxyzdz,, x yzdz 7 z xz y 7 z z x y for x, y 7

Multivariate margial pdfs - Example Fid the coditioal distributio of:. Z give = x, = y,. give = x, Z = z, 3. give = y, Z = z, 4., Z give = x, 5., Z give = y 6., give Z = z 7. give = x, 8. give = y 9. give Z = z. Z give = x,. Z give = y. give Z = z Multivariate margial pdfs - Example The margial distributio of,. f x, y x y for x, y 7 Thus the coditioal distributio of Z give = x, = y is f f x, y, z x yz 7 x, y x y 7 x yz for z x y

Multivariate margial pdfs - Example The margial distributio of. f x x for x 7 4 The, the coditioal distributio of, Z give = x is f x, y, z x yz 7 f x x 7 4 x yz for y, z x 4 Expectatios for Multivariate Distributios Defiitio: Expectatio Let,,, deote joitly distributed radom variable with joit desity fuctio f(x, x,, x ) the E g,, g x,, x f x,, x dx,, dx

Expectatios for Multivariate Distributios - Example Let,, Z deote 3 joitly distributed radom variable with joit desity fuctio the f x, y, z Determie E[Z]. Solutio: otherwise 7 x yz x, y, z E Z xyz x yzdxdydz 7 7 3 x yz xy z dxdydz Expectatios for Multivariate Distributios - Example E Z xyz x yzdxdydz 7 7 3 x yz xy z dxdydz 4 x x x 3 7 yz y z dydz yz y z dydz 4 7 x 3 y y y 3 3 z z dz z z dz 7 3 7 3 y 3 3 z z 3 3 7 7 7 4 9 7 4 9 7 36 84 3

Some Rules for Expectatios Rule. E x f x,, x dx dx i i Thus you ca calculate E[ i ] either from the joit distributio of,, or the margial distributio of i. Proof: x f x,, x dx,, dx i x f x dx i i i i x f x,, x dx dx dx dx dx i i i i x f x dx i i i i Some Rules for Expectatios Rule. E a a ae ae This property is called the Liearity property. Proof:,, ax a x f x x dxdx a x f x,, xdx dx a x f x,, x dx dx 4

Some Rules for Expectatios Rule 3 3. (The Multiplicative property) Suppose,, q are idepedet of q+,, k the,, q q,, k E g,, q E h q,, k E g h I the simple case whe k =, ad g()= & h()=: E E E if ad are idepedet Some Rules for Expectatios Rule 3 Proof:,, q q,, k E g h,,,,,, g x x h x x f x x dx dx q q k k,, q q,, k,, q,, g x x h x x f x x f x x dx dx dx dx q k q q k hxq,, xkfxq,, xk gx,, xq f x,, xq dxdx q dxq dxk E g,, q,,,, h x x f x x dx dx q k q k q k 5

Some Rules for Expectatios Rule 3 E g,, q,,,, h x x f x x dx dx q k q k q k,, q q,, k E g E h Some Rules for Variace Rule. Var Var Var Cov, Proof: E w here C ov, = Thus, E Var where E E Var E Var Cov, Var 6

Some Rules for Variace Rule Note: If ad are idepedet, the E Cov, = ad Var Var Var = E E E E = Some Rules for Variace Rule - Defiitio: Correlatio coefficiet For ay two radom variables ad the defie the correlatio coefficiet to be: xy = Var Cov, Cov, Var Thus Cov, = ad Var if ad are idepedet. 7

Some Rules for Variace Rule - Recall xy = Var Cov, Cov, Var Property. If ad are idepedet, the =. (Cov(,)=.) The coverse is ot ecessarily true. That is, = does ot imply that ad are idepedet. Example: y\x 6 8 f y (y)...4.. 3...4 f x (x).4..4 E()=8, E()=, E()=6 Cov(,) =6 8* = P(=6,=)= P(=6)*P(=)=.4* *.=.8=> & are ot idepedet Some Rules for Variace Rule - Property. ad if there exists a ad b such that P ba where = + if b > ad = - if b< Proof: Let U ad V. We will pick b to miimize g(b). Let gb E V bu g b E V bu for all b. E V bvu b U E V be VU b E U 8

Some Rules for Variace Rule - Takig first derivatives of g(b) w.r.t b g b E V bu E V be VU b E U EVU gb EVU be U => b b mi E U Sice g(b), the g(b mi ) g b mi E V bmie VU bmie U E VU E VU E V E VU E[U ] E U E U E VU E U E V Some Rules for Variace Rule - EVU E V EVU Thus, or E U E U E V E E E => 9

Some Rules for Variace Rule - Note: g b mi E V bmie VU bmie U If ad oly if E V b U mi This will be true if P bmi mi i.e., P b a a b where mi PV bmiu Some Rules for Variace Rule - Summary: ad if there exists a ad b such that where ad b a P b a b E E mi Cov, = = Var b mi

Some Rules for Variace Rule a b a b ab. Var Var Var Cov, Proof Var a b E a b a b with a b E a b a b Thus, Var a b E a b a b Ea ab b a Var abcov, b Var Some Rules for Variace Rule 3 3. Var a a Var aa Cov, aa Cov, aa 3Cov, 3 aa Cov, a a Cov, a Var a i i a Var aa Cov, i i i j i j i j ai Var i if,, are mutually idepedet

The mea ad variace of a Biomial RV We have already computed this by other methods:. Usig the probability fuctio p(x).. Usig the momet geeratig fuctio m (t). Now, we will apply the previous rules for mea ad variaces. Suppose that we have observed idepedet repetitios of a Beroulli trial Let,, be mutually idepedet radom variables each havig Beroulli distributio with parameter p ad defied by i if repetitio i is S (prob p) if repetitio i is F (prob q) The mea ad variace of a Biomial RV E p q p ( p) i Var[ ] ( p) Now = + + has a Biomial distributio with parameters ad pthe, is the total umber of successes i the repetitios. E E p p p i ( p p var p ( p) p ) qp var pq pq pq q ( p) p ( p) ( p)

Coditioal Expectatio Defiitio: Coditioal Joit Probability Fuctio Let,,, q, q+, k deote k cotiuous radom variables with joit probability desity fuctio f(x, x,, x q, x q+, x k ) the the coditioal joit probability fuctio of,,, q give q+ = x q+,, k = x k is qqk f x,, x x,, x q q k f x,, x f x,, x q k q k k 3

Defiitio: Coditioal Joit Probability Fuctio Let U = h(,,, q, q+, k ) the the Coditioal Expectatio of U give q+ = x q+,, k = x k is E U x q,, x k,,,,,, qq k h x x f x x x x dx dx k q q k q Note: This will be a fuctio of x q+,, x k. Coditioal Expectatio of a Fuctio - Example Let,, Z deote 3 joitly distributed RVs with joit desity fuctio the 7 x yz x, y, z f x, y, z otherwise Determie the coditioal expectatio of U = + + Z give = x, = y. Itegratio over z, gives us the margial distributio of,: f xy, x y for x, y 7 4

Coditioal Expectatio of a Fuctio - Example The, the coditioal distributio of Z give = x, = y is f f x, y, z x yz 7 x, y x y 7 x yz for z x y Coditioal Expectatio of a Fuctio - Example The coditioal expectatio of U = + + Z give = x, = y. x yz x y x y E U x, y x y z dz x y z x yz dz x y yz y x y x z x x y dz 3 z z y yx y x x x yz x y 3 z z y yx y x x x y x y 3 5

Coditioal Expectatio of a Fuctio - Example Thus the coditioal expectatio of U = + + Z give = x, = y. E U x, y y 3 y x y x x y x x y y x x yx y x y 3 x y 3 x x y y A Useful Tool: Iterated Expectatios Theorem Let (x, x,, x q, y, y,, y m ) = (x, y) deote q + m RVs. Let U(x, x,, x q, y, y,, y m ) = g(x, y). The, EU E E U y y Var U E Var U Var E U y y y y The first result is commoly referred as the Law of iterated expectatios. The secod result is commoly referred as the Law of total variace or variace decompositio formula. 6

A Useful Tool: Iterated Expectatios Proof: (i the simple case of variables ad ) First, we prove the Law of iterated expectatios. Thus U g,,, E U g x y f x y dxdy E U E g, g x, y f x y dx hece, y f x y g x, y dx f E E U EU y f y dy A Useful Tool: Iterated Expectatios E E U EU y f y dy x, y y f g x, y dx f ydy f g xy, fxydx, dy,, g xy f xydxdy EU 7

A Useful Tool: Iterated Expectatios Now, for the Law of total variace: Var U E U E U E E U E EU E VarU E U E E U E VarU E E U E EU E Var U Var E U A Useful Tool: Iterated Expectatios - Example Example: Suppose that a rectagle is costructed by first choosig its legth, ad the choosig its width. Its legth is selected form a expoetial distributio with mea = / = 5. Oce the legth has bee chose its width,, is selected from a uiform distributio form to half its legth. Fid the mea ad variace of the area of the rectagle A =. 8

A Useful Tool: Iterated Expectatios - Example Solutio: 5 x f x e x 5 for f yx if y x x f x y f x f y x, x 5 x 5 5 e = 5x e if y x, x x We could compute the mea ad variace of A = from the joit desity f(x,y) A Useful Tool: Iterated Expectatios - Example, E A E xyf x y dxdy x x x 5x 5 5 5 xy e dydx ye dydx E A E x y f x, y dxdy x x x 5x 5 5 5 x y e dydx xy e dydx ad Var A E A E A x x 9

A Useful Tool: Iterated Expectatios - Example x yx x 5 x y 5 5 5 y 3 x 3 5 5 x 5 5 8 3 3 5 E A ye dydx e dx x e dx x e dx 3 3 3 5 5 5 5.5 A Useful Tool: Iterated Expectatios - Example x 3 y x x 5 x y 5 E A 5xy e dydx 5xe dx 3 y Thus Var A E A E A 5 5 5 5 x 5 5 x e dx x e dx 4 x 4 5 3 8 6 5 5 5 5 5 4 5 5 4 6 6 5 4! 4 5 5 5.5 93.75 3

A Useful Tool: Iterated Expectatios - Example Now, let s use the previous theorem. That is, ad E A E E E Var A Var E Var Var E Now E E 4 4 Var Var 48 ad 4 This is because give, has a uiform distributio from to / A Useful Tool: Iterated Expectatios - Example Thus E A E E E E E 4 4 4 d where momet for the expoetial dist' with Note Thus 5 k! k for the expoetial dist k 5 EA 4 4.5 5 The same aswer as previously calculated!! Ad o itegratio eeded! 3

A Useful Tool: Iterated Expectatios - Example E Now 4 4 48 Also Var A Var ad Var E Var Var E 4 4 4! 5 E Var E 48 48 4 48 4 Var E Var 4 4 Var 4 4 E E 4 4 5 A Useful Tool: Iterated Expectatios - Example Thus Var A Var Var E Var 4 4 Var 4!! 5 5 5 4!! 4 4 4 5 5 4 4 5 4 4 E Var Var E 4 5 5 5 4 5 4 4 5 5 93.75 4 4 8 The same aswer as previously calculated!! Ad o itegratio eeded! 3

The Multivariate MGF Defiitio: Multivariate MGF Let,,, q be q radom variables with a joit desity fuctio give by f(x, x,, x q ). The multivariate MGF is m ( t) E [exp( t' )] where t = (t, t,, t q ) ad = (,,, q ). If,,, are idepedet radom variables, the m ( t) i m ( t i i ) The MGF of a Multivariate Normal Defiitio: MGF for the Multivariate Normal Let,,, q be ormal radom variables. The multivariate ormal MGF is m ( t) E[exp( t' )] exp( t'μ t' t) where t= (t, t,, t q ), = (,,, q ) ad μ= (μ, μ,, μ q ). 33

Review: The Trasformatio Method Theorem Let deote a radom variable with probability desity fuctio f(x) ad U = h(). Assume that h(x) is either strictly icreasig (or decreasig) the the probability desity of U is: dh u dx g u f h ( u) f x du du ( ) The Trasformatio Method (may variables) Theorem Let x, x,, x deote radom variables with joit probability desity fuctio f(x, x,, x ) Let u = h (x, x,, x ). u = h (x, x,, x ). u = h (x, x,, x ). defie a ivertible trasformatio from the x s to the u s 34

The Trasformatio Method (may variables) The the joit probability desity fuctio of u, u,, u is give by:,,,, g u u f x x where J f x,, x J d x,, x d u,, u Jacobia of the trasformatio d x,, x d u,, u dx dx du du det dx dx du du Example: Distributio of x+y ad x-y Suppose that x, x are idepedet with desity fuctios f (x ) ad f (x ) Fid the distributio of u = x + x ad u = x - x Solutio: Solvig for x ad x, we get the iverse trasformatio: J x u u x The Jacobia of the trasformatio d x, x d u, u dx du det dx du u u dx du dx du 35

Example: Distributio of x+y ad x-y J d x, x d u, u det The joit desity of x, x is f(x, x ) = f (x ) f (x ) Hece the joit desity of u ad u is:,, g u u f x x J u u u u f f Example: Distributio of x+y ad x-y u u u u g u, u f f From We ca determie the distributio of u = x + x, g u g u u du u u u u f f du u u u u dv v u v du put the, 36

Example: Distributio of x+y ad x-y Hece u u u u g u f f du f v f u v dv This is called the covolutio of the two desities f ad f. Example (): Covolutio formula -The Gamma distributio Let ad be two idepedet radom variables such that ad have a expoetial distributio with parameter We will use the covolutio formula to fid the distributio of U = +. (We already kow the distributio of U: gamma.) g U ( u) u f U e ( u -u y) f ( y) dy dy ue -u This is the gamma distributio whe α=. u e -(u-y) e -y dy 37

Example (): The ex-gaussia distributio Let ad be two idepedet radom variables such that:. has a expoetial distributio with parameter. has a ormal (Gaussia) distributio with mea ad stadard deviatio. We will use the covolutio formula to fid the distributio of U = +. (This distributio is used i psychology as a model for respose time to perform a task.) Example (): The ex-gaussia distributio Now f x x e x x f y e The desity of U = + is: g u f v f u v dv x uv v e e dv 38

Example (): The ex-gaussia distributio or u v v g u e dv e u v v dv e v u v u v dv u v u v e e dv Example (): The ex-gaussia distributio or u v u v e e dv u u v u vu e e dv u u v u vu e e dv e u u P V 39

Example (): The ex-gaussia distributio Where V has a Normal distributio with mea ad variace. That is, g u e V u u u Where Φ(z) is the cdf of the stadard Normal distributio.9 The ex-gaussia distributio.6 g(u).3 3 4

Distributio of Quadratic Forms We will preset differet theorems whe the RVs are ormal variables: Theorem 7.. If y ~ N(μ y, Σ y ), the z = Ay ~N(Aμ y, A Σ y A ), where A is a matrix of costats. Theorem 7.. Let the vector y ~N(, I ). The y y ~. Theorem 7.3. Let the vector y ~N(, σ I ) ad M be a symmetric idempotet matrix of rak m. The, y My/σ ~ tr(m) Proof: Sice M is symmetric it ca be diagoalized with a orthogoal matrix Q. That is, Q MQ = Λ. (Q Q=I) Sice M is idempotet all these roots are either zero or oe. Thus, I Q' MQ Note: dim(i) = rak(m) (the umber of o-zero roots is the rak of the matrix). Also, sice Σ i λ i =tr(i), => dim(i)=tr(m). Let v=q y. E(v) = Q E(y)= Var(v) = E[vv ]=E[Q yyq] =Q E(σ I )Q = σ Q I Q = σ I =>v ~ N(,σ I ) The, tr( M ) tr( M ) y' My v' Q' MQv I vi v' v v i i i Thus, y My/σ is the sum of tr(m) N(,) squared variables. It follows a tr(m) 4

Theorem 7.4. Let the vector y ~ N(μ y, Σ y ). The, (y -μ y ) Σ - y (y -μ y ) ~ Proof: Recall that there exists a o-sigular matrix A such that AA = Σ y. Let v = A - (y -μ y ) (a liear combiatio of ormal variables) => v ~ N(, I ) => v Σ - y v ~ (usig Theorem 7.3, where =tr(σ - y ). Theorem 7.5 Let the vector y ~ N(, I) ad M be a matrix. The, the characteristic fuctio of y My is I-itM -/ Proof: E [ e y' My y ity' My ] () / y e ity' My y' y/ dx () y'( IitM) y/ This is the ormal desity with Σ - =(I-itM), except for the determiat I-itM -/, which should be i the deomiator. e / y e dx. Theorem 7.6 Let the vector y ~ N(, I), M be a idempotet matrix of rak m, let L be a idempotet matrix of rak s, ad suppose ML =. The y My ad y Ly are idepedetly distributed variables. Proof: By Theorem 7.3 both quadratic forms distributed variables. We oly eed to prove idepedece. From Theorem 7.5, we have y' My y' Ly E [ e y E [ e y ity' My ity' Ly ] I itm ] I itl / / The forms will be idepedetly distributed if That is, φ y (M+L)y = φ y My φ y Ly ity'( ML) y / / / y '( ML) y Ey[ e ] I it( M L) I itm I itl Sice ML = M L, the above result will be true oly whe ML=. 4