Cells and Their Housekeeping Functions Cell Membrane & Membrane Potential



Similar documents
Ch. 8 - The Cell Membrane

Chapter 8. Movement across the Cell Membrane. AP Biology

Six major functions of membrane proteins: Transport Enzymatic activity

Membrane Structure and Function

Cell Membrane & Tonicity Worksheet

Cell Membrane Coloring Worksheet

BSC Exam I Lectures and Text Pages. The Plasma Membrane Structure and Function. Phospholipids. I. Intro to Biology (2-29) II.

The Lipid Bilayer Is a Two-Dimensional Fluid

BIOLOGICAL MEMBRANES: FUNCTIONS, STRUCTURES & TRANSPORT

4. Biology of the Cell

CELL MEMBRANES, TRANSPORT, and COMMUNICATION. Teacher Packet

thebiotutor. AS Biology OCR. Unit F211: Cells, Exchange & Transport. Module 1.2 Cell Membranes. Notes & Questions.

CHAPTER : Plasma Membrane Structure

Unit 2: Cells, Membranes and Signaling CELL MEMBRANE. Chapter 5 Hillis Textbook

FIGURE A. The phosphate end of the molecule is polar (charged) and hydrophilic (attracted to water).

Biological cell membranes

Chapter 7: Membrane Structure and Function

Membrane Structure and Function

Section 7-3 Cell Boundaries

Cell Transport and Plasma Membrane Structure

Cell Biology - Part 2 Membranes

Modes of Membrane Transport

IB104 - Lecture 9 - Membranes

Osmosis, Diffusion and Cell Transport

Homeostasis and Transport Module A Anchor 4

7. A selectively permeable membrane only allows certain molecules to pass through.

PART I: Neurons and the Nerve Impulse

Keystone Review Practice Test Module A Cells and Cell Processes. 1. Which characteristic is shared by all prokaryotes and eukaryotes?

Chapter 3. Cellular Structure and Function Worksheets. 39

Transmembrane proteins span the bilayer. α-helix transmembrane domain. Multiple transmembrane helices in one polypeptide

Anatomy and Physiology Placement Exam 2 Practice with Answers at End!

Date: Student Name: Teacher Name: Jared George. Score: 1) A cell with 1% solute concentration is placed in a beaker with a 5% solute concentration.

CELL MEMBRANE & CELL TRANSPORT (PASSIVE and ACTIVE) Webquest

Total body water ~(60% of body mass): Intracellular fluid ~2/3 or ~65% Extracellular fluid ~1/3 or ~35% fluid. Interstitial.

Cell membranes and transport. Learning Objective:

Cell Membrane Structure (and How to Get Through One)

Lecture 4 Cell Membranes & Organelles

Electron Transport Generates a Proton Gradient Across the Membrane

BIOL 305L Laboratory Two

Membrane Transport. Extracellular Concentration of X

Membrane Structure, Transport, and Cell Junctions

Among a cell s most important activities are its interactions

Human Anatomy & Physiology I with Dr. Hubley. Practice Exam 1

Mammalian Physiology. Cellular Membranes Membrane Transport UNLV. PHYSIOLOGY, Chapter 1 Berne, Levy, Koeppen, Stanton UNIVERSITY OF NEVADA LAS VEGAS

AP Biology-Chapter #6 & 7 Review

4. Which carbohydrate would you find as part of a molecule of RNA? a. Galactose b. Deoxyribose c. Ribose d. Glucose

Connexions module: m The Cell Membrane. OpenStax College. Abstract. By the end of this section, you will be able to:

Problem Set 1 KEY

Chapter 36: Resource Acquisition & Transport in Vascular Plants

PRESTWICK ACADEMY NATIONAL 5 BIOLOGY CELL BIOLOGY SUMMARY

Review of the Cell and Its Organelles

Ions cannot cross membranes. Ions move through pores

Cell and Membrane Practice. A. chromosome B. gene C. mitochondrion D. vacuole

THE HISTORY OF CELL BIOLOGY

Carbohydrates, proteins and lipids

MEMBRANE STRUCTURE AND FUNCTION

Biological Membranes. Impermeable lipid bilayer membrane. Protein Channels and Pores

Lab 4: Osmosis and Diffusion

Chapter 2: Cell Structure and Function pg

Cellular Structure and Function

Cells & Cell Organelles

Name: Hour: Elements & Macromolecules in Organisms

Cell Transport across the cell membrane. Kathy Jardine and Brian Evans. July 17, 2014

Cell Structure and Function

Chapter 5: The Structure and Function of Large Biological Molecules

1. When applying the process of science, which of these is tested? a. an observation b. a result c. a hypothesis d. a question e.

Elements in Biological Molecules

Todays Outline. Metabolism. Why do cells need energy? How do cells acquire energy? Metabolism. Concepts & Processes. The cells capacity to:

BCOR 011 Exam 2, 2004

Fig. 1. Background. Name: Class: Date:

Quick Hit Activity Using UIL Science Contests For Formative and Summative Assessments of Pre-AP and AP Biology Students

Carbon-organic Compounds

How To Understand The Chemistry Of Organic Molecules

Chemical Basis of Life Module A Anchor 2

Chapter 4: A Tour of the Cell. 1. Cell Basics. Limits to Cell Size. 1. Cell Basics. 2. Prokaryotic Cells. 3. Eukaryotic Cells

NO CALCULATORS OR CELL PHONES ALLOWED

Multiple Choice Questions

Plasma Membrane hydrophilic polar heads

A disaccharide is formed when a dehydration reaction joins two monosaccharides. This covalent bond is called a glycosidic linkage.

Lesson Aim To explain the human body at a microscopic level, including the structure and function of cells, tissues and membranes.

Biological molecules:

Parts of the Nerve Cell and Their Functions

Proteins and Nucleic Acids

Biochemistry of Cells

THE LIVING CELL. Cells also have variety of shapes. Plant cells are often rectangular or polygonal, while egg cells are usually spherical.

Diffusion, Osmosis, and Membrane Transport

BIOLOGICAL MOLECULES OF LIFE

Chapter 3 Molecules of Cells

7.2 Cell Structure. Lesson Objectives. Lesson Summary. Cell Organization Eukaryotic cells contain a nucleus and many specialized structures.

The Structure and Function of Macromolecules: Carbohydrates, Lipids & Phospholipids

(Woods) Chem-131 Lec Lipids 1. Lipids:

Regulating the Internal Environment Water Balance & Nitrogenous Waste Removal

Elements & Macromolecules in Organisms

The Molecules of Cells

Carbon Hydrogen Oxygen Nitrogen

Diffusion and Osmosis

Chapter 3: Biological Molecules. 1. Carbohydrates 2. Lipids 3. Proteins 4. Nucleic Acids

Organic Molecules of Life - Exercise 2

Lecture Overview. Hydrogen Bonds. Special Properties of Water Molecules. Universal Solvent. ph Scale Illustrated. special properties of water

Transcription:

Cells and Their Housekeeping Functions Cell Membrane & Membrane Potential Shu-Ping Lin, Ph.D. Institute of Biomedical Engineering E-mail: splin@dragon.nchu.edu.tw Website: http://web.nchu.edu.tw/pweb/users/splin/

http://en.wikipedia.org/wiki/cell_membrane#lipid_bilayer * Cell membrane, also called plasma membrane, separates cell interior from surroundings Thin barrier = 7~10 nm thick Controls traffic in & out of the cell Selectively permeable * Made of phospholipids, proteins, carbohydrates & other macromolecules *Phospholipids arrange as a bilayer: Hydrophobic fatty acid tails Hydrophilic phosphate group head

Several important functions: polar hydrophilic heads Phospholipid Bilayer *A. Allow nutrients to enter cell, *B. Keep out unwanted molecules and particles, *C. Transport waste out into extracellular fluid, *D. Prevent needed metabolites and ions from leaving cell Inherently amphipathic nature: possess both hydrophilic & hydrophobic structures nonpolar hydrophobic tails polar hydrophilic heads http://www.ocvts.org/instructors/htm/asprague/biotech/ch06cellmembranediffusion.ppt+cell+membrane+ppt&hl=zh- TW&gl=tw&pid=bl&srcid=ADGEEShywZ9NflQ-GCRtlnAD5GIlGBWSBEKRBkJwIU3s-r9wakHHx6SCbBg9T-uKL7xUvpYTtYHO3iB1SQtH0eo8bD2ZhKGcUlBOZBeeFafY- X0MbAXuEr5KIF3tINko9uVQlhxFRcsI&sig=AHIEtbTYRp-LymP07E_VLiGzjkC-wqjHTg

More Than Lipids In 1972, S.J. Singer & G. Nicolson proposed that membrane proteins are inserted into the phospholipid bilayer It s like a fluid It s like a mosaic It s the Fluid Mosaic Model! http://www.ocvts.org/instructors/htm/asprague/biotech/ch06cellmembranediffusion.ppt+cell+membrane+ppt&hl=zh-tw&gl=tw&pid=bl&srcid=adgeeshywz9nflq- GCRtlnAD5GIlGBWSBEKRBkJwIU3s-r9wakHHx6SCbBg9T- ukl7xuvpyttyho3ib1sqth0eo8bd2zhkgculbozbeefafy- X0MbAXuEr5KIF3tINko9uVQlhxFRcsI&sig=AHIEtbTYRp-LymP07E_VLiGzjkC-wqjHTg

Cell membrane is composed of a double layer of phospholipid molecules (called phospholipid or lipid bilayer), protein molecules associated with lipid bilayer, and carbohydratecontaining cell coat called glycocalyx. Glycoprotein Extracellular fluid Glycolipid Phospholipids Peripheral protein Cholesterol Cytoplasm Transmembrane proteins Filaments of cytoskeleton http://www.ocvts.org/instructors/htm/asprague/biotech/ch06cellmembranediffusion.ppt+cell+membrane+ppt&hl=zh- TW&gl=tw&pid=bl&srcid=ADGEEShywZ9NflQ-GCRtlnAD5GIlGBWSBEKRBkJwIU3s-r9wakHHx6SCbBg9T-uKL7xUvpYTtYHO3iB1SQtH0eo8bD2ZhKGcUlBOZBeeFafY- X0MbAXuEr5KIF3tINko9uVQlhxFRcsI&sig=AHIEtbTYRp-LymP07E_VLiGzjkC-wqjHTg

Membrane Fat Composition Varies Fat composition affects flexibility membrane must be fluid & flexible about as fluid as thick salad oil % unsaturated fatty acids in phospholipids keep membrane less viscous cold-adapted organisms, like winter wheat increase % in autumn cholesterol in membrane http://www.ocvts.org/instructors/htm/asprague/biot ech/ch06cellmembranediffusion.ppt+cell+membrane+ ppt&hl=zh- TW&gl=tw&pid=bl&srcid=ADGEEShywZ9NflQ- GCRtlnAD5GIlGBWSBEKRBkJwIU3sr9wakHHx6SCbBg9TuKL7xUvpYTtYHO3iB1SQtH0eo8bD2ZhKGcUlBOZBeeFaf Y- X0MbAXuEr5KIF3tINko9uVQlhxFRcsI&sig=AHIEtbTYRp -LymP07E_VLiGzjkC-wqjHTg

Membrane Proteins Proteins determine membrane s specific functions Cell membrane & organelle membranes each have unique collections of proteins Membrane proteins: Peripheral proteins Loosely bound to surface of membrane Cell surface identity marker (antigens) Integral proteins Penetrate lipid bilayer, usually across whole membrane Transmembrane protein Transport proteins channels, pumps http://www.ocvts.org/instructors/htm/asprague/biotech/ch06cellmembranediffusion.ppt+cell+membrane+ppt&hl=zh- TW&gl=tw&pid=bl&srcid=ADGEEShywZ9NflQ-GCRtlnAD5GIlGBWSBEKRBkJwIU3s-r9wakHHx6SCbBg9T-uKL7xUvpYTtYHO3iB1SQtH0eo8bD2ZhKGcUlBOZBeeFafY- X0MbAXuEr5KIF3tINko9uVQlhxFRcsI&sig=AHIEtbTYRp-LymP07E_VLiGzjkC-wqjHTg

Why are proteins the perfect molecule to build structures in the cell membrane? http://www.ocvts.org/instructors/htm/asprague/biotech/ch06cellmembranediffusion.ppt+cell+membrane+ppt&hl=zh- TW&gl=tw&pid=bl&srcid=ADGEEShywZ9NflQ-GCRtlnAD5GIlGBWSBEKRBkJwIU3s-r9wakHHx6SCbBg9T-uKL7xUvpYTtYHO3iB1SQtH0eo8bD2ZhKGcUlBOZBeeFafY- X0MbAXuEr5KIF3tINko9uVQlhxFRcsI&sig=AHIEtbTYRp-LymP07E_VLiGzjkC-wqjHTg

Classes of Amino Acids What do these amino acids have in common? nonpolar & hydrophobic http://www.ocvts.org/instructors/htm/asprague/biotech/ch06cellmembranediffusion.ppt+cell+membrane+ppt&hl=zh- TW&gl=tw&pid=bl&srcid=ADGEEShywZ9NflQ-GCRtlnAD5GIlGBWSBEKRBkJwIU3s-r9wakHHx6SCbBg9T-uKL7xUvpYTtYHO3iB1SQtH0eo8bD2ZhKGcUlBOZBeeFafY- X0MbAXuEr5KIF3tINko9uVQlhxFRcsI&sig=AHIEtbTYRp-LymP07E_VLiGzjkC-wqjHTg

Classes of Amino Acids What do these amino acids have in common? I like the polar ones the best! polar & hydrophilic http://www.ocvts.org/instructors/htm/asprague/biotech/ch06cellmembranediffusion.ppt+cell+membrane+ppt&hl=zh- TW&gl=tw&pid=bl&srcid=ADGEEShywZ9NflQ-GCRtlnAD5GIlGBWSBEKRBkJwIU3s-r9wakHHx6SCbBg9TuKL7xUvpYTtYHO3iB1SQtH0eo8bD2ZhKGcUlBOZBeeFafY-X0MbAXuEr5KIF3tINko9uVQlhxFRcsI&sig=AHIEtbTYRp-LymP07E_VLiGzjkC-wqjHTg

Proteins Domains Anchor Molecule Within membrane Nonpolar amino acids Hydrophobic Anchors protein into membrane On outer surfaces of membrane Polar amino acids Hydrophilic Extend into extracellular fluid & into cytosol Polar areas of protein Nonpolar areas of protein http://www.ocvts.org/instructors/htm/asprague/biotech/ch06cellmembranediffusion.ppt+cell+membrane+ppt&hl=zh-tw&gl=tw&pid=bl&srcid=adgeeshywz9nflq- GCRtlnAD5GIlGBWSBEKRBkJwIU3s-r9wakHHx6SCbBg9T-uKL7xUvpYTtYHO3iB1SQtH0eo8bD2ZhKGcUlBOZBeeFafY- X0MbAXuEr5KIF3tINko9uVQlhxFRcsI&sig=AHIEtbTYRp-LymP07E_VLiGzjkC-wqjHTg

Many Functions of Membrane Proteins Outside Plasma membrane Inside Transporter Enzyme activity Cell surface receptor Cell surface identity marker Cell adhesion Attachment to the cytoskeleton http://www.ocvts.org/instructors/htm/asprague/biotech/ch06cellmembranediffusion.ppt+cell+membrane+ppt&hl=zh-tw&gl=tw&pid=bl&srcid=adgeeshywz9nflq- GCRtlnAD5GIlGBWSBEKRBkJwIU3s-r9wakHHx6SCbBg9T-uKL7xUvpYTtYHO3iB1SQtH0eo8bD2ZhKGcUlBOZBeeFafY- X0MbAXuEr5KIF3tINko9uVQlhxFRcsI&sig=AHIEtbTYRp-LymP07E_VLiGzjkC-wqjHTg

Membrane Carbohydrates The carbohydrates are not inserted into the membrane -- they are too hydrophilic for that. They are attached to embedded proteins -- glycoproteins. Play a key role in cell-cell recognition Ability of a cell to distinguish one cell from another Antigens Important in organ & tissue development Basis for rejection of foreign cells by immune system http://www.ocvts.org/instructors/htm/asprague/biotech/ch06cellmembranediffusion.ppt+cell+membrane+p pt&hl=zh-tw&gl=tw&pid=bl&srcid=adgeeshywz9nflq-gcrtlnad5gilgbwsbekrbkjwiu3s- r9wakhhx6scbbg9t-ukl7xuvpyttyho3ib1sqth0eo8bd2zhkgculbozbeefafy- X0MbAXuEr5KIF3tINko9uVQlhxFRcsI&sig=AHIEtbTYRp-LymP07E_VLiGzjkC-wqjHTg

Movement Across the Cell Membrane http://www.ocvts.org/instructors/htm/asprague/biotech/ch06cellmembranediffusion.ppt+cell+membrane+ppt&hl=zh-tw&gl=tw&pid=bl&srcid=adgeeshywz9nflq- GCRtlnAD5GIlGBWSBEKRBkJwIU3s-r9wakHHx6SCbBg9T-uKL7xUvpYTtYHO3iB1SQtH0eo8bD2ZhKGcUlBOZBeeFafY- X0MbAXuEr5KIF3tINko9uVQlhxFRcsI&sig=AHIEtbTYRp-LymP07E_VLiGzjkC-wqjHTg

Selectively Permeable What molecules can get through directly? Small nonpolar molecules such as carbon dioxide, nitrogen, and oxygen diffuse freely across the bilayer. Lipid bilayer is also permeable to small and uncharged polar molecules such as urea and ethanol. Other small hydrophobic molecules: fats and other lipids NOT get through directly? Ions: salts, ammonia (NH 3 ) Large uncharged or charged polar molecules: starches, proteins H 2 O molecule has 2 pathways: Lipid pathway Water channel-protein pathway (polar molecules)

Diffusion Across Cell Membrane Cell membrane is the boundary between inside & outside Separates cell from its environment Can it be an impenetrable boundary? NO! IN food carbohydrates sugars, proteins amino acids lipids salts, O 2, H 2 O IN OUT OUT waste ammonia salts CO 2 H 2 O products cell needs materials in & products or waste out http://www.ocvts.org/instructors/htm/asprague/biotech/ch06cellmembranediffusion.ppt+cell+membrane+ppt&hl=zh-tw&gl=tw&pid=bl&srcid=adgeeshywz9nflq- GCRtlnAD5GIlGBWSBEKRBkJwIU3s-r9wakHHx6SCbBg9T-uKL7xUvpYTtYHO3iB1SQtH0eo8bD2ZhKGcUlBOZBeeFafY-X0MbAXuEr5KIF3tINko9uVQlhxFRcsI&sig=AHIEtbTYRp- LymP07E_VLiGzjkC-wqjHTg

Diffusion 2nd Law of Thermodynamics governs biological systems universe tends towards disorder (entropy) Diffusion movement from high low concentration http://www.ocvts.org/instructors/htm/asprague/biotech/ch06cellmembranediffusion.ppt+cell+membrane+ppt&hl=zh-tw&gl=tw&pid=bl&srcid=adgeeshywz9nflq- GCRtlnAD5GIlGBWSBEKRBkJwIU3s-r9wakHHx6SCbBg9T-uKL7xUvpYTtYHO3iB1SQtH0eo8bD2ZhKGcUlBOZBeeFafY-X0MbAXuEr5KIF3tINko9uVQlhxFRcsI&sig=AHIEtbTYRp- LymP07E_VLiGzjkC-wqjHTg

Diffusion Move from HIGH to LOW concentration passive transport no energy needed Osmotic pressure: the pressure is required to stop the net flow of water across a membrane separating solutions of different particulate concentration diffusion movement of water osmosis http://www.ocvts.org/instructors /htm/asprague/biotech/ch06cell MembraneDiffusion.ppt+cell+mem brane+ppt&hl=zh- TW&gl=tw&pid=bl&srcid=ADGEES hywz9nflq- GCRtlnAD5GIlGBWSBEKRBkJwIU3 s-r9wakhhx6scbbg9tukl7xuvpyttyho3ib1sqth0eo8bd 2ZhKGcUlBOZBeeFafY- X0MbAXuEr5KIF3tINko9uVQlhxFR csi&sig=ahietbtyrp- LymP07E_VLiGzjkC-wqjHTg Zero flux

The Special Case of Water: Movement of water across the cell membrane 2007-2008 http://www.ocvts.org/instructors/htm/asprague/biotech/ch06cellmembranediffusion.ppt+cell+membrane+ppt&hl=zh-tw&gl=tw&pid=bl&srcid=adgeeshywz9nflq- GCRtlnAD5GIlGBWSBEKRBkJwIU3s-r9wakHHx6SCbBg9T-uKL7xUvpYTtYHO3iB1SQtH0eo8bD2ZhKGcUlBOZBeeFafY-X0MbAXuEr5KIF3tINko9uVQlhxFRcsI&sig=AHIEtbTYRp- LymP07E_VLiGzjkC-wqjHTg

Osmosis Osmosis is diffusion of water Diffusion of water from high concentration of water to low concentration of water across a semi-permeable membrane http://www.ocvts.org/instructors/htm/asprague/biotech/ch06cellmembranediffusion.ppt +cell+membrane+ppt&hl=zh-tw&gl=tw&pid=bl&srcid=adgeeshywz9nflq- GCRtlnAD5GIlGBWSBEKRBkJwIU3s-r9wakHHx6SCbBg9T- ukl7xuvpyttyho3ib1sqth0eo8bd2zhkgculbozbeefafy- X0MbAXuEr5KIF3tINko9uVQlhxFRcsI&sig=AHIEtbTYRp-LymP07E_VLiGzjkC-wqjHTg

Concentration of Water Direction of osmosis is determined by comparing total solute concentrations Hypertonic - more solute, less water Hypotonic - less solute, more water Isotonic - equal solute, equal water water hypotonic hypertonic net movement of water http://www.ocvts.org/instructors/htm/asprague/biotech/ch06cellmembranediffusion.ppt+cell+membrane+ppt&hl=zh-tw&gl=tw&pid=bl&srcid=adgeeshywz9nflq- GCRtlnAD5GIlGBWSBEKRBkJwIU3s-r9wakHHx6SCbBg9T-uKL7xUvpYTtYHO3iB1SQtH0eo8bD2ZhKGcUlBOZBeeFafY-X0MbAXuEr5KIF3tINko9uVQlhxFRcsI&sig=AHIEtbTYRp- LymP07E_VLiGzjkC-wqjHTg

Effect of Osmotic Pressure Suppose an animal or a plant cell is placed in a solution of sugar or salt in water. If the medium is hypotonic a dilute solution, with a higher water concentration than the cell The cell will gain water and wilt through osmosis. If the medium is isotonic a solution with exactly the same water concentration as the cell There will be no net movement of water across the cell membrane. If the medium is hypertonic a concentrated solution, with a lower water concentration than the cell The cell will lose water and shrink by osmosis. http://en.wikipedia.org/wiki/osmosis

Managing Water Balance Cell survival depends on balancing water uptake & loss freshwater balanced saltwater Animal cells culture: must maintain in isotonic cell culture medium (concentration of solutes is close to cell cytoplasm) http://www.ocvts.org/instructors/htm/asprague/biotech/ch06cellmembranediffusion.ppt+cell+membrane+ppt&hl=zh-tw&gl=tw&pid=bl&srcid=adgeeshywz9nflq- GCRtlnAD5GIlGBWSBEKRBkJwIU3s-r9wakHHx6SCbBg9T-uKL7xUvpYTtYHO3iB1SQtH0eo8bD2ZhKGcUlBOZBeeFafY-X0MbAXuEr5KIF3tINko9uVQlhxFRcsI&sig=AHIEtbTYRp- LymP07E_VLiGzjkC-wqjHTg

Aquaporins Cores of these channel proteins are hydrophilic Water moves rapidly into & out of cells Multiple water molecules pass through membrane at a rate of 10 8 molecules/sec Evidence that there were water channels 1991 2003 Peter Agre John Hopkins Roderick MacKinnon Rockefeller http://www.ocvts.org/instructors/htm/asprague/biotech/ch06cellmembranediffusion.ppt+cell+membrane+ppt&hl=zh-tw&gl=tw&pid=bl&srcid=adgeeshywz9nflq- GCRtlnAD5GIlGBWSBEKRBkJwIU3s-r9wakHHx6SCbBg9T-uKL7xUvpYTtYHO3iB1SQtH0eo8bD2ZhKGcUlBOZBeeFafY-X0MbAXuEr5KIF3tINko9uVQlhxFRcsI&sig=AHIEtbTYRp- LymP07E_VLiGzjkC-wqjHTg

Channels Through Cell Membrane Membrane becomes semi-permeable with protein channels specific channels allow specific material across cell membrane inside cell H 2 O aa sugar NH 3 salt outside cell http://www.ocvts.org/instructors/htm/asprague/biotech/ch06cellmembranediffusion.ppt+cell+membrane+ppt&hl=zh-tw&gl=tw&pid=bl&srcid=adgeeshywz9nflq- GCRtlnAD5GIlGBWSBEKRBkJwIU3s-r9wakHHx6SCbBg9T-uKL7xUvpYTtYHO3iB1SQtH0eo8bD2ZhKGcUlBOZBeeFafY-X0MbAXuEr5KIF3tINko9uVQlhxFRcsI&sig=AHIEtbTYRp- LymP07E_VLiGzjkC-wqjHTg

Facilitated Diffusion Diffusion through protein channels Channels move specific molecules across cell membrane No energy needed facilitated = with help open channel = fast transport high low The Bouncer http://www.ocvts.org/instructors/htm/asprague/biotech/ch06cellmembranediffusion.ppt+cell+membrane+ppt&hl=zh-tw&gl=tw&pid=bl&srcid=adgeeshywz9nflq- GCRtlnAD5GIlGBWSBEKRBkJwIU3s-r9wakHHx6SCbBg9T-uKL7xUvpYTtYHO3iB1SQtH0eo8bD2ZhKGcUlBOZBeeFafY-X0MbAXuEr5KIF3tINko9uVQlhxFRcsI&sig=AHIEtbTYRp- LymP07E_VLiGzjkC-wqjHTg

Active Transport Cells may need to move molecules against concentration gradient Shape change transports solute from one side of membrane to other Protein pump Costs energy = ATP high conformational change ATP low The Doorman http://www.ocvts.org/instructors/htm/asprague/biotech/ch06cellmembranediffusion.ppt+cell+membrane+ppt&hl=zh-tw&gl=tw&pid=bl&srcid=adgeeshywz9nflq- GCRtlnAD5GIlGBWSBEKRBkJwIU3s-r9wakHHx6SCbBg9T-uKL7xUvpYTtYHO3iB1SQtH0eo8bD2ZhKGcUlBOZBeeFafY-X0MbAXuEr5KIF3tINko9uVQlhxFRcsI&sig=AHIEtbTYRp- LymP07E_VLiGzjkC-wqjHTg

Many Models & Mechanisms of Active Transport Ions and polar molecules across cell membranes include: ATP-powered pumps Transporter proteins Ion channels The arrows indicate the direction from high to low concentration of the ion or polar molecule across membrane high low low low high high

Getting through cell membrane Passive Transport Simple diffusion diffusion of nonpolar, hydrophobic molecules lipids high low concentration gradient Facilitated transport diffusion of polar, hydrophilic molecules through a protein channel high low concentration gradient Active transport diffusion against concentration gradient low high uses a protein pump requires ATP ATP

Transport Summary simple diffusion facilitated diffusion active transport ATP http://www.ocvts.org/instructors/htm/asprague/biotech/ch06cellmembranediffusion.ppt+cell+membrane+ppt&hl=zh-tw&gl=tw&pid=bl&srcid=adgeeshywz9nflq- GCRtlnAD5GIlGBWSBEKRBkJwIU3s-r9wakHHx6SCbBg9T-uKL7xUvpYTtYHO3iB1SQtH0eo8bD2ZhKGcUlBOZBeeFafY-X0MbAXuEr5KIF3tINko9uVQlhxFRcsI&sig=AHIEtbTYRp- LymP07E_VLiGzjkC-wqjHTg

Active Transport- Na + -K + Pump Sodium ion binds to transport protein in configuration 1 ATP molecule associates with transport protein After ATP hydrolysis, phosphate group is transferred to transport protein Causing to switch of configuration 2 Sodium ion is released to the outside of cell Potassium ion is bound to attachment site of transport protein Binding of potassium ion Result in the release of phosphate group Protein goes back to configuration 1 Potassium ion is released into cell Cycle is completed with the attachment of sodium ion into cavity of transport protein

Active Transport- Proton Pump Proton pumps, in a lysosomal membrane, are used by plants, bacteria, and fungi to create electrochemical gradients (sodium-potassium pumps are employed by animals for the same purpose) www.mansfield.ohio-state.edu/~sabedon/lectures/.../campbl08.ppt

Examples Retinal chromophore H + NH 2 Water channel in bacteria Porin monomer b-pleated sheets Bacterial outer membrane Nonpolar (hydrophobic) COOH a-helices in the cell membrane H + Cytoplasm proton pump channel in photosynthetic bacteria function through conformational change = shape change

Membrane Electrical Potential Membrane potential: The electrical charge across a cell membrane; the difference in electrical potential inside and outside the cell. Axons have two basic electrical potentials: 1. Resting membrane potential: The membrane potential of a neuron when it is not being altered by excitatory or inhibitory postsynaptic potentials. 2. Action potential: The brief electrical impulse that provides the basis for conduction of information along an axon. www.psych.yorku.ca/desouza/psyc3250/m/class2/lecture2.../lecture2.ppt

Electrochemical Gradient An Electrochemical Gradient is a Concentration Gradient with Ions: - These ions want to move down their concentration gradient - These ions (particularly) also want to move towards the opposite charge found on the other side of the membrane - This attraction for the other side of membranes (membrane potential) can be harnessed to do work - Electrochemical gradients essentially are batteries, i.e., means of physically storing electrical energy www.mansfield.ohio-state.edu/~sabedon/lectures/.../campbl08.ppt