In nite Sequences. Dr. Philippe B. Laval Kennesaw State University. October 9, 2008



Similar documents
Infinite Sequences and Series

Lecture 4: Cauchy sequences, Bolzano-Weierstrass, and the Squeeze theorem

SAMPLE QUESTIONS FOR FINAL EXAM. (1) (2) (3) (4) Find the following using the definition of the Riemann integral: (2x + 1)dx

Sequences and Series

SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES

Section 11.3: The Integral Test

Example 2 Find the square root of 0. The only square root of 0 is 0 (since 0 is not positive or negative, so those choices don t exist here).

Convexity, Inequalities, and Norms

Properties of MLE: consistency, asymptotic normality. Fisher information.

FIBONACCI NUMBERS: AN APPLICATION OF LINEAR ALGEBRA. 1. Powers of a matrix

Basic Elements of Arithmetic Sequences and Series

Asymptotic Growth of Functions

Soving Recurrence Relations

CS103X: Discrete Structures Homework 4 Solutions

Theorems About Power Series

1. C. The formula for the confidence interval for a population mean is: x t, which was

Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed.

Discrete Mathematics and Probability Theory Spring 2014 Anant Sahai Note 13

Chapter 5: Inner Product Spaces

3. Greatest Common Divisor - Least Common Multiple

Our aim is to show that under reasonable assumptions a given 2π-periodic function f can be represented as convergent series

Hypothesis testing. Null and alternative hypotheses

4.3. The Integral and Comparison Tests

SEQUENCES AND SERIES

AP Calculus BC 2003 Scoring Guidelines Form B

1 Computing the Standard Deviation of Sample Means

Chapter 6: Variance, the law of large numbers and the Monte-Carlo method

Math C067 Sampling Distributions

I. Chi-squared Distributions

Department of Computer Science, University of Otago

Trigonometric Form of a Complex Number. The Complex Plane. axis. ( 2, 1) or 2 i FIGURE The absolute value of the complex number z a bi is

Elementary Theory of Russian Roulette

Week 3 Conditional probabilities, Bayes formula, WEEK 3 page 1 Expected value of a random variable

Determining the sample size

The following example will help us understand The Sampling Distribution of the Mean. C1 C2 C3 C4 C5 50 miles 84 miles 38 miles 120 miles 48 miles

MARTINGALES AND A BASIC APPLICATION

Repeating Decimals are decimal numbers that have number(s) after the decimal point that repeat in a pattern.

5 Boolean Decision Trees (February 11)

INFINITE SERIES KEITH CONRAD

University of California, Los Angeles Department of Statistics. Distributions related to the normal distribution

AP Calculus AB 2006 Scoring Guidelines Form B

Lesson 17 Pearson s Correlation Coefficient

5.3. Generalized Permutations and Combinations

CS103A Handout 23 Winter 2002 February 22, 2002 Solving Recurrence Relations

A probabilistic proof of a binomial identity

Approximating Area under a curve with rectangles. To find the area under a curve we approximate the area using rectangles and then use limits to find

Descriptive Statistics

1. MATHEMATICAL INDUCTION

Sampling Distribution And Central Limit Theorem

Modified Line Search Method for Global Optimization


Measures of Spread and Boxplots Discrete Math, Section 9.4

Listing terms of a finite sequence List all of the terms of each finite sequence. a) a n n 2 for 1 n 5 1 b) a n for 1 n 4 n 2

Maximum Likelihood Estimators.

CHAPTER 3 DIGITAL CODING OF SIGNALS

Exploratory Data Analysis

WHEN IS THE (CO)SINE OF A RATIONAL ANGLE EQUAL TO A RATIONAL NUMBER?

BINOMIAL EXPANSIONS In this section. Some Examples. Obtaining the Coefficients

CHAPTER 7: Central Limit Theorem: CLT for Averages (Means)

Notes on exponential generating functions and structures.

GCSE STATISTICS. 4) How to calculate the range: The difference between the biggest number and the smallest number.

SEQUENCES AND SERIES CHAPTER

a 4 = = Which of the following sequences converge to zero? n 2 (a) n 2 (b) 2 n x 2 x = lim x n = lim x

Confidence Intervals. CI for a population mean (σ is known and n > 30 or the variable is normally distributed in the.

S. Tanny MAT 344 Spring be the minimum number of moves required.

The Stable Marriage Problem

Lesson 15 ANOVA (analysis of variance)

Chapter 7 Methods of Finding Estimators

Learning objectives. Duc K. Nguyen - Corporate Finance 21/10/2014

1 Correlation and Regression Analysis

THE REGRESSION MODEL IN MATRIX FORM. For simple linear regression, meaning one predictor, the model is. for i = 1, 2, 3,, n

NATIONAL SENIOR CERTIFICATE GRADE 12

Your organization has a Class B IP address of Before you implement subnetting, the Network ID and Host ID are divided as follows:

Part - I. Mathematics


Incremental calculation of weighted mean and variance

Ekkehart Schlicht: Economic Surplus and Derived Demand

Analysis Notes (only a draft, and the first one!)

Integer Factorization Algorithms

Betting on Football Pools

Present Value Factor To bring one dollar in the future back to present, one uses the Present Value Factor (PVF): Concept 9: Present Value

Output Analysis (2, Chapters 10 &11 Law)

CHAPTER 3 THE TIME VALUE OF MONEY

THE ARITHMETIC OF INTEGERS. - multiplication, exponentiation, division, addition, and subtraction

Chapter 7: Confidence Interval and Sample Size

Confidence Intervals for One Mean

Escola Federal de Engenharia de Itajubá

How Euler Did It. In a more modern treatment, Hardy and Wright [H+W] state this same theorem as. n n+ is perfect.

Hypergeometric Distributions

Normal Distribution.

Lecture 4: Cheeger s Inequality

Class Meeting # 16: The Fourier Transform on R n

Chapter 14 Nonparametric Statistics

Center, Spread, and Shape in Inference: Claims, Caveats, and Insights

Section 8.3 : De Moivre s Theorem and Applications

Transcription:

I ite Sequeces Dr. Philippe B. Laval Keesaw State Uiversity October 9, 2008 Abstract This had out is a itroductio to i ite sequeces. mai de itios ad presets some elemetary results. It gives the I ite Sequeces (8.). Elemetary Cocepts Simply speakig, a sequece is simply a list of umbers, writte i a de ite order: fa ; a 2 ; a 3 ; :::a ; a + ; :::g where the elemets a i represet umbers. I this sectio, we oly cocetrate o i ite sequeces. Here are some geeral facts about sequeces studied i this class: Every umber a i the sequece has a successor a + ; the sequece ever stops sice we study i ite sequeces. Thik of the idex of a particular elemet as idicatig the positio of the elemet i the list. The idex ca also be associated with a formula whe the elemets i the list are geerated by oe (see below). As such, the idex of the umbers does ot have to start at, though it does most of the time. If we call 0 the value of the startig idex, the there is a umber a for every 0. Thus, we ca de e a fuctio f such that a = f () where is a atural umber. I this class, we will cocetrate o i ite sequeces of real umbers. A more formal de itio of a sequece is as follows: De itio (sequece) A sequece of real umbers is a real-valued fuctio f whose domai is a subset of the o-egative itegers, that is a set of the form f 0 ; 0 + ; :::g where 0 is a iteger such that 0 0.. The umbers a = f () are called the terms of the sequece.

The typical otatio for a sequece is (a ), or fa g or fa g = where a deotes the geeral term of the sequece. Remark Whe a sequece is give by a fuctio ff ()g = 0, the fuctio f must be de ed for every 0. A sequece ca be give di eret ways The elemets of the sequece are give. A formula to geerate the terms of the sequece is give. A recursive formula to geerate the terms of the sequece is give. Example 2 The examples below illustrate sequeces give by listig all the elemets (it is really ot possible sice these are i ite sequeces),. f; 5; 0; 4; 98; 000; 0; 2; :::g. 2. ; 2 ; 3 ; :::. Though the elemets are listed, we ca also guess a formula to geerate them, what is it? 3. f ; ; ; ; ; ; :::g. Though the elemets are listed, we ca also guess a formula to geerate them, what is it? Example 3 The examples below illustrate sequeces give by a simple formula. Notice that does ot have to start at... The elemets of the sequece are: ; 2 ; 3 ; :::. The geeral = term of the sequece is a =. 2. p 3 =3. The elemets are 0; p ; p 2; p 3; :::. I this case, could ot start at. 3. f( ) g =2. The elemets of the sequece are f; ; ; ; :::g. Example 4 The examples below illustrate sequeces give by a recursive formula. a. =. We ca use this formula to geerate all the terms. a = 2a + 5 But the terms have to be geerated i order. For example, i order to get a 0, we eed to kow a 9, ad so o. Usig the formula, we get that a 2 = 2a + 5 = 7 2

Havig foud a 2, we ca ow geerate a 3 Ad so o. a 3 = 2a 2 + 5 = 9 2. A special sequece geerated recursively is the Fiboacci 8 sequece, amed < f = after a Italia mathematicia. It is de ed as follows: f 2 =. : f = f + f 2 We ca use this formula to geerate the terms of the sequece. This sequece was devised to model rabbit populatio. f represets the umber of pairs of rabbits after moths, assumig that each moth, a pair of rabbit produces a ew pair which becomes productive at age 2 moths. Example 5 Other sequeces. Arithmetic sequece. A sequece is arithmetic if the di erece betwee two cosecutive terms is costat. Let r be this costat. The, we have a a 0 = r =) a = a 0 + r a 2 a = r =) a 2 = a + r = a 0 + 2r ::: a a = r =) a = a + r = a 0 + r Thus, there is a de ig formula for arithmetic sequeces. For example a arithmetic sequece startig at 2, such that the di erece betwee two cosecutive terms is 3 is de ed by: a = 3 + 2 2. Geometric sequece. A sequece is geometric if the ratio of two cosecutive terms is costat. Let q deote this costat. The, we have a a 0 = q =) a = qa 0 a 2 a = q =) a 2 = qa = q 2 a 0 ::: a a = q =) a = qa = q a 0 Thus, there is a de ig formula for geometric sequeces. For example a geometric sequece startig at 2, such that the ratio betwee two cosecutive terms is 3 is de ed by: a = 2 3. Sequeces ca be plotted. However, the plot of a sequece will cosists of dots, sice they are oly de ed at the itegers. Figures, 2, 3, ad 4 show some sequeces beig plotted. 3

Figure : Plot of a =.2 Limit of a Sequece Give a sequece fa g, oe of the questios we try to aswer is: what is the behavior of a as!? Is a gettig closer ad closer to a umber? I other words, we wat to d lim! a. De itio 6 (limit of a sequece) A sequece fa g coverges to a umber L as goes to i ity if a ca be made as close as oe wats to L, simply by takig large eough. I this case, we write lim a = L. If lim a = L!! ad L is a ite umber, we say that fa g coverges. Otherwise, it diverges. Sometimes, we will make the distictio betwee diverges to i ity ad simply diverges. I the rst case, we still kow what the sequece is doig, it is gettig large without bouds. A sequece may diverge for several reasos. Its geeral term could get arbitrarily large (go to i ity), as show o gure 3. Its geeral term could also oscillate betwee di eret values without ever gettig close to aythig. This is the case of f( ) g, or f( ) l g as show o gure 4. 4

Figure 2: Plot of a = si Aother way to uderstad this is that if lim a = L the ja Lj goes to 0! whe!. It should also be oted that if lim a = L, the lim a + = L.!! I fact, lim a +p = L for ay positive iteger p. Graphically, the meaig of lim a = L is as follows. Cosider the sequece show o gure 5 whose plot is represeted by the dots. The sequece appears to have 3 as its limit, this is idicated by the horizotal solid lie through 3. If we draw a regio havig the lie y = 3 at its ceter, the sayig that lim a = 3 meas that there exists a certai value of (deote it 0 ) such that if > 0, the all the dots correspodig to the plot of the sequece will fall i the regio. O gure 5, we drew two regios, oe with dotted lies, the other oe with dashdot lies. We ca see that i both cases, after a while, the sequece always falls i the regio. Of course, the more arrow the regio is, the larger 0 will be. I other words, if we wat to guaratee that a is closer to 3, we have to look at a for larger values of. It appears that for the larger regio, the sequece falls i the regio if > 0. For the smaller regio, it happes whe > 22 (approximately). 5

Figure 3: Plot of l Let us rst state, but ot prove, a importat theorem. Theorem 7 If a sequece coverges, its limit is uique. We ow look at various techiques used whe computig the limit of a sequece. As oticed above, a sequece ca be give di eret ways. How its limit is computed depeds o the way a sequece is give. We begi with the easiest case, oe we are already familiar with from Calculus I. If the sequece is give by a fuctio, we ca, i may istaces, use our kowledge of dig the limit of a fuctio, to d the limit of a sequece. This is what the ext theorem tells us. Theorem 8 If lim x! f(x) = L ad a = f() the lim! a = L This theorem simply says that if we kow the fuctio which geerates the geeral term of the sequece, ad that fuctio coverges as x! the the sequece coverges to the same limit. We kow how to do the latter from Calculus I. 6

Figure 4: Plot of ( ) l Example 9 Fid lim +. The fuctio geeratig this sequece is f (x) = (l Hôpital s rule), lim + =. x. Sice lim x + x! Be careful, this theorem oly gives a de ite aswer if x x + = lim f(x) = L. If x! the fuctio diverges, we caot coclude. For example, cosider the sequece a = cos 2. The fuctio f such that a = f () is f (x) = cos 2x. This fuctio diverges as x!. Yet, a = cos 2 = for ay. So, lim a =. Theorem 0 If a b c for 0 ad lim b = L! lim a = lim c = L the!! This is the equivalet of the squeeze theorem. You will otice i the statemet of the theorem that the coditio a b c does ot have to be true for every. It simply has to be true from some poit o. Example Fid lim! 7

Figure 5: Limit of a sequece Sice! is oly de ed for itegers, we caot d a fuctio f such that a = f (). Thus, we caot use the previous theorem. We use the squeeze theorem istead. We otice that: 0! = 2 3 ::: ::: By the squeeze theorem, it follows that lim! = 0. Theorem 2 If lim! ja j = 0 the lim! a = 0 This is a applicatio of the squeeze theorem usig the fact that ja j a ja j. This theorem is ofte useful whe the geeral term of a sequece cotais ( ) as suggests the ext example. 8

Example 3 Fid lim a for a = ( ). First, we otice that ja j = ( ) = which coverges to 0 by the previous example. Hece, by theorem 2, a! 0 also. We ow look at a theorem which is very importat. Ulike the other theorems, we ca prove this oe as it is ot very di cult. Theorem 4 The sequece fx g coverges to 0 if jxj <. It coverges to if x =. It diverges otherwise. Proof. We cosider several cases. case : x =. The, x = =. Thus, the sequece coverges to. case 2: x =. The, x = ( ) which diverges. case 3: x = 0. The, x = 0 = 0. Thus, the sequece coverges to 0. case 4: jxj < ad x 6= 0. The, l jxj < 0. Thus, l jxj = l jxj!. Thus, jxj! 0 as!. Hece, by the previous theorem, x! 0 as!. case 5: x >. The, x!. case 6: x <. x oscillate betwee positive ad egative values, which are gettig larger i absolute value. Thus it also diverges. Fially, we state a theorem which is the equivalet for sequeces of the limit rules for fuctios. Theorem 5 Suppose that fa g ad fb g coverge, ad that c is a costat. The:. lim! (a + b ) = lim! a + lim! b 2. lim (a b ) = lim a lim!! 3. lim (a b ) = lim a!! 4. lim a! b = lim! a lim! 5. lim! ca = c lim! a 6. lim! c = c 7. lim! ap = h! b lim! b providig lim b b 6= 0! i p lim a if p > 0 ad a > 0.! 9

Sice we oly cosider limits as!, we will omit it ad simply write lim a. The way we d lim a depeds greatly o how the sequece is give. Example 6 Fid lim a for a =. I this case, the fuctio which geerates the terms of the sequece is f (x) = x. Sice lim x! x = 0, it follows that lim a = 0 by theorem 8. Example 7 Fid lim l. From a previous example, lim + + =, therefore lim l = l = 0. + Example 8 Fid lim ( ). Sice the terms of this sequece are f ; ; ; ; :::g, they oscillate but ever get close to aythig. The sequece diverges. I cotrast, the sequece of the rst example also oscillated. But it also got closer ad closer to 0. Example 9 Fid lim si. Though we ca d a fuctio to express the geeral term of this sequece, sice si x diverges, we caot use theorem 8 to try to compute the limit of this sequece. We ote that si Therefore Sice lim 0. si = 0, by the squeeze theorem for sequeces, it follows that lim si = Example 20 Fid lim l The fuctio de ig the geeral term is f (x) = l x x. Sice l x lim x! x It follows that lim l = 0. = lim x! = lim x! = 0 x x by l Hôpital s rule 0

Example 2 Assumig that the sequece give recursively by ( a = 2 a + = 2 (a + 6) coverges, d its limit. Let L = lim a. If we take the limit o both sides of the relatio de ig the sequece, we have lim a + = lim 2 (a + 6) So, lim a = 6. L = (L + 6) 2 2L = L + 6 L = 6.3 Icreasig, Decreasig ad Bouded Sequeces De itio 22 (icreasig, decreasig sequeces) A sequece fa g is said to be. icreasig if ad oly if a < a + for each oegative iteger. 2. o-decreasig if ad oly if a a + for each oegative iteger. 3. decreasig if ad oly if a > a + for each oegative iteger. 4. o-icreasig if ad oly if a a + for each oegative iteger. 5. mootoic if ay of these four properties holds. To show that a sequece is icreasig, we ca try oe of the followig:. Show that a < a + for all. 2. Show that a a + < 0 for all. 3. If a > 0 for all, the show that 4. If f () = a, show that f 0 (x) > 0 5. By iductio. Example 23 Let a = a a + < for all. +. Show fa g is icreasig.

Method : look at a a + Method 2: Let f (x) = a a + = = + + + 2 ( + 2) ( + ) ( + ) 2 + 2 = 2 + 2 + < x x +. The f 0 (x) = (x + ) 2 > 0 De itio 24 (bouded sequeces) A sequece fa g is said to be bouded from above if there exists a umber M such that a M for all. M is called a upper boud of the sequece. A sequece fa g is said to be bouded from below if there exists a umber m such that a m for all. m is called a lower boud of the sequece. A sequece is bouded if it is bouded from above ad below. Example 25 Cosider the sequece a = cos. Sice cos, a is bouded from above by ad bouded from below by. So, a is bouded. Example 26 Cosider the sequece. We have 0 <. Thus the = sequece is bouded below by 0 ad above by. Remark 27 Clearly, if M is a upper boud of a sequece, the ay umber larger tha M is also a upper boud. So, if a sequece is bouded from above, it has i itely may upper bouds. Similarly, if a sequece is bouded below by m, the ay umber less tha m is also a lower boud. Theorem 28 coverge. Theorem 29 coverge. A sequece which is icreasig ad bouded from above must A sequece which is decreasig ad bouded from below must We use this theorem to prove that certai sequeces have a limit. Before we do this, let us review iductio. This cocept is ofte eeded to show a sequece is icreasig or bouded. Theorem 30 (Iductio) Let P () deote a statemet about atural umbers with the followig properties: 2

. The statemet is true whe = i.e. P () is true. This is call the base case. 2. P (k + ) is true wheever P (k) is true for ay iteger k. The, P () is true for all 2 N. Example 3 Prove that the sequece de ed by a = 2 ad a + = 2 (a + 6) is icreasig ad bouded. Fid its limit. Icreasig: We show by iductio that a + > a. Base case. a 2 = 2 (a + 6) = 2 (2 + 6) = 4 > a. Assume the result is true for ay iteger k, that is assume a k+ > a k. Show the result is true for k + that is a k+ > a k+. a k+2 = 2 (a k+ + 6) > 2 (a k + 6) sice a k+ > a k = a k+ The result follows by iductio. Bouded: We show by iductio that a 6. Base case: a = 2 6. Assume the result is true for ay iteger k, that is a k 6, show the result is also true for k + that is a k+ 6. The result follows by iductio. a k 6 =) a k + 6 2 =) 2 (a k + 6) 6 =) a k+ 6 Limit: We have already computed the limit of such a sequece. Now that we kow the limit exists sice fa g i icreasig ad bouded above, the idea is to give it a ame, say lim a = L ad d what L is usig the limit 3

rules as follows: a + = 2 (a + 6) () lim (a + ) = lim 2 (a + 6) () L = 2 lim (a + 6) () L = 2 (lim a + lim 6) () L = (L + 6) 2 () 2L = L + 6 () L = 6 So lim a = 6 We ish with a importat remark. Remark 32 Cosider a sequece fa g. If fa g has a limit, it must be bouded. Try to explai why. Not every bouded sequece has a limit. Give a example of a bouded sequece with o limit..4 Thigs to Kow ad Problems Assiged Be able to write the terms of a sequece o matter which way the sequece is preseted. Be able to tell if a sequece coverges or diverges. If it coverges, be ale to d its limit. Be able to tell if a sequece is icreasig or decreasig. Related problems assiged:. o pages 565, 566 #, 3, 5, 7, 9,, 3, 5, 7, 9, 2, 23, 25, 35, 39, 4, 43 2. Let fa g be a sequece such that a = f () for some fuctio f. Suppose that lim f (x) does ot exist. Does it mea that fa g x! diverge? Explai or give a couter example. 3. Explai why if a sequece has a limit the it must be bouded. 4. Give examples of bouded sequeces which do ot have limits. 4