Nonlinear Systems of Ordinary Differential Equations

Similar documents
Eigenvalues, Eigenvectors, and Differential Equations

Orbits of the Lennard-Jones Potential

Chapter 4. Polynomial and Rational Functions. 4.1 Polynomial Functions and Their Graphs

Student name: Earlham College. Fall 2011 December 15, 2011

AP Calculus AB 2004 Scoring Guidelines

3.2 Sources, Sinks, Saddles, and Spirals

2008 AP Calculus AB Multiple Choice Exam

MATH 10550, EXAM 2 SOLUTIONS. x 2 + 2xy y 2 + x = 2

4 Lyapunov Stability Theory

A First Course in Elementary Differential Equations. Marcel B. Finan Arkansas Tech University c All Rights Reserved

Phase Portraits for u = A u

AP Calculus AB First Semester Final Exam Practice Test Content covers chapters 1-3 Name: Date: Period:

Lecture L22-2D Rigid Body Dynamics: Work and Energy

Dynamical Systems Analysis II: Evaluating Stability, Eigenvalues

3. Reaction Diffusion Equations Consider the following ODE model for population growth

Math Assignment 6

AP Calculus BC 2008 Scoring Guidelines

Numerical Solution of Differential Equations

Differentiation of vectors

Power functions: f(x) = x n, n is a natural number The graphs of some power functions are given below. n- even n- odd

By Clicking on the Worksheet you are in an active Math Region. In order to insert a text region either go to INSERT -TEXT REGION or simply

AP Calculus AB 2007 Scoring Guidelines Form B

Mark Howell Gonzaga High School, Washington, D.C.

Ch 7 Kinetic Energy and Work. Question: 7 Problems: 3, 7, 11, 17, 23, 27, 35, 37, 41, 43

MatLab - Systems of Differential Equations

Worksheet 1. What You Need to Know About Motion Along the x-axis (Part 1)

Understanding Poles and Zeros

LIMITS AND CONTINUITY

Student Performance Q&A:

AP Calculus BC 2001 Free-Response Questions

Calculus 1st Semester Final Review

Autonomous Equations / Stability of Equilibrium Solutions. y = f (y).

About the Gamma Function

Mark Howell Gonzaga High School, Washington, D.C.

The aerodynamic center

Mechanics 1: Conservation of Energy and Momentum

Example 4.1 (nonlinear pendulum dynamics with friction) Figure 4.1: Pendulum. asin. k, a, and b. We study stability of the origin x

Exponential and Logarithmic Functions

Solutions to old Exam 1 problems

Chapter 4 One Dimensional Kinematics

Objectives. Materials

0 0 such that f x L whenever x a

Second Order Linear Partial Differential Equations. Part I

Chapter 28 Fluid Dynamics

Ground Rules. PC1221 Fundamentals of Physics I. Kinematics. Position. Lectures 3 and 4 Motion in One Dimension. Dr Tay Seng Chuan

An Introduction to Calculus. Jackie Nicholas

AP Calculus AB 2005 Scoring Guidelines Form B

Implicit Differentiation

Calculus AB 2014 Scoring Guidelines

The integrating factor method (Sect. 2.1).

19.7. Applications of Differential Equations. Introduction. Prerequisites. Learning Outcomes. Learning Style

MEMORANDUM. All students taking the CLC Math Placement Exam PLACEMENT INTO CALCULUS AND ANALYTIC GEOMETRY I, MTH 145:

AP Calculus BC 2013 Free-Response Questions

88 CHAPTER 2. VECTOR FUNCTIONS. . First, we need to compute T (s). a By definition, r (s) T (s) = 1 a sin s a. sin s a, cos s a

Mathematics 31 Pre-calculus and Limits

ab = c a If the coefficients a,b and c are real then either α and β are real or α and β are complex conjugates

SECOND DERIVATIVE TEST FOR CONSTRAINED EXTREMA

Numerical Methods for Differential Equations

Homework 2 Solutions

1.5 SOLUTION SETS OF LINEAR SYSTEMS

Roots of equation fx are the values of x which satisfy the above expression. Also referred to as the zeros of an equation

System of First Order Differential Equations

3 Contour integrals and Cauchy s Theorem

Physics 1120: Simple Harmonic Motion Solutions

Scalar Valued Functions of Several Variables; the Gradient Vector

Connecting Transformational Geometry and Transformations of Functions

Roots of Equations (Chapters 5 and 6)

Chapter 2. Parameterized Curves in R 3

AP Calculus BC 2006 Free-Response Questions

The dynamic equation for the angular motion of the wheel is R w F t R w F w ]/ J w

y intercept Gradient Facts Lines that have the same gradient are PARALLEL

Vector Spaces; the Space R n

APPLIED MATHEMATICS ADVANCED LEVEL

Applications of Second-Order Differential Equations

CHAPTER 2. Eigenvalue Problems (EVP s) for ODE s

Linear algebra and the geometry of quadratic equations. Similarity transformations and orthogonal matrices

Review of Fundamental Mathematics

Let s first see how precession works in quantitative detail. The system is illustrated below: ...

x = + x 2 + x

A QUICK GUIDE TO THE FORMULAS OF MULTIVARIABLE CALCULUS

Multi-variable Calculus and Optimization

Polynomial Degree and Finite Differences

C B A T 3 T 2 T What is the magnitude of the force T 1? A) 37.5 N B) 75.0 N C) 113 N D) 157 N E) 192 N

Existence of Traveling Wave Solutions

Algebra. Exponents. Absolute Value. Simplify each of the following as much as possible. 2x y x + y y. xxx 3. x x x xx x. 1. Evaluate 5 and 123

Section 1-4 Functions: Graphs and Properties

Sample Questions for the AP Physics 1 Exam

Journal of Engineering Science and Technology Review 2 (1) (2009) Lecture Note

Work as the Area Under a Graph of Force vs. Displacement

F = ma. F = G m 1m 2 R 2

TOPIC 4: DERIVATIVES

Lecture 8 : Coordinate Geometry. The coordinate plane The points on a line can be referenced if we choose an origin and a unit of 20

AP Calculus AB 2004 Free-Response Questions

Oscillations. Vern Lindberg. June 10, 2010

Transcription:

Differential Equations Massoud Malek Nonlinear Systems of Ordinary Differential Equations Dynamical System. A dynamical system has a state determined by a collection of real numbers, or more generally by a set of points in an appropriate state space. Small changes in the state of the system correspond to small changes in the numbers. The evolution rule of the dynamical system is a fied rule that describes what future states follow from the current state. The rule is deterministic: for a given time interval only one future state follows from the current state. The mathematical models used to describe the swinging of a clock pendulum, the flow of water in a pipe, or the number of fish each spring in a lake are eamples of dynamical systems. Autonomous System. An autonomous differential equation is a system of ordinary differential equations which does not depend on the independent variable. It is of the form d X(t) = F (X(t)), dt where X takes values in n-dimensional Euclidean space and t is usually time. It is distinguished from systems of differential equations of the form d X(t) = G(X(t), t), dt in which the law governing the rate of motion of a particle depends not only on the particle s location, but also on time; such systems are not autonomous. Autonomous systems are closely related to dynamical systems. Any autonomous system can be transformed into a dynamical system and, using very weak assumptions, a dynamical system can be transformed into an autonomous systems. Jacobian Matri. Consider the function F : IR n IR m, where F ( 1, 2,..., n ) = f 1 ( 1, 2,..., n ) f 2 ( 1, 2,..., n )...... f m ( 1, 2,..., n ) The partial derivatives of f 1 ( 1,..., n ),..., f m ( 1,..., n ) (if they eist) can be organized in an m n matri. The Jacobian matri of F ( 1, 2,..., n ) denoted by J F f 1 1 J F ( 1,..., n ) =..... f m 1. is as follows: Its importance lies in the fact that it represents the best linear approimation to a differentiable function near a given point. f 1 n f m n.

Massoud Malek Nonlinear Systems of Ordinary Differential Equations Page 2 Qualitative Analysis. Very often it is almost impossible to find eplicitly or implicitly the solutions of a system (specially nonlinear ones). The qualitative approach as well as numerical one are important since they allow us to make conclusions regardless whether we know or not the solutions. Nullclines and Equilibrium Points Consider the system of first order ordinary differential equations: 1 = f 1 ( 1, 2..., n ) 2 = f 2 ( 1, 2..., n )... n = f n ( 1, 2..., n ). The j -nullcline is the set of points which satisfy f j ( 1, 2,..., n ) = 0. The intersection point of all the nullclines is called an equilibrium point or fied point of the system. The Jacobian matri with constant entries, is identified with the matri of a linear systems. Near a fied point ( 1, 2,..., n), the dynamics of the nonlinear system are qualitatively similar to the dynamics of the linear system associated with the Jacobian matri J( 1, 2,..., n), provided its eigenvalues λ js have nonzero real parts. Fied points with a Jacobian matri such that Re(λ j ) 0 are called hyperbolic fied points. Otherwise, they are non-hyperbolic fied points, whose stabilities must be determined directly. Eample 1. Consider the system: (t) = (1 ) y, y (t) = 2y(1 y2 2 ) 32 y. The -nullclines are given by (t) = (1 ) y = 0 which is equivalent to = 0 or y = + 1. The y-nullclines are given by y (t) = 2y(1 y 2 ) 3y = 0 which is equivalent to y = 0 or 3 2 + y 2 = 2. Eample 2. Consider the model describing two competing species: (t) = (1 y), y (t) = 2y (1 y2 32 ). The -nullclines are = 0 or y = + 1. The y-nullclines are y = 0 or y = 3 + 2. The equilibrium points are (0, 0), (0, 2), (1, 0), and ( 1 2, 1 2 ). The components of the velocity vectors are (t) and y (t). These vectors give the direction of the motion along the trajectories. We have the four natural directions (left, right, up, and down) and the other four directions (left-down, left-up, right-down, and right-up). These directions are obtained by looking at the signs of (t) and y (t) and whether they are equal to 0. If both are zero, then we have an equilibrium point. Note that along the -nullcline the velocity vectors are vertical while along the y-nullcline the velocity vectors are horizontal. Note that as long as we are traveling along a nullcline without crossing an equilibrium point, then the direction of the velocity vector must be the same. Once we cross an equilibrium point, then we may have a change in the direction (from up to down, or right to left, and vice-versa).

Massoud Malek Nonlinear Systems of Ordinary Differential Equations Page 3 Nullclines - Fied Points - Velocity Vectors Eample 1. Eample 2. In order to find the direction of the velocity vectors along the nullclines, we pick a point on the nullcline and find the direction of the velocity vector at that point. The velocity vector along the segment of the nullcline delimited by equilibrium points which contains the given point will have the same direction. For eample, consider the point (1/3, 1) on the y-nullcline y = 3 + 2 in the second eample. The velocity vector at this point is ( 1/9, 0). Therefore the velocity vector at any point on the line y = 3 + 2, with > 1/3, is horizontal and points to the left (since = 1/9 < 0). The picture below gives the nullclines and the velocity vectors along them. Velocity Vectors Remark. The point (0, 0) is a fied point of any linear system of ordinary differential equation, but a nonlinear system may have neither fied points nor nullclines. Eample 3. (t) = 2 + 1, y (t) = (y 1). No -nullcline. The y-nullcline are = 0 or y 1. No fied point. Eample 4. (t) = 2 + y 2 1, y (t) = y + 2. The -nullcline is the unit circle. The y-nullcline is the line y = + 2. The nullclines do not intersect.

Massoud Malek Nonlinear Systems of Ordinary Differential Equations Page 4 Nonlinear Autonomous Systems of Two Equations Most of the interesting differential equations are non-linear and, with a few eceptions, cannot be solved eactly. Approimate solutions are arrived at using computer approimations. A first order nonlinear autonomous system is: (t) = F (, y), At the site: y (t) = G(, y). http://cs.jsu.edu/mcis/faculty/leathrum/mathlets/diffeq2.html they use Java to show you graphs of solutions of first order nonlinear autonomous systems of two equations. To see the graphs of the vector field and flow curves go to http://cs.jsu.edu/mcis/faculty/leathrum/mathlets/vecfield.html Here are a few eamples of second order nonlinear autonomous systems: Equation of motion of point mass in the (,y)-plane under gravitational force: tt = kr 3, y tt = kyr 3, where r = 2 + y 2. Equation of motion of a point mass in the (,y)-plane under central force: Equations of motion of a projectile: Linearization Technique tt = f(r), y tt = yf(r), where r = 2 + y 2. tt = f(y)g(v) t, y tt = f(y)g(v)y t a, where v = ( ) 2 + (y ) 2. Consider the autonomous nonlinear system (t) = F (, y), y (t) = G(, y). with (, y ) a fied point. We would like to find the closest linear system when (, y) is close to (, y ). In order to do that we need to approimate the functions F (, y) and G(, y) around the equilibrium point (, y ) by its tangent around that fied point. From multi-variable calculus, we know that when (, y) is close to (, y ), the nonlinear system may be approimated by the system d d t (t) = F (, y) F (, y ) + (, y )( ) + y (, y )(y y ) d d t y(t) = G(, y) G(, y ) + G (, y )( ) + G y (, y )(y y ). Since (, y ) is a fied point, we have F (, y ) = G(, y ) = 0. Thus d d t (t) (, y )( ) + y (, y )(y y ) d G y(t) d t (, y )( ) + G y (, y )(y y ).

Massoud Malek Nonlinear Systems of Ordinary Differential Equations Page 5 This is a linear system. Its coefficient matri is J = (, y ) G (, y ) y (, y ). G y (, y ) This matri is just the Jacobian matri of the system at the fied point (, y ). Thus y = (, y ) G (, y ) y (, y ). G y (, y ) y y Note. If the equilibrium point (, y ) (0, 0), then by choosing u = and v = y y, we may the system to a new system with (0, 0) as a fied point. Topological Classification Linear stability analysis works for a hyperbolic fied points. The nonlinear system s phase portrait near the fied point is topologically unchanged due to small perturbations, and its dynamics are structurally stable or robust. Poincare-Lyapunov Theorem. If the eigenvalues of the Jacobian matri evaluated at the fied point are not equal zero or are not pure imaginary numbers, then the trajectories of the system around the equilibrium point behave the same way as the trajectories of the associated linear system. 1. If the eigenvalues are negative or comple with negative real part, then the fied point is a sink (that is all the solutions will die at the equilibrium point). Note that if the eigenvalues are comple, then the solutions will spiral around the equilibrium point. 2. If the eigenvalues are positive or comple with positive real part, then the fied point is a source (this means that the solutions on the trajectories will move away from the equilibrium point). Note that if the eigenvalues are comple, then the solutions will spiral away from the fied point. 3. If the eigenvalues are real number with different sign (one positive and one negative), then the equilibrium point is a saddle point. In fact, there will be two solutions which approach the equilibrium point as t, and two more solutions which approach the equilibrium point as t. For the linear system theses solutions are lines, but for the nonlinear system they are not in general. These four solutions are called separatri. Let p = trace[j(, y )] and q = det[j(, y )], then hyperbolic fied points are classified as follows: Repellers (Sources) Unstable p > 0, q > 0 Re(λ 1 ) > 0, Re(λ 2 ) > 0 Attractors (Sinks) Stable p < 0, q > 0 Re(λ 1 ) < 0, Re(λ 2 ) < 0 Saddle Points Unstable q < 0 Re(λ 1 ) < 0, Re(λ 2 ) > 0 Linear stability analysis may fail for a non-hyperbolic fied point: Re(λ 1 ) = 0 and Re(λ 2 ) = 0 or at least one eigenvalue is zero. The classifications for the fied points of a nonlinear system are summarized in the

Massoud Malek Nonlinear Systems of Ordinary Differential Equations Page 6 following diagram: p Saddle points Saddle points Repellers (Sources) Attractors (Sinks) q Eample 5. Consider the nonlinear system (t) = F (, y) = 3, y (t) = G(, y) = 2y. The solution is: d 3 = dt (t) = ± (1 C 1 e 2t ) 1 ; dy y = 2 dt y(t) = C 2 e 2t. The fied points are the intersections of the nullclines y = 0 (the -ais) with = 1, = 0, and = 1. Stability at Fied Points [ ] 3 The Jacobian matri is J(, y) = 2 1 0 with 0 2 [ ] [ ] [ ] 2 0 1 0 J( 1, 0) =, J(0, 0) =, and 2 0 J(1, 0) =. 0 2 0 2 0 2 Note that around the fied points ( 1, 0), (0, 0), and (1, 0), the nonlinear system should behave like the linear systems: [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] 2 0 + 1 1 0 2 0 1 y =, 0 2 y y =, and 0 2 y y = 0 2 y respectively. Since all the eigenvalues have nonzero real part, we conclude that all three fied points are hyperbolic. Consequently, the nonlinear system has a stable node (attractor) at (0, 0) and saddle points at ( 1, 0) and (1, 0).

Massoud Malek Nonlinear Systems of Ordinary Differential Equations Page 7 P hase P ortrait Eample 6. Consider the following second order nonlinear equation known as Van der Pol equation d 2 dt 2 (1 2 ) d dt + = 0. This can be translated into the following system. Set y = d. Then we have dt (t) = y, y (t) = + (1 2 )y. The -nullcline is given by d = y = 0. Hence the -nullcline is the -ais. dt The y-nullcline is given by dy Thus (, y ) = (0, 0) is the only fied point. The Jacobian matri is dt = + (1 2 )y. Hence the y-nullcline is the curve y = [ ] 0 1 J(, y) = 1 2y 1 2 with J(0, 0) = [ ] 0 1. 1 1 1 2. Net picture shows the graphs of the solutions (t) and y(t) for the initial value (0, 4). The linear system close to the original nonlinear system around the fied point (0, 0) is (t) = y, y (t) = + y. or ( ) = y [ 0 1 1 1 ] ( ). y The eigenvalues of this system are 1 ± 3 i. Since the real part is positive, the solutions 2 of the linear system spiral away from the origin. Eample 7. Finally, consider the following problem: = y y = 9 sin y 5

Massoud Malek Nonlinear Systems of Ordinary Differential Equations Page 8 [ ] 0 1 with J = 9 cos 1 5 -nullcline: y = 0 y-nullclines: y = 45 sin fied points: (nπ, 0) n =, 3, 2,0, 1, 2, 3, Nullclines and F ied P oints P hase P ortrait