Systematics - BIO 615



Similar documents
The Clompleat Cladist

The Compleat Cladist. A Primer of Phylogenetic Procedures INTRODUCTION, TERMS, AND CONCEPTS

The Art of the Tree of Life. Catherine Ibes & Priscilla Spears March 2012

Name Class Date. binomial nomenclature. MAIN IDEA: Linnaeus developed the scientific naming system still used today.

Taxonomy and Classification

Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.

Lab 2/Phylogenetics/September 16, PHYLOGENETICS

Protein Sequence Analysis - Overview -

Principles of Evolution - Origin of Species

READERS of this publication understand the

Biological kinds and the causal theory of reference

Evolution, Natural Selection, and Adaptation

Understanding by Design. Title: BIOLOGY/LAB. Established Goal(s) / Content Standard(s): Essential Question(s) Understanding(s):

Practice Questions 1: Evolution

Biology Notes for exam 5 - Population genetics Ch 13, 14, 15

4. Why are common names not good to use when classifying organisms? Give an example.

Evidence for evolution factsheet

KEY CONCEPT Organisms can be classified based on physical similarities. binomial nomenclature

A Phylogenetic Interpretation of the Comparative Method 1

This is a series of skulls and front leg fossils of organisms believed to be ancestors of the modern-day horse.

Sequence Analysis 15: lecture 5. Substitution matrices Multiple sequence alignment

CCR Biology - Chapter 10 Practice Test - Summer 2012

Building a phylogenetic tree

History of the study of animal behavior

Lesson Title: Constructing a Dichotomous Key and Exploring Its Relationship to Evolutionary Patterns

WJEC AS Biology Biodiversity & Classification (2.1 All Organisms are related through their Evolutionary History)

The Central Dogma of Molecular Biology

Evolution (18%) 11 Items Sample Test Prep Questions

Assign: Unit 1: Preparation Activity page 4-7. Chapter 1: Classifying Life s Diversity page 8

Introduction to Bioinformatics AS Laboratory Assignment 6

Typology now: Homology and developmental constraints explain evolvability

Arguments and Dialogues

17.1. The Tree of Life CHAPTER 17. Organisms can be classified based on physical similarities. Linnaean taxonomy. names.

Classification and Evolution

Preparation. Educator s Section: pp. 1 3 Unit 1 instructions: pp. 4 5 Unit 2 instructions: pp. 6 7 Masters/worksheets: pp. 8-17

What mathematical optimization can, and cannot, do for biologists. Steven Kelk Department of Knowledge Engineering (DKE) Maastricht University, NL

Section 3 Comparative Genomics and Phylogenetics

Evolution - Biosystematics

High Throughput Network Analysis

Borges, J. L On exactitude in science. P. 325, In, Jorge Luis Borges, Collected Fictions (Trans. Hurley, H.) Penguin Books.

AP Biology Essential Knowledge Student Diagnostic

People have thought about, and defined, probability in different ways. important to note the consequences of the definition:

IDENTIFICATION OF ORGANISMS

Introduction to Phylogenetic Analysis

Chapter 12. GARBAGE IN, GARBAGE OUT Data issues in supertree construction. 1. Introduction

Carnivore, omnivore or herbivore?

II. Germ Layers Ontogeny can reveal a great deal about evolutionary relationships. Answer and discuss the following:

Religion and Science

Teacher s Guide For. Core Biology: Animal Sciences

Algorithms in Computational Biology (236522) spring 2007 Lecture #1

A Hands-On Exercise To Demonstrate Evolution

The Origin of Life. The Origin of Life. Reconstructing the history of life: What features define living systems?

SPECIES, CONCEPTS OF. James Mallet GLOSSARY. University College London

Macroevolution: Change above the species level NABT 2006 Evolution Symposium

Science and Religion

Introduction to Animals

Evolutionary Evidence

Phylogenetic Trees Made Easy

Summary Genes and Variation Evolution as Genetic Change. Name Class Date

Background Biology and Biochemistry Notes A

MISSING ENTRY REPLACEMENT DATA ANALYSIS: A REPLACEMENT APPROACH TO DEALING WITH MISSING DATA IN PALEONTOLOGICAL AND TOTAL EVIDENCE DATA SETS

Divine command theory

Fairfield Public Schools

The Story of Human Evolution Part 1: From ape-like ancestors to modern humans

Lab #10 Invertebrates 2 and Vertebrates 1 (Exercises 39, 40)

Activity Sheet A - Getting Sorted (Cont) Diet (in the wild) Herbivore Carnivore Omnivore Habitat Terrestrial/ground dwelling Arboreal/tree living Aqua

Worksheet - COMPARATIVE MAPPING 1

Inductive Reasoning Page 1 of 7. Inductive Reasoning

Molecular Clocks and Tree Dating with r8s and BEAST

A CONTENT STANDARD IS NOT MET UNLESS APPLICABLE CHARACTERISTICS OF SCIENCE ARE ALSO ADDRESSED AT THE SAME TIME.

tree diagrams that represent the history of biological taxa. The cladogram in figure one depicts species of

Mechanisms of Evolution

1 Solving LPs: The Simplex Algorithm of George Dantzig

Module 223 Major A: Concepts, methods and design in Epidemiology

Cosmological Arguments for the Existence of God S. Clarke

Bayesian coalescent inference of population size history

The Linnaean Enterprise: Past, Present, and Future 1

Phylogeny and the dispersal of Homo. David S. Strait, U Albany

Name: DUE: May 2, 2013 Ms. Galaydick. Geologic Time Scale Era Period End date (in millions of years) Cenozoic Quaternary present

Animal Models of Human Behavioral and Social Processes: What is a Good Animal Model? Dario Maestripieri

Problem Set 5 BILD10 / Winter 2014 Chapters 8, 10-12

Modulhandbuch / Program Catalog. Master s degree Evolution, Ecology and Systematics. (Master of Science, M.Sc.)

CONCEPTS AND TESTS OF HOMOLOGY IN THE CLADISTIC PARADIGM

Two-sample inference: Continuous data

Likelihood: Frequentist vs Bayesian Reasoning

Unit 3 Handout 1: DesJardin s Environmental Ethics. Chapter 6 Biocentric Ethics and the Inherent Value of Life

Dinosaur Time-line. What other animals lived then? How long ago did the dinosaurs live? Did dinosaurs live at the same time as people?

Bayesian Phylogeny and Measures of Branch Support

Presentation by: Ahmad Alsahaf. Research collaborator at the Hydroinformatics lab - Politecnico di Milano MSc in Automation and Control Engineering

How does the problem of relativity relate to Thomas Kuhn s concept of paradigm?

A Study to Predict No Show Probability for a Scheduled Appointment at Free Health Clinic

ANOTHER GENERATION OF GENERAL EDUCATION

HUMAN SKIN COLOR: EVIDENCE FOR SELECTION

Decision Making under Uncertainty

USING VARIED INSTRUCTIONAL TECHNIQUES: INDUCTIVE and DEDUCTIVE TEACHING APPROACHES

20-30 minutes, can be used within a longer activity

THREE DIMENSIONAL REPRESENTATION OF AMINO ACID CHARAC- TERISTICS

Learning to Understand the Tree of Life

Chunking? Sounds like psychobabble!

Book Review of Rosenhouse, The Monty Hall Problem. Leslie Burkholder 1

Transcription:

Outline - and introduction to phylogenetic inference 1. Pre Lamarck, Pre Darwin Classification without phylogeny 2. Lamarck & Darwin to Hennig (et al.) Classification with phylogeny but without a reproducible method 3. Hennig (et al.) to today Classification with phylogeny & a reproducible method alpha taxonomy collections identification descriptions Biosystematics classification character evolution phylogeny phylogenetics biogeography Describing taxa = assigning names to groups (populations) = classification Aristotle - Scala Naturae - ladder of perfection with humans at top - DIFFICULT mental concept to dislodge! (use of terms like higher and lower for organisms persist) Linnaeus - perpetuated the ladder-like view of life linear, pre evolution 1758 - Linnaeus grouped all animals into 6 higher taxa: 1. Mammals ( top ) 2. Birds 3. Reptiles 4. Fishes 5. Insects 6. Worms ( bottom ) Outline - and introduction to phylogenetic inference 1. Pre Lamarck, Pre Darwin Classification without phylogeny 2. Lamarck & Darwin to Hennig (et al.) Classification with phylogeny but without a reproducible method 3. Hennig (et al.) to today Classification with phylogeny & a reproducible method Lamarck - 1800 - Major impact on Biology: - First public account of evolution - proposed that modern species had descended from common ancestors over immense periods of time - Radical! evolution = descent with modification - Began with a ladder-like description but considered Linnaeus s worms to be a chaotic wastebucket taxon - He raided the worm group to liberate disparate taxa - Early and MAJOR example of using data interpreted within an evolutionary framework to classify 1

Lamarck, J. B. 1809. Philosophie Zoologique - Phylogenetics began before evolutionary trees - Classifications were taken as proxies - representations of the natural order, these were the trees - By putting taxa together in a group, one was saying these taxa are closer to one another than to anything else - they belong together - Closer meant different things to different workers: e.g. Greater body form similarity / complexity e.g. Greater evolutionary relationship e.g. more shared homologies (natural vs artificial) Perhaps the first branching diagram, phylogentic tree published in the history of Biology - 1809 Lamarck s ideas: Two origins of life (since both were equally primitive ) Insects et al - side branch Removed birds to side branch rather than below mammals Lamarck, J. B. 1809. Philosophie Zoologique alpha taxonomy collections identification descriptions Biosystematics classification character evolution phylogeny 1809 biogeography Phylogenetics began with the emergence of the idea of evolution applied to classification phylogenetics Dans sa production des differents animaux, la nature n'a pas execute une serie unique et simple. (In its production of the different animals, nature has not fashioned a single and simple series.) - Lamarck 1815 = the beginning of the end of the Scala Naturae 2

Charles Darwin (& Alfred Russel Wallace) - provided the mechanism (natural selection) to explain evolution - 1858 & 1859 Lamarck s ideas, which lacked an accurate mechanism, hadn t spread Darwin s ideas did (That evolution occurred was apparent to many who knew the fossil record, the problem, was How? ) In regard to classification and all the endless disputes about the "Natural System," which no two authors define in the same way, I believe it ought, in accordance to my heterodox notions, to be simply genealogical. But as we have no written pedigrees you will, perhaps, say this will not help much; but I think it ultimately will, whenever heterodoxy becomes orthodoxy, for it will clear away an immense amount of rubbish about the value of characters, and will make the difference between analogy and homology clear. The time will come, I believe, though I shall not live to see it, when we shall have very fairly true genealogical trees of each great kingdom of Nature. Darwin in a letter to Huxley, 1857 Classifications (starting in the mid to late 1800s) - Based on inferred evolutionary history - End of artificial classifications for convenience or for understanding the creator - But, How does one infer evolutionary history? no reproducible method, yet, to do so Darwin (1859) On the Origin of Species Ernst Haeckel (late 1800s) - Heavy supporter of evolution, but not Darwin - Ontogeny recapitulates phylogeny - not a law, as he thought - Coined terms: Ecology Phylum Phylogeny (1866) monophyletic polyphyletic The method of phylogenetic inference (from which one may or may not derive a classification) that developed is referred to as Evolutionary Taxonomy - spanned from the 1800s to the 1960s - formed the roots of the discipline of phylogenetics 3

Evolutionary Taxonomy (<1960s) - Method involved a reliance on authority, not reproducible: 1. Spend a lifetime learning as much as possible about the biology of a group (morphology, development, fossils, etc.) 2. Publish a drawing of a phylogeny based on one s (informed) opinion = Guessograms Evolutionary Taxonomy (<1960s) - During the modern synthesis systematics was marginalized not a science - Leading figures: Mayr & Simpson 1940s - Without a reproducible method, hypotheses couldn t be tested - No longer used, but exists in some forms today (in contrast to systematists who know nothing about their organisms!) Haeckel, 1872 - tree depicts 1) relationships, 2) timing of branching events, 3) diversity of groups through time Haeckel, 1872 - tree lacks: 1) data? Characters supporting branches? 2) quantification of support - strength of argument Summary of contributions Evolutionary Taxonomy (<1960s) Good: Know your organisms ET - many hypotheses generated, but no method to test. Modern methods to test show many of the relationships to be good, or at least close but many also rejected Bad: not reproducible; no objective method; arbitrary, intuitive, no way to resolve conflicts 4

Outline - and introduction to phylogenetic inference 1. Pre Lamarck, Pre Darwin Classification without phylogeny 2. Lamarck & Darwin to Hennig (et al.) Classification with phylogeny but without a reproducible method 3. Hennig (et al.) to today Classification with phylogeny & a reproducible method Lack of a reproducible method resulted in three major approaches: (Explosion in 1960s) 1. Phenetics - similarity / distances only, not evolution, not phylogeny, no weighting 2. Cladistics - phylogeny inferred using characters & parsimony 3. - phylogeny inferred using corrected data & best fitting model Phenetics - similarity only, not evolution, not phylogeny (1950-1960) - computerized, reproducible, objective, modern, sexy - goal to remove all subjectivity, measure everything, use matrix of distances - sometimes called Numerical Taxonomy after book by Sokal & Sneath (1963) - cluster based on overall similarity - not evolutionary trees, but phenograms 1957 - first numerical phylogeny published (Michener & Sokal) Phenetics - Problems 1. Reproducible but no agreement on which clustering algorithm or statistic to use - different algorithms = different trees e.g. UPGMA, PCA etc. - although there is only one true evolutionary tree, there are many alternative similarity trees depending on the data & algorithm used Similarity sometimes reflects evolution Rhino Beetle Butterfly True tree: Butterfly Butterfly Beetle Beetle 2. Similarity doesn t always = evolutionary relationship! Rhino Phenogram Rhino Cladogram 5

And sometimes doesn t Phenetics - the good Lizard Crocodile Bird True tree: Lizard Lizard 1. Demanded explicit character analysis & laid groundwork for numerical phylogenetics 2. Still used for lower-level problems e.g. morphometrics, species demarcations 3. And some higher-level problems Crocodile Bird Phenogram Crocodile Bird Cladogram Survives in various forms - an issue of debate (see lecture on Distance methods) Definition - Phenetics Phenetics as originally applied, by Cain and Harrison (1960), refers to the "arrangement by overall similarity, based on all available characters without any weighting...since it employs all observable characters (including of course genetic data when available)". Cain, A. J., Harrison, G.A. (1960) Phyletic weighting. Proceedings of the Zoological Society of London 131: 1-31 Lack of a reproducible method resulted in three major approaches: 1. Phenetics - similarity / distances only, not evolution, not phylogeny 2. Cladistics - phylogeny inferred using characters & parsimony 3. - phylogeny inferred using corrected data & best fitting model Cladistics 1950 - Willi Hennig Grundzüge einer Theorie der phylogenetischen Systematik - German entomologist of Diptera - 1966 English translation of Phylogenetic Systematics - key: distinguish derived from ancestral homology - yields phylogenetic tree - Vitriolic attacks on phenetics during the 1970s Willi Hennig (1913-1976) Cladistics - method explicit, reproducible - hypotheses of phylogeny could now be tested - Hennig s original method: 1. Distinguish homologies from analogies 2. Distinguish derived homologies (apomorphies) from ancestral (plesiomorphies) homologies 3. Tree then built from apomorphies (evidence of common ancestry) - more on how this is done later 6

Cladistics - monophyletic classification - a new method for phylogenetic inference AND - a new method to derive classifications 1. Not based on similarity but on phylogeny (attacked phenetic clusterers) 2. Taxa must be natural (monophyletic) = common ancestor and ALL descendents included (attacked ET classifications that accepted non-monophyletic groups) Classifications and Phylogenies Given this classification: Class Reptilia Order Anapsida (turtles) Order Lepidosauria (lizards & snakes) Order Crocodilia Class Aves Class Mammalia What evolutionary tree would you envision? Classifications and Phylogenies Class Reptilia Order Anapsida (turtles) Order Lepidosauria (lizards & snakes) Order Crocodilia Class Aves Class Mammalia Fish Reptilia is not monophyletic It is a grade, not a clade Amphibia Turtles Mammals Lizards Snakes Crocodiles Birds Anapsida Crocodilia Lepidosauria Aves Mammalia Does not include at least 1 descendent group: birds Cladistics - Originally lacked an explicit method to deal with character conflict: Hennig s dilemma - Hennig s approach was to remove the conflict by restudy of the characters - The principle of Parsimony was later employed to deal with character conflict (to be continued ) Lack of a reproducible method resulted in three major approaches: 1. Phenetics - similarity / distances only, not evolution, not phylogeny 2. Cladistics - phylogeny inferred using characters & parsimony 3. - phylogeny inferred using corrected data & best fitting model 7

- Grew from mathematical, computer, evolutionary, numerical studies, not as much from systematics - Concurrent with first protein sequence data (Zuckerkandl & Pauling, 1962) - 1960s numerical techniques that used characters rather than distances/similarities: 1. Parsimony (Cavalli-Sforza & Edwards, 1963) tree with minimum changes preferred 2. Maximum Likelihood (Cavalli-Sforza & Edwards, 1964) tree that maximizes probability of the data is preferred - Cavalli-Sforza & Edwards had been students of the population geneticist R. A. Fisher - Worked on trees of human populations from gene frequencies & blood group alleles - Arrived at 2 methods initially: 1. Parsimony 2. Least-squares (a distance method) - 3rd method to reconcile the two: 3. Maximum Likelihood (Fisher s method) (published 1964 & 1967) Luca Cavalli-Sforva - Parsimony was made a workable method for morphological analysis by Camin & Sokal, 1965 - evolved cartoon Caminalcules & tested methods to infer the known phylogeny - parsimony was best Anthony Edwards First published tree using parsimony (1965) - Camin & Sokal s parsimony required irreversible change & ordered states (problem) 0 => 1 => 2 => 3 - Parsimony becomes adopted by the cladists: - Kluge (1969) and Farris (1970) published algorithms for unordered parsimony termed Wagner Parsimony & how to search for the most parsimonious tree & Cladistics - Cladists state that Hennig s methods implied parsimony: Hennig s Auxiliary Principle: assume homology if there is no evidence to the contrary - one change (homology) is the default assumption over - two or more changes (analogy / homoplasy) - prefer trees with the greatest number of apomorphies (and thus the fewest homoplasies) 8

& Cladistics - Cladists (most) reject statistical approaches to phylogenetics - In so doing they consider parsimony to not be statistical but philosophical - Claim justification for a parsimony-only method using arguments on hypothesis testing of philosopher Karl Popper (more on this later ) - Initially overshadowed by cladistics difficulties with complexity of approach - Rapidly expanding field initially for molecular data as of 2001 for morphological data too faster algorithms & computers making approach fully practical - Cladists continue the battle for their method today 1980s 1960s 1800s Cladistics Evolutionary Taxonomy Phenetics Statistical Phylogenetics Cladism overshadowed ET & Phenetics Now head to head with rapidly growing Terms - from lecture & readings Aristotle's Scala naturae Lamarck Darwin Wallace Haeckel Evolutionary Taxonomy Mayr & Simpson 1940s phenetics Sokal & Sneath cladistics statistical phylogenetics Hennig Grade clade apomorphy plesiomorphy monophyly monophyletic classification parsimony maximum likelihood Cavalli-Sforza Edwards Camin Kluge Farris Hennig's Auxiliary Principle You should be able to Describe the 3 phases in the history of phylogenetic inference When did Phylogenetic Inference begin (approximately) & by whom? Describe the method of Evolutionary Taxonomy Describe explosion of methods in 1960s Describe the pros & cons to each method Who was key to each method? Why isn t a phenogram a phylogeny? 9