CHEMISTRY STANDARDS BASED RUBRIC ATOMIC STRUCTURE AND BONDING



Similar documents
Chemistry. The student will be able to identify and apply basic safety procedures and identify basic equipment.

Prentice Hall. Chemistry (Wilbraham) 2008, National Student Edition - South Carolina Teacher s Edition. High School. High School

Forensic Science Standards and Benchmarks

What You Need To Know for the Chemistry Regents Exam

CST Practice Test. Multiple Choice Questions

STATE UNIVERSITY OF NEW YORK COLLEGE OF TECHNOLOGY CANTON, NEW YORK COURSE OUTLINE CHEM COLLEGE CHEMISTRY I

Chemistry 13: States of Matter

The content is based on the National Science Teachers Association (NSTA) standards and is aligned with state standards.

Introduction to Chemistry. Course Description

AAHS-CHEMISTRY FINAL EXAM PREP-REVIEW GUIDE MAY-JUNE 2014 DR. GRAY CLASS OF 2016

Southeastern Louisiana University Dual Enrollment Program--Chemistry

A Teaching Portfolio for General Chemistry Harry Pang, Ph.D.

Chemistry. Essential Question: How can one explain the structure, properties, and interactions of matter?

Chemistry B11 Chapter 4 Chemical reactions

Indiana's Academic Standards 2010 ICP Indiana's Academic Standards 2016 ICP. map) that describe the relationship acceleration, velocity and distance.

Name Class Date. In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question.

Keystone Exams: Chemistry Assessment Anchors and Eligible Content. Pennsylvania Department of Education

Instructional Notes/Strategies. GLEs. Evidence / Assessments of learning Knowledge/Synthesis. Resources # SI-1 (E)

Freezing Point Depression: Why Don t Oceans Freeze? Teacher Advanced Version

Element of same atomic number, but different atomic mass o Example: Hydrogen

KS3 Science: Chemistry Contents

Unit 1 Measurement, Matter and Change

Science Standard Articulated by Grade Level Strand 5: Physical Science

Review - After School Matter Name: Review - After School Matter Tuesday, April 29, 2008

The Mole Concept. The Mole. Masses of molecules

In the box below, draw the Lewis electron-dot structure for the compound formed from magnesium and oxygen. [Include any charges or partial charges.

CHEM 120 Online Chapter 7

States of Matter CHAPTER 10 REVIEW SECTION 1. Name Date Class. Answer the following questions in the space provided.

Title: General Chemistry I. Department: Credits: 5 Lecture Hours:4 Lab/Studio Hours:3

Exam 4 Practice Problems false false

Chemistry 110 Lecture Unit 5 Chapter 11-GASES

CHEMISTRY. Matter and Change. Section 13.1 Section 13.2 Section The Gas Laws The Ideal Gas Law Gas Stoichiometry

Honors Chemistry: Unit 6 Test Stoichiometry PRACTICE TEST ANSWER KEY Page 1. A chemical equation. (C-4.4)

5. Which temperature is equal to +20 K? 1) 253ºC 2) 293ºC 3) 253 C 4) 293 C

Chemistry Diagnostic Questions

IB Chemistry 1 Mole. One atom of C-12 has a mass of 12 amu. One mole of C-12 has a mass of 12 g. Grams we can use more easily.

Structure and Properties of Atoms

ATOMS AND BONDS. Bonds

(1) e.g. H hydrogen that has lost 1 electron c. anion - negatively charged atoms that gain electrons (1) e.g. HCO 3 bicarbonate anion

Chapter 5 Student Reading

KINETIC MOLECULAR THEORY OF MATTER

APS Science Curriculum Unit Planner

Chemical reactions allow living things to grow, develop, reproduce, and adapt.

One Stop Shop For Teachers

SUPPLEMENTARY TOPIC 3 ENERGY AND CHEMICAL REACTIONS

CHAPTER 6 Chemical Bonding

Phase diagram of water. Note: for H 2 O melting point decreases with increasing pressure, for CO 2 melting point increases with increasing pressure.

Getting the most from this book...4 About this book...5

Chemical Bonds. Chemical Bonds. The Nature of Molecules. Energy and Metabolism < < Covalent bonds form when atoms share 2 or more valence electrons.

STUDENT COURSE INFORMATION

Atoms, Elements, and the Periodic Table (Chapter 2)

Soil Chemistry Ch. 2. Chemical Principles As Applied to Soils

A n = 2 to n = 1. B n = 3 to n = 1. C n = 4 to n = 2. D n = 5 to n = 2

FOR TEACHERS ONLY. The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION PHYSICAL SETTING/CHEMISTRY

CHEMISTRY II FINAL EXAM REVIEW

PERIODIC TABLE OF GROUPS OF ELEMENTS Elements can be classified using two different schemes.

Which substance contains positive ions immersed in a sea of mobile electrons? A) O2(s) B) Cu(s) C) CuO(s) D) SiO2(s)

VCE CHEMISTRY UNIT 2 Environmental Chemistry SAMPLE COURSE OUTLINE

AP Chemistry A. Allan Chapter 8 Notes - Bonding: General Concepts

Chemical Reactions in Water Ron Robertson

Untitled Document. 1. Which of the following best describes an atom? 4. Which statement best describes the density of an atom s nucleus?

Science 20. Unit A: Chemical Change. Assignment Booklet A1

Chapter 2: The Chemical Context of Life

Chemical Calculations: The Mole Concept and Chemical Formulas. AW Atomic weight (mass of the atom of an element) was determined by relative weights.

ARIZONA Science Standards High School Chemistry: Matter and Change 2005

Chemical Building Blocks: Chapter 3: Elements and Periodic Table

List the 3 main types of subatomic particles and indicate the mass and electrical charge of each.

Bonding & Molecular Shape Ron Robertson

7.4. Using the Bohr Theory KNOW? Using the Bohr Theory to Describe Atoms and Ions

Unit 2: Quantities in Chemistry

B) atomic number C) both the solid and the liquid phase D) Au C) Sn, Si, C A) metal C) O, S, Se C) In D) tin D) methane D) bismuth B) Group 2 metal

19.1 Bonding and Molecules

Lewis Dot Structures of Atoms and Ions

1. The Kinetic Theory of Matter states that all matter is composed of atoms and molecules that are in a constant state of constant random motion

PTAC: Applied Chemistry COURSE OUTLINE & OBJECTIVES ESC Approved November 19, 2004

4.5 Physical Properties: Solubility

Answer Key Chemistry If8766 Moles And Mass

Composition of nucleus. Priority Vocabulary: Electron, Proton, Neutron, Nucleus, Isotopes, Atomic Number, Atomic Mass, Element, Electron Shell,

Chemistry Assessment Unit AS 1

Chemistry - Elements Electron Configurations The Periodic Table. Ron Robertson

IB Chemistry. DP Chemistry Review

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION PHYSICAL SETTING CHEMISTRY

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION PHYSICAL SETTING CHEMISTRY

Chapter 4: Structure and Properties of Ionic and Covalent Compounds

Test 5 Review questions. 1. As ice cools from 273 K to 263 K, the average kinetic energy of its molecules will

The Properties of Water

CP Chemistry Review for Stoichiometry Test

AP Chemistry Semester One Study Guide

Test Review # 9. Chemistry R: Form TR9.13A

Chemistry 11 Some Study Materials for the Final Exam

Why? Intermolecular Forces. Intermolecular Forces. Chapter 12 IM Forces and Liquids. Covalent Bonding Forces for Comparison of Magnitude

CHM 1311: General Chemistry 1, Fall 2004 Exam #1, September 8, Name (print) SSN

Chem101: General Chemistry Lecture 9 Acids and Bases

Properties and Classifications of Matter

Chapter 2 Atoms, Molecules, and Ions

Chemistry. CHEMISTRY SYLLABUS, ASSESSMENT and UNIT PLANNERS GENERAL AIMS. Students should be able to

Study the following diagrams of the States of Matter. Label the names of the Changes of State between the different states.

CHEM 110: CHAPTER 3: STOICHIOMETRY: CALCULATIONS WITH CHEMICAL FORMULAS AND EQUATIONS

Practice Multiple Choice Questions:

Molar Mass of Butane

Transcription:

CHEMISTRY STANDARDS BASED RUBRIC ATOMIC STRUCTURE AND BONDING Essential Standard: STUDENTS WILL UNDERSTAND THAT THE PROPERTIES OF MATTER AND THEIR INTERACTIONS ARE A CONSEQUENCE OF THE STRUCTURE OF MATTER, INCLUDING NUCLEAR PROCESSES (1,2,11). First Semester Benchmarks: FAR BELOW/BELOW Relate the position of an element in the periodic table to its atomic number and atomic mass identify metals, metalloids, nonmetals, halogens, noble gases, alkali metals, alkaline earth metals and transition metals. Student is inconsistently able to: Relate the position of an element in the periodic table to its atomic number and atomic mass identify metals, metalloids, nonmetals, halogens, noble gases, alkali metals, alkaline earth metals and transition metals. Relate the position of an element in the periodic table to its atomic number and atomic mass identify metals, metalloids, nonmetals, halogens, noble gases, alkali metals, alkaline earth metals and transition metals. Relate the position of an element in the periodic table to its atomic number, atomic mass, and numbers of protons, neutrons and electrons. identify metals, metalloids, nonmetals, halogens, noble gases, alkali metals, alkaline earth metals and transition metals, and describe at least three of their common chemical and physical properties. identify trends in ionization energy, electronegativity, and the relative sizes of ions and atoms. identify trends in ionization energy, electronegativity, and the relative sizes of ions and atoms. identify trends in ionization energy, electronegativity, and the relative sizes of ions and atoms. identify trends in ionization energy, electronegativity, and the relative sizes of ions and atoms and relate them to reactivity. 1

FAR BELOW/BELOW determine the number of electrons available for bonding. Student is inconsistently able to: determine the number of electrons available for bonding. determine the number of electrons available for bonding. determine the number of electrons available for bonding and predict oxidation states for main group elements. Demonstrate an understanding that the nucleus of the atom is much smaller than the atom yet contains most of its mass. Demonstrate an understanding that the nucleus of the atom is much smaller than the atom yet contains most of its mass. Demonstrate an understanding that the nucleus of the atom is much smaller than the atom yet contains most of its mass. Demonstrate an understanding that the nucleus of the atom is much smaller than the atom yet contains most of its mass, and describe the experimental basis for this understanding. Explain that protons and neutrons in the nucleus are held together by nuclear forces that overcome the electromagnetic repulsion between the protons. Explain that protons and neutrons in the nucleus are held together by nuclear forces that overcome the electromagnetic repulsion between the protons. Explain that protons and neutrons in the nucleus are held together by nuclear forces that overcome the electromagnetic repulsion between the protons. Explain that protons and neutrons in the nucleus are held together by nuclear forces that overcome the electromagnetic repulsion between the protons, and relate this to the band of stability. 2

FAR BELOW/BELOW Describe why the energy release per gram of material is much larger in nuclear fusion or fission reactions than in chemical reactions. The change in mass (calculated by E = mc 2 ) is small but significant in nuclear reactions. Identify three naturally occurring isotopes of elements that are radioactive, as well as three isotopes formed in nuclear reactions Recognize the three most common forms of radioactive decay (alpha, beta, and gamma) and do not know how the nucleus changes in each type of decay. Student is inconsistently able to: Describe why the energy release per gram of material is much larger in nuclear fusion or fission reactions than in chemical reactions. The change in mass (calculated by E = mc 2 ) is small but significant in nuclear reactions. Identify three naturally occurring isotopes of elements that are radioactive, as well as three isotopes formed in nuclear reactions Recognize the three most common forms of radioactive decay (alpha, beta, and gamma) and inconsistently describe how the nucleus changes in each type of decay. Describe why the energy release per gram of material is much larger in nuclear fusion or fission reactions than in chemical reactions. The change in mass (calculated by E = mc 2 ) is small but significant in nuclear reactions. Identify three naturally occurring isotopes of elements that are radioactive, as well as three isotopes formed in nuclear reactions Recognize the three most common forms of radioactive decay (alpha, beta, and gamma) and know how the nucleus changes in each type of decay. Describe why the energy release per gram of material is much larger in nuclear fusion or fission reactions than in chemical reactions. The change in mass (calculated by E = mc 2 ) is small but significant in nuclear reactions. The student can calculate energy released from a nuclear reaction given the mass defect. Identify five naturally occurring isotopes of elements that are radioactive, as well as five isotopes formed in nuclear reactions. Students know the three most common forms of radioactive decay (alpha, beta, and gamma) and know how the nucleus changes in each type of decay and can balance a decay reaction. 3

FAR BELOW/BELOW Describe the various types of damage and penetration related to alpha, beta, and gamma radiation. Differentiate that, ionic bonding is the result of transfer of electrons and covalent bonding is the result of sharing of electrons. Classify bonds between nonmetals as covalent, and bonds between metals and nonmetals as primarily ionic. Organize a model of a salt crystal, such as NaCl, into repeating patterns of positive and negative ions held together by electrostatic attraction. Student is inconsistently able to: Describe the various types of damage and penetration related to alpha, beta, and gamma radiation. Differentiate that, ionic bonding is the result of transfer of electrons and covalent bonding is the result of sharing of electrons. Classify bonds between nonmetals as covalent, and bonds between metals and nonmetals as primarily ionic. Organize a model of a salt crystal, such as NaCl, into repeating patterns of positive and negative ions held together by electrostatic attraction. Describe the various types of damage and penetration related to alpha, beta, and gamma radiation. Differentiate that, ionic bonding is the result of transfer of electrons and covalent bonding is the result of sharing of electrons. Classify bonds between nonmetals as covalent, and bonds between metals and nonmetals as primarily ionic. Organize a model of a salt crystal, such as NaCl, into repeating patterns of positive and negative ions held together by electrostatic attraction. Describe the various types of damage and penetration related to alpha, beta, and gamma radiation and relate the longevity of radioactive isotopes in the environment to their half-lives. Differentiate that, ionic bonding is the result of transfer of electrons and covalent bonding is the result of sharing of electrons and metallic bonding is the result of delocalized electrons. Classify bonds between nonmetals as covalent, and bonds between metals and nonmetals as primarily ionic. Organize a model of a salt crystal, such as NaCl, into repeating patterns of positive and negative ions held together by electrostatic attraction and explain how the fundamental structure is related to the size and charge of the ions in the salt. Draw Lewis dot structures. Draw Lewis dot structures. Draw Lewis dot structures. Draw Lewis dot structures and use them to predict the molecule s threedimensional geometry. 4

CHEMISTRY STANDARDS BASED RUBRIC CONSERVATION OF MATTER/STOICHIOMETRY Essential Standards: STUDENTS WILL DEMONSTRATE THE QUALITATIVE AND QUANTITATIVE RELATIONSHIPS OF MATTER IN CHEMISTRY PROCESSES (3). First Semester Benchmarks: FAR BELOW/BELOW Students are unable to: Students are inconsistently able to: Write balanced equations. Write balanced equations. Write balanced equations. Predict the products of a reaction from the names of the reactants, and write a balanced chemical equation of the overall reaction. Identify carbon-12 as the standard for determining the number of atoms in one mole and that one mole is 6.02 x 10 23, Avogadro s number. Determine the molar mass of a molecule from its chemical formula and a table of atomic masses be able to convert the mass of a molecular substance to moles, number of particles. Identify carbon-12 as the standard for determining the number of atoms in one mole and that one mole is 6.02 x 10 23, Avogadro s number. Determine the molar mass of a molecule from its chemical formula and a table of atomic masses be able to convert the mass of a molecular substance to moles, number of particles. Identify carbon-12 as the standard for determining the number of atoms in one mole and that one mole is 6.02 x 10 23, Avogadro s number. Determine the molar mass of a molecule from its chemical formula and a table of atomic masses, and be able to convert the mass of a molecular substance to moles, number of particles. Identify carbon-12 as the standard for determining the number of atoms in one mole and that one mole is 6.02 x 10 23, Avogadro s number. Relate Avogadro s number to a real-life quantity or application. Determine the molar mass of a molecule from its chemical formula and a table of atomic masses, and be able to convert the mass of a molecular substance to moles, number of particles. Determine percentage composition of a chemical compound. 5

FAR BELOW/BELOW Students are unable to: Calculate the masses of reactants and products in a chemical reaction from the mass of one of the reactants or products and the relevant atomic masses. Students are inconsistently able to: Calculate the masses of reactants and products in a chemical reaction from the mass of one of the reactants or products and the relevant atomic masses. Calculate the masses of reactants and products in a chemical reaction from the mass of one of the reactants or products and the relevant atomic masses. Calculate the masses of reactants and products in a chemical reaction from the mass of one of the reactants or products and the relevant atomic masses. Determine limiting reactant and calculate percent yield. 6

CHEMISTRY STANDARDS BASED RUBRIC STATES OF MATTER Essential Standard: STUDENTS WILL UNDERSTAND THE PROPERTIES AND BEHAVIOR OF SOLIDS, LIQUIDS, GASES AND MIXTURES (4, 5, 6). Second Semester Benchmarks: FAR BELOW/ BELOW Students are unable to: Recognize that random motion of molecules and their collisions with a surface create the observable pressure on that surface. Describe how the random motion of molecules explains the diffusion of gases. Apply the gas laws to relations between the pressure, temperature, and volume of any amount of an ideal gas or any mixture of ideal gases. Students are inconsistently able to: Recognize that random motion of molecules and their collisions with a surface create the observable pressure on that surface. Describe how the random motion of molecules explains the diffusion of gases. Apply the gas laws to relations between the pressure, temperature, and volume of any amount of an ideal gas or any mixture of ideal gases. Recognize that random motion of molecules and their collisions with a surface create the observable pressure on that surface. Describe how the random motion of molecules explains the diffusion of gases. Apply the gas laws to relations between the pressure, temperature, and volume of any amount of an ideal gas or any mixture of ideal gases. Recognize that random motion of molecules and their collisions with a surface create the observable pressure on that surface and can relate the random motion to changes in temperature. Describe how the random motion of molecules explains the diffusion of gases and apply Graham s Law to solve for relative rates of effusion and diffusion. Apply the gas laws to relations between the pressure, temperature, and volume of any amount of an ideal gas or any mixture of ideal gases, including the application of Dalton s Law. 7

FAR BELOW/ BELOW Students are unable to: Recall the values and definitions of standard temperature and pressure (STP). Perform stoichiometric calculations on reactions involving gases, applying the Standard Molar Volume at STP, 22.4 L. Convert between the Celsius and Kelvin temperature scales. Identify 0 Kelvin as the lowest possible temperature. State the definitions of solute and solvent. Describe the dissolving process at the molecular level by using the concept of random molecular motion. Students are inconsistently able to: Recall the values and definitions of standard temperature and pressure (STP). Perform stoichiometric calculations on reactions involving gases, applying the Standard Molar Volume at STP, 22.4 L. Convert between the Celsius and Kelvin temperature scales. Identify 0 Kelvin as the lowest possible temperature. State the definitions of solute and solvent. Describe the dissolving process at the molecular level by using the concept of random molecular motion. Recall the values and definitions of standard temperature and pressure (STP). Perform stoichiometric calculations on reactions involving gases, applying the Standard Molar Volume at STP, 22.4 L. Convert between the Celsius and Kelvin temperature scales. Identify 0 Kelvin as the lowest possible temperature. State the definitions of solute and solvent. Describe the dissolving process at the molecular level by using the concept of random molecular motion. Recall the values and definitions of standard temperature and pressure (STP), and be able to convert between different systems of measurement. Perform stoichiometric calculations on reactions involving gases, applying the Standard Molar Volume at STP, 22.4 L. The student also performs calculations at conditions other than STP. Convert between the Celsius, Kelvin and Fahrenheit temperature scales. Identify 0 Kelvin as the lowest possible temperature and describe the condition in terms of kinetic energy. State the definitions of solute and solvent and give examples of each in gaseous and liquid solutions. Describe the dissolving process at the molecular level by using the concept of random molecular motion and intermolecular attraction. 8

FAR BELOW/ BELOW Students are unable to: Describe how temperature, pressure, and surface area affect the dissolving process. Calculate the concentration of a solute in terms of grams per liter, molarity and molality List the observable properties of acids, bases, and salt solutions. Characterize acids as hydrogen-ion-donating and bases as hydrogen-ion accepting substances. Define strong acids and bases as fully dissociated and weak acids and bases as partially dissociated Use the ph scale to characterize acid and base solutions. Students are inconsistently able to: Describe how temperature, pressure, and surface area affect the dissolving process. Calculate the concentration of a solute in terms of grams per liter, molarity and molality List the observable properties of acids, bases, and salt solutions. Characterize acids as hydrogen-ion-donating and bases as hydrogen-ion accepting substances. Define strong acids and bases as fully dissociated and weak acids and bases as partially dissociated Use the ph scale to characterize acid and base solutions. Describe how temperature, pressure, and surface area affect the dissolving process. Calculate the concentration of a solute in terms of grams per liter, molarity and molality List the observable properties of acids, bases, and salt solutions. Characterize acids as hydrogen-ion-donating and bases as hydrogen-ion accepting substances. Define strong acids and bases as fully dissociated and weak acids and bases as partially dissociated Use the ph scale to characterize acid and base solutions. Describe how temperature, pressure, and surface area affect the dissolving process and explain differences in solubility between solids and gases. Calculate the concentration of a solute in terms of grams per liter, molarity and molality, parts per million and percent composition. List the observable properties of acids, bases, and salt solutions and use those properties to identify unknowns. Characterize acids as hydrogen-ion-donating and bases as hydrogen-ion accepting substances and give three examples of each. Define strong acids and bases as fully dissociated and weak acids and bases as partially dissociated, and identify the state of dissociation as an equilibrium state. Use the ph scale to characterize acid and base solutions and calculate ph from hydrogen ion concentration. 9

CHEMISTRY STANDARDS BASED RUBRIC KINETICS AND THERMODYNAMICS Essential Standard: STUDENTS WILL DESCRIBE THE DYNAMICS OF CHEMICAL PROCESSES, INCLUDING ENERGY CHANGE, REACTION RATES AND EQUILIBRIUM. Second Semester Benchmarks: FAR BELOW/ BELOW Describe temperature and heat flow in terms of the motion of molecules (or atoms). Student is inconsistently able to: Describe temperature and heat flow in terms of the motion of molecules (or atoms). Describe temperature and heat flow in terms of the motion of molecules (or atoms). Describe and quantify temperature and heat flow in terms of the motion of molecules (or atoms). Identify chemical processes that either release (exothermic) or absorb (endothermic) thermal energy. Recognize that energy is released when a material condenses or freezes and is absorbed when a material evaporates or melts. Solve problems involving heat flow and temperature changes, using known values of specific heat and latent heat of phase change. Identify chemical processes that either release (exothermic) or absorb (endothermic) thermal energy. Recognize that energy is released when a material condenses or freezes and is absorbed when a material evaporates or melts. Solve problems involving heat flow and temperature changes, using known values of specific heat and latent heat of phase change. Identify chemical processes that either release (exothermic) or absorb (endothermic) thermal energy. Recognize that energy is released when a material condenses or freezes and is absorbed when a material evaporates or melts. Solve problems involving heat flow and temperature changes, using known values of specific heat and latent heat of phase change. Identify chemical processes that either release (exothermic) or absorb (endothermic) thermal energy. Illustrate each in an energy diagram. Recognize that energy is released when a material condenses or freezes and is absorbed when a material evaporates or melts. Describe in terms of the system and surroundings. Solve problems involving heat flow and temperature changes, using known values of specific heat and latent heat of phase change. In addition, the student can draw a phase change diagram and identify key points. 10

FAR BELOW/ BELOW Define rate of reaction as the decrease in concentration of reactants or the increase in concentration of products with time. Recognize that reaction rates depend on such factors as concentration, temperature, and pressure. Define the role a catalyst plays in increasing the reaction rate Use LeChatelier s principle to predict the effect of changes in concentration, temperature, and pressure. State that equilibrium is established when forward and reverse reaction rates are equal. Student is inconsistently able to: Define rate of reaction as the decrease in concentration of reacta nts or the increase in concentration of products with time. Recognize that reaction rates depend on such factors as concentration, temperature, and pressure. Define the role a catalyst plays in increasing the reaction rate Use LeChatelier s principle to predict the effect of changes in concentration, temperature, and pressure. State that equilibrium is established when forward and reverse reaction rates are equal.equal. Define rate of reaction as the decrease in concentration of reactants or the increase in concentration of products with time. Recognize that reaction rates depend on such factors as concentration, temperature, and pressure. Define the role a catalyst plays in increasing the reaction rate Use LeChatelier s principle to predict the effect of changes in concentration, temperature, and pressure. State that equilibrium is established when forward and reverse reaction rates are equal.equal. Define rate of reaction as the decrease in concentration of reactants or the increase in concentration of products with time. Recognize a general rate law. Recognize that reaction rates depend on such factors as concentration, temperature, and pressure and predict their individual effects. Define the role a catalyst plays in increasing the reaction rate and its effects on activation energy. Use LeChatelier s principle to predict the effect of changes in concentration, temperature, and pressure, individually and in combination State that equilibrium is established when forward and reverse reaction rates are equal and can write an equilibrium expression. 11

CHEMISTRY STANDARDS BASED RUBRIC ORGANIC AND BIOCHEMISTRY Essential Standard: STUDENTS WILL UNDERSTAND THE BONDING CHARACTERISTICS AND CHEMICAL PROPERTIES OF ORGANIC AND BIOMOLECULES. Second Semester Benchmarks: FAR BELOW/ BELOW Describe large molecules (polymers), such as proteins, nucleic acids, and starch, as being formed by repetitive combinations of simple subunits. Identify the bonding characteristics of carbon that result in the formation of a large variety of structures ranging from simple hydrocarbons to complex polymers and biological molecules. Identify amino acids as the building blocks of proteins. Students is inconsistently able to: Describe large molecules (polymers), such as proteins, nucleic acids, and starch, as being formed by repetitive combinations of simple subunits. Identify the bonding characteristics of carbon that result in the formation of a large variety of structures ranging from simple hydrocarbons to complex polymers and biological molecules Identify amino acids as the building blocks of proteins. Describe large molecules (polymers), such as proteins, nucleic acids, and starch, as being formed by repetitive combinations of simple subunits. Identify the bonding characteristics of carbon that result in the formation of a large variety of structures ranging from simple hydrocarbons to complex polymers and biological molecules. Identify amino acids as the building blocks of proteins. Describe large molecules (polymers), such as proteins, nucleic acids, and starch, as being formed by repetitive combinations of simple subunits. In addition, the student can describe the subunit of each. Identify the bonding characteristics of carbon that result in the formation of a large variety of structures ranging from simple hydrocarbons to complex polymers and biological molecules. In addition, the student can name the 10 simplest linear hydrocarbons. Identify amino acids as the building blocks of proteins and recognize their general structure. 12