Hip Globally. Anatomy/Function/Performance. Hip Rotators: Friend or Foe. Most Power (Gluteus Maximus) Biggest Deficits Anatomy Function Performance



Similar documents
Runner's Injury Prevention

The Forefoot Valgus Foot-Type Joe Fox, MS, LAT June 10, 2014

Review epidemiology of knee pain. Discuss etiology and the biomechanics of knee pain utilizing current literature/evidence

PREVENTING ACL INJURIES IN SOCCER. By Brian Goodstein, MS, ATC, CSCS

2002 Functional Design Systems

Patellofemoral/Chondromalacia Protocol

Knee Kinematics and Kinetics

By Agnes Tan (PT) I-Sports Rehab Centre Island Hospital

CYCLING INJURIES. Objectives. Cycling Epidemiology. Epidemiology. Injury Incidence. Injury Predictors. Bike Fit + Rehab = Happy Cyclist

PHYSICAL EXAMINATION OF THE FOOT AND ANKLE

Anterior Cruciate Ligament Reconstruction Rehabilitation Protocol

Physical Therapy Corner: Knee Injuries and the Female Athlete

Today s session. Common Problems in Rehab. LOWER BODY REHAB ESSENTIALS TIM KEELEY FILEX 2012

ACL Non-Operative Protocol

Movement Pa+ern Analysis and Training in Athletes 02/13/2016

Preventing Knee Injuries in Women s Soccer

Hip Bursitis/Tendinitis

BP MS 150 lunch and learn: Stretching and injury prevention. Dr. Bart Kennedy (Sports Chiropractor) and Josh Thompson February 04, 2015

The Five Most Common Pathomechanical Foot Types (Rearfoot varus, forefoot varus, equinus, plantarflexed first ray, forefoot valgus)

Understanding Planes and Axes of Movement

RUNNING INJURIES: PREVENTION AND REHABILITATION

LADIES GAA ACL PREVENTION PROGRAM

Flat foot and lower back pain

Mary LaBarre, PT, DPT,ATRIC

ACCELERATED REHABILITATION PROTOCOL FOR POST OPERATIVE POSTERIOR CRUCIATE LIGAMENT RECONSTRUCTION DR LEO PINCZEWSKI DR JUSTIN ROE

Addressing Pelvic Rotation

Lower Back Spinal Fusion & Exercise

Hip Rehab: Things to Consider. Sue Torrence, MS, PT, ATC Lead Physical Therapist

PATHOLOGIC GAIT -- MUSCULOSKELETAL. Focal Weakness. Ankle Dorsiflexion Weakness COMMON GAIT ABNORMALITIES

Rehabilitation Guidelines for Posterior Cruciate Ligament Reconstruction

Screening Examination of the Lower Extremities BUY THIS BOOK! Lower Extremity Screening Exam

Rehabilitation after ACL Reconstruction: From the OR to the Playing Field. Mark V. Paterno PT, PhD, MBA, SCS, ATC

Pre - Operative Rehabilitation Program for Anterior Cruciate Ligament Reconstruction

Rehabilitation Guidelines for Lateral Ankle Reconstruction

ACL INJURIES IN THE FEMALE ATHLETE

KNEES A Physical Therapist s Perspective American Physical Therapy Association

IDENTIFYING RISK FACTORS AND PROGRAMMING FOR INJURY PREVENTION

Dr Doron Sher MB.BS. MBiomedE, FRACS(Orth)

Kelly Corso MS, ATC, CES, FMSC, CSST

Rehabilitation Guidelines for Medial Patellofemoral Ligament Repair and Reconstruction

QUESTION I HAVE BEEN ASKED TO REHAB GRADE II AND III MCL INJURIES DIFFERENTLY BY DIFFERENT SURGEONS IN THE FIRST 6WEEKS FOLLOWING INJURY.

The Insall Scott Kelly Center for Orthopaedics and Sports Medicine 210 East 64th Street, 4 th Floor, New York, NY 10065

Biomechanical Explanations for Selective Sport Injuries of the Lower Extremity

Injury Prevention Strategies and Mechanics for Softball Players. Jason Yoder, DPT. Clinic Coordinator Sports Rehab Center for Sports Medicine

5 Steps to Reducing Non-Contact ACL Injuries in Female Athletes

ACL Injury Prevention Through Proprioceptive & Neuromuscular Training Arlington Soccer Club April 1, 2010

Rehabilitation Guidelines for Patellar Tendon and Quadriceps Tendon Repair

Most Common Running Injuries

Clinical Movement Analysis to Identify Muscle Imbalances and Guide Exercise

Functional Anatomy and Lower Extremity Biomechanics

Structure & Function of the Knee. One of the most complex simple structures in the human body. The middle child of the lower extremity.

Hamstring Apophyseal Injuries in Adolescent Athletes

ACL Reconstruction Physiotherapy advice for patients

PERFORMANCE RUNNING. Piriformis Syndrome

Chapter 9 The Hip Joint and Pelvic Girdle

Eastern Suburbs Sports Medicine Centre

Overhead Throwing: A Strength & Conditioning Approach to Preventative Injury

Foot and Ankle Conditioning Program. Purpose of Program

Integrated Manual Therapy & Orthopedic Massage For Complicated Knee Conditions

Rehabilitation of Sports Hernia

The Knee Internal derangement of the knee (IDK) The Knee. The Knee Anatomy of the anteromedial aspect. The Knee

Rehabilitation Guidelines for Knee Multi-ligament Repair/Reconstruction

KNEEFIT ACL Injury Prevention Program

Foot Pain. Aching in arch of foot - worse after prolonged weight bearing

Adolescent Female Knee/ACL Injuries and Prevention. Camille Clinton, MD ProOrtho

Review Last Lecture. Definition of Gait? What are the 2 phases of gait? 5 parts of stance phase? 3 parts of swing phase?

Structure & Function of the Ankle and Foot. A complicated model of simplicity that you really think little about until you have a problem with one.

Evaluation, Treatment, and Exercise Rx for Muscle Imbalance in the Lower Extremities April 5, 2014 AOCPMR Midyear Meetingr Rebecca Fishman, D.O.

DSM Spine+Sport - Mobility

INJURY IN FEMALE SOCCER PLAYERS

Podo Pediatrics Identifying Biomechanical Pathologies

Post-Operative ACL Reconstruction Functional Rehabilitation Protocol

Plantar fascia. Plantar Fasciitis (pain in the heel of the foot)

Knee Arthroscopy (Meniscectomy)

Myofit Massage Therapy Stretches for Cycling

How To Treat A Patella Dislocation

Theodore B. Shybut, M.D Cambridge St. #10A Houston, Texas Phone: Fax: Sports Medicine

THE SPEED PROGRAM THE following is A list Of POinTS THAT PRODucE RESulTS in SPEED improvement: CHANGE THE GAME

ACL Reconstruction: Patellar Tendon Graft/Hamstring Tendon Graft

ACL RECONSTRUCTION POST-OPERATIVE REHABILITATION PROGRAMME

ACL Reconstruction Post Operative Rehabilitation Protocol

THE BIG SIX. Six Best Volleyball Strength Training Exercises. By Dennis Jackson, CSCS

ANTERIOR CRUCIATE LIGAGMENT INJURY PREVENTION. Milad Alam, PGY2 Aug 12 th, 2014

American Osteopathic Academy of Sports Medicine James McCrossin MS ATC, CSCS Philadelphia Flyers April 23 rd, 2015

Sport-specific Rehabilitation and Performance Programs

NETWORK FITNESS FACTS THE HIP


Lower Extremity Orthopedic Surgery in Cerebral Palsy. Hank Chambers, MD Rady Children s Hospital - San Diego

LEVEL I SKATING TECHNICAL. September 2007 Page 1

Coaching the Injury Prone Athlete.

dotfit Certification Integrated Training

BEACH VOLLEYBALL TRAINING PROGRAM

Biomechanics of Gait and Running

The Lateral Collateral Ligament Sprain. Ashley DeMarco. Pathology and Evaluation of Orthopedic Injuries I. Professor Rob Baerman

A proper warm-up is important before any athletic performance with the goal of preparing the athlete both mentally and physically for exercise and

Terminology of Human Walking From North American Society for Gait and Human Movement 1993 and AAOP Gait Society 1994

Preventing Volleyball Injuries: Knees, Ankles, and Stress Fractures

Outline. The Agony of the Foot: Disclosure. Plantar Fasciitis. Top 5 Foot and Ankle Problems in Primary Care. Daniel Thuillier, M.D.

Prevention & Management of ACL Injury. Ian Horsley PhD, MCSP Lee Herrington PhD, MCSP

MASTER OF PHYSIOTHERAPY (MPT) DEGREE EXAMNIATION SECOND YEAR BRANCH V- SPORTS PHYSIOTHERAPY PAPER- II PHYSIOTHERAPY INTERVENTIONS (SPECIALITY II)

Transcription:

Hip Rotators: Friend or Foe Michael Griffith MSPT, CSCS Hip Globally Most Power (Gluteus Maximus) Biggest Deficits Anatomy Function Performance Anatomy/Function/Performance Anatomy Deep to the Glutes 6 Muscles Only muscle group in the human body located exclusively in the horizontal/transverse plane. Gravity eliminated plane of motion Categorically distinct and requires unique analysis and training Function Goniometric Method Sitting and non functional Manual Muscle Testing Method Again, nonfunctional

Performance Model Implications of Text Book Model Clinical/Training Room/Weight Room Exercise philosophy based on text book definitions yields a model contrary to function in sport Proprioceptively confusing to the tissue & inhibits carryover Performance Definition of the Hip External Rotators Foot Strike: The External rotators decelerate femoral (hip) Internal Rotation Along with the Gluteus Max, via its attachment to the IT Band, the hip external rotators decelerate TIBIAL Internal Rotation Drivers of LE Internal Rotation Flexion of the lower extremity is due to GRAVITY ROTATION? Rotation is not directly driven by gravity What causes rotation of the lower extremity (Tibia, Femur, Hip)? Subtalar Joint Torque Converter Mechanism of the LE Takes frontal plane motion of the heel (calcaneal eversion at heel strike) and converts it into Internal Rotation of the Tibia and up the kinetic chain Likened to a Mitered Hinge The main cause of rotation of the lower extremity Text Book vs. Performance Text Book Definition Piriformis: Externally Rotates the Femur CONCENTRIC Performance Definition Eccentrically lengthens and contracts to decelerate femoral Internal Rotation ECCENTRIC

FRIEND Decelerates GRF in the entire lower extremity Attenuates/Dissipates forces from the knee Provides rotational stability to the Ankle When doing its job, the Hip Rotators are the most significant players in preventing injuries in the LE Rotation in Sport Football Suh right foot about to plant and drive LE into internal rotation combined with left hand reaching across further driving LE into IR with increased force and velocity Soccer Cristiano (L) Foot about to plant and drive (L)LE into internal rotation and LE kicking ball ACROSS body to further drive (L) Hip into IR Same for Corner Kick Volleyball Dig (R) Foot plant combined with UE rotational reach across body drives (R) Hip into further and faster internal rotation Rotation in Sport Baseball Hip external rotators ECCENTRICALLY lengthen (S.E.E. Stored Elastic Energy) to generate power for swing Main Point Every step drives HIP into internal rotation and external rotators get lengthened and have to decelerate rotational moments

Foe Deficits Intrinsic Inherent in the hip rotators Tight/Weak Extrinsic Biomechanical influences that CAUSE the hip rotators to be deficient INTRINSIC Decreased Internal Rotation Amplified Torque on ACL Increased Demand on IT Band Patellofemoral out of SYNC Achilles takes up the slack for weak hip rotators Ankle Sprains Posterior Tibialis Tendonitis Hamstring Strains ACL Deceleration does not occur at the knee but at the FOOT and the HIP. The knee is more of a reactor and is influenced by GRF coming up from the foot as well as strengths/deficiencies present in the hip For example, a compensated forefoot varus can drive the knee into a valgus position predisposing the ACL to valgus stress The well researched occurrence of gross weak hip musculature playing into ACL injuries. More importantly, tight/weak hip rotators predispose the ACL to increased torque and valgus stress

IT Band (Chronic) More of a Rotational problem than Frontal Traditionally thought of only in the FRONTAL PLANE Yet, the IT Band strongly anchored to the femur by obliquely oriented fibrous strands (therefore reacts in the transverse plane to femoral internal rotation). Key Anatomy Inserts at Gerdy s Tubercle on the lateral aspect of the Tibia. Again, at heel strike, the internal rotation of the Tibia influences the IT Band in the transverse plane. Clinical incidence of IT Band Syndrome patients have decreased hip internal rotation on the affected side Patellofemoral The patella is caught in the middle and strongly influenced by the Hip and Foot Only 4 Muscles directly attach to the patella (Quads) while over 21 attached to the femur Not the VMO s fault. The patella is out of sync with femur and tibia. Tight hip rotators, via its attachment to the patella through the ITB, can directly cause PFP or out of sync. Leg length discrepancy and other biomechanical issues have greater influence on patella than the VMO Achilles During the gait cycle and running, push off is more the result of momentum or the body s forward movement over its center of mass than actual concentric contraction of the calf group. Push off is not because of the Achilles but is due to the energy transfer from the Hip to the Achilles. The hip has a huge impact on push off and GRF. Tight hip flexors in the sagittal plane shorten the stride length, cause early heel rise and premature push off, thereby affecting the Achilles. Not necessarily due to weak calf as in traditional models Tight hip external rotators decreased hips ability to attenuate torque coming up the chain, coupled with hypermobile calcaneus, cause the Achilles to take up the slack for the hip with subsequent strain etc.

Hamstring Strains Traditionally viewed exclusively in the Sagittal Plane However, has a significant role in the transverse plane. Decelerates INTERNAL ROTATION of the femur and the TIBIA via the insertion of the Biceps Femoris on the head of the fibula & lateral tibial condyle Clinical incidence of patients with hamstring strains with concurrent tight hip external rotators with decreased hip internal rotation Hamstring Strains Subsequent attenuation of forces (torque) occurring at the hamstring due to transverse plane deficiencies at the hip. In other words, the hamstring takes the hit for decreased hip IR. The dissipation of forces to the hamstring from the hip (top down) can be exacerbated by biomechanical factors at the foot (bottom up) such as a hypermobile rearfoot varus, leg length discrepancy, late pronation of the forefoot in the gait cycle, etc. causing either increased amount or velocity of tibial internal rotation which in turn increases moments or torque attenuated to the hamstring. Hamstring Strains/LE Injuries Strategy Rehab and Train the hamstring through facilitating hip internal rotation. Once the affected tissue has been treated (such as in the above slide of the ACL, IT Band, PFP, Achilles, Ankle Sprain) attention given to increasing the motion and eccentric strength of the hip external rotators will address the CAUSE and be missing link to attaining improved performance.

EXTRINSIC Biomechanics Leg Length Discrepancies Longer Leg Compensation of increased pronation to functionally shorten the LE causing increased Internal Rotation and torque but tight hip rotators won t allow for it. Tug O War at knee Patellofemoral IT Band Syndrome Quad Strains EXTRINSIC Leg Length Discrepancy Short Leg Compensates by externally rotating at the hip which shortens the hip external rotators Decreased Hip Internal Rotation ACL Medial Meniscus Hamstring Strains (Decreased hip IR) Hip Flexor Strains Achilles Tendonitis EXTRINSIC COUPLING External rotators are tight (decreased hip IR) compounded with biomechanical deficits layered on top of this, thereby amplifying its affects. Example: Compensated Forefoot Valgus The forefoot (LAMTJ) is everted or down and the 1st Ray gets to the ground before the rest of the foot and undergoes increased GRF. The rearfoot (RF) comes in to help (RF Compensation) and INVERTS in order to unload the 1 st Ray. This inversion of the RF causes the lateral border of the foot to get overloaded (if rigid LAMTJ) leading to subsequent instability and ankle sprains.

Extrinsic Coupling Compensated Forefoot Valgus Example Stress Fracture to 5 th Met Lateral Ankle Instability (As above) HIP Approach Hip Approach Focus on Compensatory Deficits at the Hip Cause/Compensation The foot may be the Cause (Compensated FF Valgus, etc.) with possible orthotic for treatment. For the sake of this course, we will focus on the HIP (Compensation) because it s ALWAYS a component of the deficiency. The PROBLEM Lack of Assessment Current trends neglect testing of unilateral hip function, especially Hip Rotation Testing Lack of Training Emphasis on linear and lateral movements with neglect of movements to train the hip into internal rotation

Performance Model vs. Traditional Model Traditional Model Concentric Textbook Exercises/Nonfunctional and not sport specific Performance Model Takes into account the FOOT and GRF Dynamic vs. Static Agility Drills to drive Hip IR Explosive Drills to drive Hip IR ECCENTRIC ECCENTRIC ECCENTRIC Lab Session Ladder Drills Lateral Lunge with UE Contra lateral rotational reach to touch floor on outside of lunge leg Not just a lateral lunge but a ROTATIONAL Reach Warm Up Forward Forward and Backward Once form is good, increase SPEED Add dumbbells for progression Lab Session Star Drill 9 Cones 3 steps plus approx. 6 from center cone to perimeter cones Use step length of person doing drill if possible Always TIME this drill and document As with ladder drill, contra lateral reach Once forwards is mastered, progress to backwards Add bands at ankles for resistance as well as dumbbells

Lab Session 3D Lunges Front Lunge with Contra lateral reach Side Lunge with Contra lateral reach Rotational Lunge with Contra lateral reach Right: Right foot rotates back to between 4:00 5:00 on a clock. Left foot stays STRAIGHT Left: Left foot rotates back to between 7:00 8:00 on a clock. Right foot stays straight. Reach low to touch floor outside of foot. Do not reach high just rotates through back instead of hip Bibliography Garrison JC, Bothwell J, Cohen K, Conway J. Effects of hip strengthening on early outcomes following anterior cruciate ligament reconstruction. Int J Sports Phys Ther 2014;9(2):157 167. Hreljac A. Etiology, prevention, and early intervention of overuse injuries in runners: a biomechanical perspective. Phys Med Rehabil Clin N Am 2005;16(3):651 667. Lawrence RK, Kernozek TW, Miller EJ, et al. Influences of hip external rotation strength on knee mechanics during single leg drop landings in females. Clin Biomech 2008;23(6):806 813. Maffulli N, Longo UG, Maffulli GD, et al. Achilles tendon ruptures in elite athletes. Foot Ankle Int 2011;32(1):9 15. Meardon S, Ross M. A new approach to iliotibial band syndrome in runners. Lower Extremity Review, July 2013.

Bibliography McCulloch P et al. Asymmetric Hip Rotation in Professional Baseball Pitchers. Orthopaedic Journal of Sports Medicine, February 2014; vol. 2, 2: 2325967114521575, first published on February 13, 2014 Moroz A, Fetto J et al. Evaluation of the Koch model of the hip: A clinical perspective. J Orhop Sci. 2002: 7:724 730. Noehren B, et al. Assessment of Strength, Flexibility, and Running Mechanics in Men With Iliotibial Band Syndrome Journal of Orthopaedic & Sports Physical Therapy, 2014, Volume: 44 Issue: 3: 217 222 doi:10.2519/jospt.2014.49914). Popchak A, Burnett T, Weber N, Boninger M. Factors related to injury in youth and adolescent baseball pitching, with an eye towards prevention. Am J Phys Med Rehab 2015;94(5): 385 409 Bibliography Saito M et al. Relationship Between Tightness of the Hip Joint and Elbow Pain in Adolescent Baseball Players. Orthopaedic Journal of Sports Medicine, May 2014; vol. 2, 5: 2325967114532424, first published on May 12, 2014 Sauers EL, Huxel Bliven KC, Johnson MP, et al. Hip and glenohumeral range of motion in healthy professional baseball pitchers and position players. Am J Sports Med 2014;4(2):430 436 Shirzad K, et al. Return to football after Achilles tendon rupture. Lower Extremity Review March 2010 Smith BI, Docherty CL, Curtis D, et al. Hip strengthening protocol effects on neuromuscular control, hip strength, and self reported deficits in individuals with functional ankle instability. J Athl Train 2014;49(3 Suppl):S 29. Bibliography Szu Ping L, Powers C. Description of a Weight Bearing Method to Assess Hip Abductor and External Rotator Muscle Performance. J Orthop Sports Phys Ther 2013;43(6):392 397 Zeppieri, Giorgio. Shoring up the Rotation: The Importance of Hip Mechanics in Pitching. Lower Extremity Review. April, 2016.

CONTACT I have my own continuing education course or for speaking: Michael Griffith MSPT, CSCS www.3dperformancesystems.com michael@3dperformancesystems.com 918 859 3377