APPLICATION OF SPOT IMAGES AND FOREST VEGETATION MAPS FOR CREATION OF THE DATABASE FOR FORESTED SOILS USING GIS MODELING



Similar documents
The Role of SPOT Satellite Images in Mapping Air Pollution Caused by Cement Factories

.FOR. Forest inventory and monitoring quality

VCS REDD Methodology Module. Methods for monitoring forest cover changes in REDD project activities

WHAT IS GIS - AN INRODUCTION

Digital Cadastral Maps in Land Information Systems

A GIS helps you answer questions and solve problems by looking at your data in a way that is quickly understood and easily shared.

Image Analysis CHAPTER ANALYSIS PROCEDURES

WATER BODY EXTRACTION FROM MULTI SPECTRAL IMAGE BY SPECTRAL PATTERN ANALYSIS

ASSESSMENT OF FOREST RECOVERY AFTER FIRE USING LANDSAT TM IMAGES AND GIS TECHNIQUES: A CASE STUDY OF MAE WONG NATIONAL PARK, THAILAND

RESOLUTION MERGE OF 1: SCALE AERIAL PHOTOGRAPHS WITH LANDSAT 7 ETM IMAGERY

MULTIPURPOSE USE OF ORTHOPHOTO MAPS FORMING BASIS TO DIGITAL CADASTRE DATA AND THE VISION OF THE GENERAL DIRECTORATE OF LAND REGISTRY AND CADASTRE

Digital Remote Sensing Data Processing Digital Remote Sensing Data Processing and Analysis: An Introduction and Analysis: An Introduction

Review for Introduction to Remote Sensing: Science Concepts and Technology

Nature Values Screening Using Object-Based Image Analysis of Very High Resolution Remote Sensing Data

GIS and Remote Sensing in Diachronic Study of Agriculture in Greece

Highlighting, Rehabilitation and Monitoring of Land Reclamation Works Using Satellite Images and GIS

Environmental Remote Sensing GEOG 2021

Understanding Raster Data

2002 URBAN FOREST CANOPY & LAND USE IN PORTLAND S HOLLYWOOD DISTRICT. Final Report. Michael Lackner, B.A. Geography, 2003

GEOGRAPHIC INFORMATION SYSTEMS CERTIFICATION

Application of airborne remote sensing for forest data collection

DATA VISUALIZATION GABRIEL PARODI STUDY MATERIAL: PRINCIPLES OF GEOGRAPHIC INFORMATION SYSTEMS AN INTRODUCTORY TEXTBOOK CHAPTER 7

Description of Simandou Archaeological Potential Model. 13A.1 Overview

Technical and innovative tools and methods in support of CAP Geo referencing methods/lpis Polish experience Padova, May 27th 2015

CIESIN Columbia University

UPDATING OBJECT FOR GIS DATABASE INFORMATION USING HIGH RESOLUTION SATELLITE IMAGES: A CASE STUDY ZONGULDAK

MODIS IMAGES RESTORATION FOR VNIR BANDS ON FIRE SMOKE AFFECTED AREA

SAMPLE MIDTERM QUESTIONS

GIS: Geographic Information Systems A short introduction

Chapter Contents Page No

APPLICATION DE LA TELEDETECTION DANS LA CARTOGRAPHIE DES RISQUES GEOLOGIQUES Sahra AOURARI & Djilali BOUZIANE &Djamel MACHANE

GEOGRAPHIC INFORMATION SYSTEMS

Multiscale Object-Based Classification of Satellite Images Merging Multispectral Information with Panchromatic Textural Features

Introduction to GIS (Basics, Data, Analysis) & Case Studies. 13 th May Content. What is GIS?

SESSION 8: GEOGRAPHIC INFORMATION SYSTEMS AND MAP PROJECTIONS

The Idiots Guide to GIS and Remote Sensing

Raster Data Structures

Digital image processing

EcoInformatics International Inc.

GEOLOGY AND GEOMORPHOLOGY Level. bachelor Semester. winter ECTS 9

Supporting Online Material for Achard (RE ) scheduled for 8/9/02 issue of Science

REVISITING THE PROCEDURES FOR THE VECTOR DATA QUALITY ASSURANCE IN PRACTICE

GIS Data Quality and Evaluation. Tomislav Sapic GIS Technologist Faculty of Natural Resources Management Lakehead University

GMES-DSL GMES - Downstream Service Land: Austria-Slovenia-Andalusia. Concept for a Harmonized Cross-border Land Information System.

Using Remote Sensing Imagery to Evaluate Post-Wildfire Damage in Southern California

Mapping coastal landscapes in Sri Lanka - Report -

APPLICATION OF MULTITEMPORAL LANDSAT DATA TO MAP AND MONITOR LAND COVER AND LAND USE CHANGE IN THE CHESAPEAKE BAY WATERSHED

Land Use/ Land Cover Mapping Initiative for Kansas and the Kansas River Watershed

Imagery. 1:50,000 Basemap Generation From Satellite. 1 Introduction. 2 Input Data

Implementation Planning

Field Techniques Manual: GIS, GPS and Remote Sensing

Supervised Classification workflow in ENVI 4.8 using WorldView-2 imagery

Objectives. Raster Data Discrete Classes. Spatial Information in Natural Resources FANR Review the raster data model

AERIAL PHOTOGRAPHS. For a map of this information, in paper or digital format, contact the Tompkins County Planning Department.

Image Draping & navigation within Virtual GIS

Global environmental information Examples of EIS Data sets and applications

Moderate- and high-resolution Earth Observation data based forest and agriculture monitoring in Russia using VEGA Web-Service

CARBON BALANCE IN BIOMASS OF MAIN FOREST TREE SPECIES IN POLAND

Urban Land Use Data for the Telecommunications Industry

River Flood Damage Assessment using IKONOS images, Segmentation Algorithms & Flood Simulation Models

Research On The Classification Of High Resolution Image Based On Object-oriented And Class Rule

Evaluation of Forest Road Network Planning According to Environmental Criteria

Methods for Monitoring Forest and Land Cover Changes and Unchanged Areas from Long Time Series

PRODUCTION FLOWCHARTING FOR MAPPING ORGANISATIONS: A GUIDE FOR BOTH LECTURERS AND PRODUCTION MANAGERS

Flood Zone Investigation by using Satellite and Aerial Imagery

Multi-scale upscaling approaches of soil properties from soil monitoring data

Technology Trends In Geoinformation

Remote Sensing and Land Use Classification: Supervised vs. Unsupervised Classification Glen Busch

A remote sensing instrument collects information about an object or phenomenon within the

An Assessment of the Effectiveness of Segmentation Methods on Classification Performance

Land Use/Land Cover Map of the Central Facility of ARM in the Southern Great Plains Site Using DOE s Multi-Spectral Thermal Imager Satellite Images

3D Model of the City Using LiDAR and Visualization of Flood in Three-Dimension

Outline - needs of land cover - global land cover projects - GLI land cover product. legend. Cooperation with Global Mapping project

METHODOLOGY FOR LANDSLIDE SUSCEPTIBILITY AND HAZARD MAPPING USING GIS AND SDI

Notable near-global DEMs include

MAPPING MINNEAPOLIS URBAN TREE CANOPY. Why is Tree Canopy Important? Project Background. Mapping Minneapolis Urban Tree Canopy.

How To Update A Vegetation And Land Cover Map For Florida

Spatial data quality assessment in GIS

COMPARISON OF OBJECT BASED AND PIXEL BASED CLASSIFICATION OF HIGH RESOLUTION SATELLITE IMAGES USING ARTIFICIAL NEURAL NETWORKS

Inventory Enhancements

2.3 Spatial Resolution, Pixel Size, and Scale

3D MODELING OF COMPONENTS OF A GARDEN BY USING POINT CLOUD DATA

Planning Tools related to water in Promotional Complex Forest Western Sudety Mountains

TerraColor White Paper

APLS GIS Data: Classification, Potential Misuse, and Practical Limitations

AN INVESTIGATION OF THE GROWTH TYPES OF VEGETATION IN THE BÜKK MOUNTAINS BY THE COMPARISON OF DIGITAL SURFACE MODELS Z. ZBORAY AND E.

5. GIS, Cartography and Visualization of Glacier Terrain

Digital Classification and Mapping of Urban Tree Cover: City of Minneapolis

LEOworks - a freeware to teach Remote Sensing in Schools

ENVI Classic Tutorial: Classification Methods

Adaptation of High Resolution Ikonos Images to Googleearth for Zonguldak Test Field

Resolutions of Remote Sensing

The following was presented at DMT 14 (June 1-4, 2014, Newark, DE).

APPLICATION OF GOOGLE EARTH FOR THE DEVELOPMENT OF BASE MAP IN THE CASE OF GISH ABBAY SEKELA, AMHARA STATE, ETHIOPIA

Laserscanning experiments and experiences in Norway. Håvard Tveite NOF & UMB Jan R. Lien UiB

Compiled from ESRI s Web site: 1. What Is a GIS?

Remote Sensing and GIS Application In Change Detection Study In Urban Zone Using Multi Temporal Satellite

APPLICATION OF TERRA/ASTER DATA ON AGRICULTURE LAND MAPPING. Genya SAITO*, Naoki ISHITSUKA*, Yoneharu MATANO**, and Masatane KATO***

Plan Plus Volume 1 No ( )

JACIE Science Applications of High Resolution Imagery at the USGS EROS Data Center

Transcription:

APPLICATION OF SPOT IMAGES AND FOREST VEGETATION MAPS FOR CREATION OF THE DATABASE FOR FORESTED SOILS USING GIS MODELING Marek MRÓZ *, Stanislaw %,$à286= ** * Olsztyn University, Poland Faculty of Geodesy and Regional Planning Department of Photogrammetry & Remote Sensing Marek.mroz@kosmos.uni.olsztyn.pl ** Warsaw University of Technology, Poland Faculty of Geodesy and Cartography Laboratory of Remote Sensing & GIS S.Bialousz@gik.pw.edu.pl Working Group... KEY WORDS: Database, SPOT, Soil conservation, GIS, Forestry. ABSTRACT Nowadays in Poland a creation of Regional Soils Information System is needed. This system should fulfil the geometric and thematic accuracy criteria required for maps at the 1:100 000 scale. The first component of such a system could be a geographical soils database. For the whole country area the soil-agricultural maps at the scale 1/100 000 exist. Using these maps it is possible to begin the process of soils database establishing. Unfortunately these maps cover only agricultural areas. The soils covered by forest are marked on these maps only by label "forests". For the needs of Regional Soils Information System creation it is necessary to acquire the data about the forested soils. For the forested areas there are detailed soil maps at 1: 5000 scale, but their use in system creation is not appropriate because of the scale span. In this paper an indirect method of data acquisition on forested soils is presented. This method consists in digital processing and computer assisted interpretation of satellite imagery (SPOT-4) and interpretation of forest vegetation maps (forest sites maps). Existing soils maps at 1: 300 000 scale, geological maps and map of potential (primary) vegetation can be used as ancillary data. All mentioned above data beside satellite imagery are stored in analogue form and must be converted to digital (raster or vector) form. In this paper the preliminary results of the first stage of the method elaboration are presented: fusion of the data issued from forest vegetation map (at 1: 25 000 scale) and from SPOT image processing results. The processing of SPOT data has been focused on enhancing of stand of trees differentiation which can indicate the relationships between soils, microrelief and vegetation. The correlation between forest s vegetation seen on satellite image and forest sites indicated on forest maps added to geological data made possible to distinguish 5 units in soil database. 1 INTRODUCTION The study bas been carried out on the area of about 5 000 ha in the forest complex named "Puszcza Biala" situated in the Central Poland (80 km north - east from Warsaw). The main idea has been to use the modern technology like satellite images together with thematic maps existing for this area for soils information system creation. Off course the whole methodology consist of indirect, deductive method of reasoning on soils types and their properties having different informations on: geology, geomorphology and relief. Vegetation, particularly trees and undergrowth layer is a good indicator of certain soils properties. On the other hand permanent vegetation associations are important factor of pedogenese. Existing maps at reasonable scales for this project representing stands, forest sites and stand age are stored in analogue form. The contents of that maps is often too generalized and not up-to-date. From this point of view satellite image seems to be a source of information complementary and /or alternative. In this paper we have shown only the first stage of the way named in the title "GIS modeling", limited to the comparison of maps and a satellite image. The figures attached not show yet whole spatial and multi-layer reasoning chain. International Archives of Photogrammetry and Remote Sensing. Vol. XXXIII, Part B7. Amsterdam 2000. 911

2 DIGITIZING AND PROCESSING OF FOREST SITES MAP. We have had at our disposal the forest sites map at 1:25 000 scale. This map can be called also "forest vegetation map" or biotops map because the contents of it is derived from trees, undergrowth (underbush) and ground flora differentiation. This differentiation have a quite strong relationships with geological and soils conditions. Aside from forest sites differentiation the information about species and stand age can be found on this map. These informations are marked by symbols and numbers for each elementary unit of forest (contours). Forest sites are shown with colours. See fig.1. Figure 1. Forest sites map. The sites map has been scanned in 256 colours mode and limits of units (subdivisions) have been on-screen digitized using CARTALINX software. After digitizing of all boundaries full topology of arcs and nodes has been created. This has made possible to create the polygons representing the forest units characterized by 4 attributes (codes): ID_Number, code of type of site, code of species, code of stand age class. More than 1200 polygons have been created and tabular database in ACCESS format has been attached to them. Vector form of data has been converted next in raster form and digital codes of attributes from database have been converted in pixel values. Raster image resolution is compatible with original SPOT XS pixel dimensions i.e. 20 x 20m. At this point we have had at our disposal three raster information layers issued from "Forest sites map": - sites types (vegetation), - species of trees, - stand age (age of trees). See fig. 2,3 and 4 showing these layers in digital raster form with the appropriate legends. Certain plots of forest (polygons) have been masked because of lack of information about any of three mentioned before attributes. 912 International Archives of Photogrammetry and Remote Sensing. Vol. XXXIII, Part B7. Amsterdam 2000.

Figure 2. Types of forest sites. Figure 3. Species of trees. International Archives of Photogrammetry and Remote Sensing. Vol. XXXIII, Part B7. Amsterdam 2000. 913

Figure 4. Stand age classes. 3 PROCESSING AND INTERPRETATION OF SATELLITE IMAGES A SPOT-4 XS image from 19 September 1998 has been used in this project. Comparing to the three previous satellites from SPOT family, SPOT-4 has the capability to image Earth surface in the middle infrared band XS4 (1580-1750 nm). Using red, near- infrared and middle infra-red bands the new images NDVI (Normalized Difference Vegetation Index) and NDWI (Normalized Difference Water Index) have been calculated. For visual interpretation of images many colour composites have been first created. We have realized that XS4 channel is strongly correlated with XS1 and XS2 channels (r=0.9 and r=0.8 respectively). Nevertheless one can state that this channel brings quite interesting information on certain forest vegetation associations. Two chosen composites are shown below. See Fig. 5 and 6. It is clearly visible that the lines extracted from forest map and overlayed on both composites follow quite well the boundaries between different colours distinguished on the composites. We have realized that it is possible to interpret the composites as follows: On the both we can distinguish coniferous forest, (principally old, high pine forest), mixed forest and deciduous wood. Particularly on the composite with NDVI component (not attached to this paper) we have found clear differentiation between alder forest and other mixed deciduous wood parcels. As one can see on the figures below using of XS4 channel has showed the differentiation between young coniferous greenwood (less than 20 years) and old coniferous forest. In the next step for more precise description of the image usefulness for forest vegetation differentiation we have carried out some unsupervised classifications (clustering). The used algorithm has been the one implemented in IDRISI 2.0 package (ISOCLUST). Each classification has been executed in 3 iterations with 25 clusters at the beginning of the classification process. The results of clustering showed below are from three data sets: 1. "A" XS3, XS2 and XS1 2. "B" XS3, NDVI and XS1 3. "C" XS4, XS3, XS2. The centers of initial clusters have been defined by the colours of appropriate colour composite. So, the results of clustering could be coherent (consistent ) with the visual interpretation of the colour composite. The clusters issued from this process have been carefully inspected, visually interpreted and statistically compared to the thematic layers extracted from forest sites map. Initially determined clusters have been logically aggregated in the groups which can be labeled as thematic classes with the high level of confidence. As auxiliary means for image interpretation and clusters labeling the aerial false-colour infrared photos at 1:10 000 have been used and terrain reconnaissance has been done. 914 International Archives of Photogrammetry and Remote Sensing. Vol. XXXIII, Part B7. Amsterdam 2000.

Figure 5. Standard Colour Composite. Figure 6. SPOT XS colour composite with MIR channel. International Archives of Photogrammetry and Remote Sensing. Vol. XXXIII, Part B7. Amsterdam 2000. 915

From "A" data set we have obtained, after aggregation of clusters, two main classes "coniferous" and "mixed + deciduous". See fig.7. We have achieved a good conformity of these classes with "Species" layer. It has been respectively 88 % for deciduous and 82 % for coniferous categories. This confirms that satellite image can be a good, alternative source of information for these forest types differentiation. An ambiguity (discrepancy between map and image) appears for the areas of mixed forest. The areas of mixed forest consisting of birch, oak and other deciduous species with the addition of pine can easily be distinguished on satellite image, but this differentiation is not clearly indicated neither on "Forest sites" nor "Species" map. Fresh mixed forest showed on forest sites map covers the areas of predominant pine as well as the areas of different deciduous woods. From "B" data set (including NDVI image) we have extracted, as one can see on fig. 8, pine pure stands, mixed areas consisting of mixture of coniferous and deciduous species, deciduous areas consisting of different broad-leaved trees and alder woods. It is very positive from our point of view that on the basis of "ndvi" we could extract alder forest from others deciduous areas. Alder forest indicates strong relationship with soils types. From "C" data set we have extracted alder forest, mixed (pine + deciduous) forest and two new categories: 1/ very old pine stands (more than 60 years) with poor ground flora and 2/ coniferous greenwood. See fig. 9. The first category is characterized by quite dispersed set of trees. The second category have been classified in previous cases ("A" and "B") as mixed forest (pine + others). Further terrain investigations are needed for better description of these sites. Fig. 7. Classes obtained from "A" data set. 916 International Archives of Photogrammetry and Remote Sensing. Vol. XXXIII, Part B7. Amsterdam 2000.

Fig. 8. Classes obtained from "B" data set. Fig. 9. Classes obtained from "C" data set. International Archives of Photogrammetry and Remote Sensing. Vol. XXXIII, Part B7. Amsterdam 2000. 917

4 ANCILLARY DATA For this study we have had at our disposal some ancillary materials and cartographic documents: geologic map at 1: 200 000 scale, geomorphologic map 1: 150 000, soils map 1: 300 000 - elaborated long time ago (50 years). The geologic and geomorphologic maps indicate the origin and the texture of the superficial formations (deposits). These deposits are : fluvioglacial sands, eroded clays of ground moraine covered with fluvioglacial silty sands, the enclaves of sandy loams, eolian sands, Holocene sands, peat. The relief forms are quite flat. The escarpment of about 10m high separates postglacial plateau from Holocene Bug river valley. On this plateau as well as on Holocene terraces there are sparse dunes. The old soils map 1: 300 000 gives more informations on soil texture, than on genetic types because genetic soils classification applied for creation of this map had been simplified and majority of soils had been put into podzols type. 5 GENERAL MODEL OF RELATIONSHIPS BETWEEN : GEOLOGY GEOMORPHOLOGY VEGETATION - SOIL The study area is the old forest complex. The soils are covered by forest vegetation from time immemorial and probably always this area was covered by forest. But normal forest husbandry is leading in this area consisting of clear cutting of whole sub-divisions (parcels) and their afforestation. The highest forest layer (trees) is not always related to site conditions resulting from soil-geological potential (soil richness). With this potential more related are forest floor and undergrowth. Analyzing of typical arrangements of pedogenesis factors we can distinguish following, very probable relationships: (see. Tab 1.) Morphogenese Texture of materials Vegetation Soils Eroded ground moraine Sandy loams Deciduous forests: fresh and Luvisols, Stagnic Luvisols humid Silty sands Deciduous forests: fresh Podzoluvisols, Cambic Luvisols Fluvioglacial sands on Silty sands Coniferous mixed forest Dystric Luvisols terraces Loose sands Coniferous fresh forest Podzols Cambic Podzols Eolian sands Loose sands Coniferous dry forest Coniferous fresh forest Podzols Cambic Podzols Glacilacustrine deposits Varied texture Deciduous humid wood, Gleysols Marshy wood Lower river terraces Peat Alder carr, Shrubs Histosols Glacilacustrine Mineral deposits on river Sands, silty sands terraces Tab.1. Pedogenese factors chain. Humid deciduous wood Humid marshy wood (Ash) Gleysols Gleyic Luvisols It is possible to lead the reasoning on the types and properties of soils of this region on two levels of approximation: 1. only analyzing of vegetation differentiation extracted from satellite images alone (radiometric values of pixels), 2. using satellite images as previously and declared knowledge related to forest vegetation associations, morphogenese and relief. Many different analysis and comparisons have been carried out leading to distinguish following soils units appearing in soils associations or alone: 1. Orthic Luvisols and Stagnic Luvisols 2. Podzoluvisols and Stagnic Cambicsols 3. Dystric Luvisols 4. Podzols and Cambic Podzols 5. Histosola and Gleysols. Credibility of this model will be verified randomly using soils map at 1: 5 000 scale. Terrain investigations and model verification can give an opportunity to extend the methodology on similar physiographic units. 918 International Archives of Photogrammetry and Remote Sensing. Vol. XXXIII, Part B7. Amsterdam 2000.

6 DISCUSSION AND CONCLUSIONS The presented ideas and first results obtained show the possibilities of extraction of the informations about soil from different cartographic materials and satellite images for forested areas. This deductive method requires further dipper investigations, explicit model formalization and model validation using detailed soils maps and/or terrain pedologic inspections. At this moment we can state that present problem of regional, spatial soils databases creation in Poland must refer to the satellite imageries and existing thematic maps because this way seems to be more efficient than generalization of detailed soils maps. As we have attempted to show satellite images can not be only auxiliary data source but complementary and may be alternative to some out-of-date maps. REFERNENCES %LDáRXV]Ã6ÃÃ:Sá\ZÃmorfogenezy Pojezierza Mazurskiego na NV]WDáWRZDQLHÃVL Ãgleb. Roczniki Nauk Rolniczych, seria D, tom 166. Girard M.C., Girard C.M., 1989. Teledetection appliquee. Zones temperees et intertropicales. Chap. "Pedologie" Masson. Paris 1989. Straszewska K., 1968. Stratygrafia plejstocenu i paleogeomorfologia rejonu dolnego Bugu. Wyd. Geol. W-wa 1968. Treitz P., Howarth. P, 2000. Integrating spectral, spatial, and terrain variables for forest ecosystem classification. PE&RS. vol. 66, No.3, March 2000. Pp. 305-317. International Archives of Photogrammetry and Remote Sensing. Vol. XXXIII, Part B7. Amsterdam 2000. 919