MODIS IMAGES RESTORATION FOR VNIR BANDS ON FIRE SMOKE AFFECTED AREA

Size: px
Start display at page:

Download "MODIS IMAGES RESTORATION FOR VNIR BANDS ON FIRE SMOKE AFFECTED AREA"

Transcription

1 MODIS IMAGES RESTORATION FOR VNIR BANDS ON FIRE SMOKE AFFECTED AREA Li-Yu Chang and Chi-Farn Chen Center for Space and Remote Sensing Research, National Central University, No. 300, Zhongda Rd., Zhongli District, Taoyuan City 32001, Taiwan KEY WORDS: Fire Smoke, Image Restoration, Inverse Distance Weighted Interpolation, MODIS Images. ABSTRACT: On fire event monitoring, images of MODIS sensor can provide timely information to identify the location and situation of fired areas. Without doubt the fire smoke on MODIS images is the key feature for fire event identification. However, the ground information of visible and near infrared (VNIR) bands is also be blocked by fire smoke. Nevertheless, due to the size of smoke particles and the wavelength of short wave infrared (SWIR), the SWIR radiance can still go through smoke and allow the ground information under the smoke can be revealed on the SWIR bands. Therefore, by using inverse distance weighted (IDW) interpolation approach, the smoke contamination in VNIR bands can be removed and the corresponding ground reflectance of VNIR bands can be interpolated and restored. The experimental result shows that a correlation between the restored image and original image is higher than 0.9 in simulation case. Additionally, in real cases, good visual fidelity in restored images can be observed as well. 1. INTRODUCTION Moderate Resolution Imaging Spectroradiometers (MODIS) are widely used remote sensing tools for environment monitoring. Especially on fire monitoring, the large spatial coverage and daily acquisition capabilities of MODIS sensors make them a common remote sensing image source for capturing ground fire events. In general, the smoke object on MODIS images is an important feature for users to identify fire event. Nevertheless, the smoke is also an unwanted feature that can prevent users from observing the current ground status under smoke. Particularly in visible and near infrared (VNIR) bands of MODIS images, the ground information can almost be blocked by smoke. Fortunately, due to the size of smoke particles and the wavelength of short wave infrared (SWIR), the SWIR radiance can still go through smoke and allow the SWIR bands to provide land information under smoke (Kaufman and Remer, 1994; Kaufman et al., 1997). However, in practical the spectral characteristics of SWIR bands usually are different from that of VNIR bands. This fact may cause inconvenience for general users that only familiar with images of VNIR bands. Furthermore, for smoke contaminated MODIS images, there may also have difficulties in comparing with other data sources that only provide VNIR bands. Therefore, if the information under smoke for VNIR bands can be restored form SWIR bands, the above mentioned drawbacks can be improved. According to literature, VNIR bands information was successfully obtained from SWIR bands of various remote sensing sensors. The spectral responses of visible bands at wavelength 0.49µm and 0.66µm were found correlated with SWIR band by using Landsat TM and Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) images (Kaufman et al., 1997). This characteristic had been applied to restore the red band information at wavelength 0.677µm by using SWIR band information at wavelength 2.121µm for AVIRIS images with linear regression (De Moura and Galvao, 2003). In addition, by using the reflectance of SWIR band and the estimation of NDVISWIR, the reflectance of visible bands at wavelength 0.466µm and 0.644µm were obtained for MODIS images (Dabin et al., 2008). 1.1 Correlations between VNIR and SWIR bands In order to realize how the reflectance of VNIR bands can be restored by that of SWIR bands, further investigation should be made for the band to band correlations of MODIS image. Figure 1 is a MODIS sample image from product MOD09GA and acquired on 6/21/2012 over west of Colorado state, USA. This image is used to demonstrate the spectral property of MODIS data.

2 SWIR image Figure 1. MODIS sample image for the investigation of band to band correlations. (Images acquired on 6/21/2012) Figure 2 is the corresponding band to band scatter plots and correlations for VNIR and SWIR bands. Note that all the cloud pixels were removed. It can be found that the VNIR bands are more or less linearly correlated to SWIR bands and their correlations in different band combinations are around 0.73 to It implies that the VNIR bands are possible to be modelled by SWIR bands with linear regression approach. This approach was applied to restore the image of VNIR bands under smoke area (Chang and Chen, 2014). However, it also can be found that the linear assumption in some band combinations is comparably weaker than the others. For example, in those band combinations with correlation lower than 0.85, their corresponding pixel distributions seems to be spread away and not concentrated to a straight line. This fact implies that nonlinear relationships exist between those band combinations with lower correlations and linear regressions are probably insufficient to restore the VNIR bands image from corresponding SWIR bands image. Figure 2. Band to band scatter plots and correlations for MODIS sample image.

3 1.2 Property of VNIR bands in SWIR spectral feature space Generally, pixels within a small cluster their relationships between SWIR and VNIR bands should be more the same when compared to that of all image pixels. Therefore, the VNIR reflectance of smoke contaminated pixels can be interpolated by using the VNIR reflectance of neighboring smoke free pixels in SWIR spectral feature space. In this paper an inverse distance weighted (IDW) interpolation is proposed to interpolate the VNIR reflectance of smoke contaminated pixels with neighboring smoke free pixels. 2. METHODOLOGY The proposed method includes three major steps: (1) Detecting masks for cloud and smoke, (2) Restoring VNIR bands pixels by interpolation in spectral feature space of SWIR bands and (3) Using mosaic techniques to smooth discontinuous boundary. Following is the brief description of each step: 2.1 Detecting masks for cloud and smoke The spectral characteristics of cloud and smoke feature in images of VNIR bands normally are similar. Due to cloud pixels can be found in quality assurance (QA) information of MODIS product, the image statistics of cloud pixel can be further obtained and used to find smoke pixels. However, if the source image is cloud free or the smoke cannot correctly derived from image statistics of cloud, image classification or manual operation may be needed to carry out the smoke areas. 2.2 Restoring VNIR bands reflectance by IDW interpolation According to the property of VNIR bands in SWIR spectral feature space, the VNIR bands reflectance of smoke contaminated pixel for can be restored by smoke free pixels by IDW interpolation. The weighting factors needed in IDW interpolation are obtained by using the spectral distance between smoke and smoke free pixels in SWIR spectral feature space. Theoretically the larger weight should be put to the smoke free pixel if the pixel is spectrally closer to the smoke pixel in SWIR feature space during IDW interpolation. 2.3 Using mosaic techniques to smooth discontinuous boundary In order to replace the smoke affected area by restored image and avoid any reflectance discontinuity, a buffer zone is generated and mosaic technique is applied to generate a more reasonable output. 3. EXPERIMENTAL RESULTS In this study, MODIS image restorations for simulated and real smoke contaminated areas are carried out. In simulated case, differences of source image and restored image are obtained and compared. For real case, the restored images are presented for visual inspections. 3.1 Case of simulated smoke contamination Figure 3 is an image by applying the sample image in figure 1 and the pixels inside an elliptical area are assumed to be contaminated by smoke. Figure 4 shows the restored VNIR bands images inside the smoke contaminated area by applying the linear regression and proposed method. Note that the source image are also provide for comparison. According to the visual inspection, in true color composite images it can be found that the images restored by different method are similar and only slightly different from source image in a few bright objects. However, in false color composite images, the similarities between restored images and source image are significantly different. It can be observed that the proposed method performs better than linear regression method in vegetated areas. Performances of images restored by linear regression and proposed method are also quantitatively compared. Table 1 and Table 2 are the mean error and root mean square error (RMSE) of restored reflectance respectively. It can be found that mean error for different methods are all very close to zero. However, for the RMSE, the proposed method performs better in visible bands and almost 2 times better in near infrared (NIR) band. Table 3 shows the correlations of reflectance between restored and source images for different methods. It can be found that the correlation of NIR band can only reach 0.82 while the correlation of others visible bands are around 0.9. However, if proposed method is

4 applied, for all bands the restored image can have similar correlations and all above 0.9. This fact implies that the result of proposed method has better capability to model the existing nonlinear relationships between NIR and SWIR bands and can offer better quality consistency for all VNIR bands. SWIR image Figure 3. Sample images for the case of simulated smoke contamination. The elliptical area are assumed as the area contaminated by smoke and removed from VNIR bands. True color composite of source image True color composite of restored image using linear regression method True color composite of restored image using proposed method False color composite of source image False color composite of restored image using linear regression method False color composite of restored image using proposed method Figure 4. Source and restored images inside the smoke contaminated area.

5 Table 1. Mean errors of restored reflectance. Mean Error Restoration Method Band 0.469μm 0.555μm 0.645μm 0.859μm Linear Regression IDW Interpolation Table 2. RMSE of restored reflectance. RMSE Restoration Method Band 0.469μm 0.555μm 0.645μm 0.859μm Linear Regression IDW Interpolation Table 3. Correlations of reflectance between restored and source images. Correlation Restoration Method Band 0.469μm 0.555μm 0.645μm 0.859μm Linear Regression IDW Interpolation Case of real smoke contamination In this section the images actually contaminated by fire smokes are used to evaluate the performance of proposed method. The source images used in figure 5 and 7 are MODIS MYD09GA product acquired on 6/9/2011 over east of Arizona and MODIS MOD09GA product acquired on 9/17/2014 over central California respectively. In these images forest file events and their fire smokes can be observed clearly. Figure 6 and figure 8 show the restored images by using proposed method. It can be seen that the ground objects in VNIR bands under fire smoke are restored successfully from source images. Figure 5. MODIS images for the performance evaluation of proposed method on the case of real smoke contamination (Source images acquired on 6/9/2011).

6 Figure 6. The restored images for images in figure 5 by using proposed method. Figure 7. MODIS images for the performance evaluation of proposed method on the case of real smoke contamination (Source images acquired on 9/17/2014). Figure 8. The restored images for images in figure 7 by using proposed method. 4. CONCLUSION In this study, based on IDW interpolation, an image restoration method for MODIS visible and NIR bands on fire smoke contamination areas is proposed. According to the verification of results, the restoration of VNIR bands by proposed method can perform better than that by linear regression method. Furthermore, according to the case of the restoration for actual fire smoke contaminated MODIS images, satisfied visual fidelity in restored images can also be observed.

7 REFERENCE Chang, L. Y., Chan, C. F., 2014, MODIS image restoration on fire smoke contaminated areas. Proceeding of International Symposium on Remote Sensing 2014, Busan, Korea, April 2014, CDROM. Dabin, J., Lin, S., Tao, J., Mei, D., A new method to estimate the visible reflectance from short wave infrared wavelength. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXVII(B8), pp De Moura, M. L., Galvão, L. S., Smoke effects on NDVI determination of savannah vegetation types. International Journal of Remote Sensing, 24(21), pp Kaufman, Y. J., Remer, L. A., Detection of forests using mid-ir reflectance: an application for aerosol studies. IEEE Transactions on Geoscience and Remote Sensing, 32(3), pp Kaufman, Y. J., Wald, A. E., Remer, L. A., Gao, B. C., Li, R. R., Flynn, L., The MODIS 2.1-μm channel-correlation with visible reflectance for use in remote sensing of aerosol. IEEE Transactions on Geoscience and Remote Sensing, 35(5), pp

Spectral Response for DigitalGlobe Earth Imaging Instruments

Spectral Response for DigitalGlobe Earth Imaging Instruments Spectral Response for DigitalGlobe Earth Imaging Instruments IKONOS The IKONOS satellite carries a high resolution panchromatic band covering most of the silicon response and four lower resolution spectral

More information

ENVI Classic Tutorial: Atmospherically Correcting Hyperspectral Data using FLAASH 2

ENVI Classic Tutorial: Atmospherically Correcting Hyperspectral Data using FLAASH 2 ENVI Classic Tutorial: Atmospherically Correcting Hyperspectral Data Using FLAASH Atmospherically Correcting Hyperspectral Data using FLAASH 2 Files Used in This Tutorial 2 Opening the Uncorrected AVIRIS

More information

Generation of Cloud-free Imagery Using Landsat-8

Generation of Cloud-free Imagery Using Landsat-8 Generation of Cloud-free Imagery Using Landsat-8 Byeonghee Kim 1, Youkyung Han 2, Yonghyun Kim 3, Yongil Kim 4 Department of Civil and Environmental Engineering, Seoul National University (SNU), Seoul,

More information

Review for Introduction to Remote Sensing: Science Concepts and Technology

Review for Introduction to Remote Sensing: Science Concepts and Technology Review for Introduction to Remote Sensing: Science Concepts and Technology Ann Johnson Associate Director ann@baremt.com Funded by National Science Foundation Advanced Technological Education program [DUE

More information

Supervised Classification workflow in ENVI 4.8 using WorldView-2 imagery

Supervised Classification workflow in ENVI 4.8 using WorldView-2 imagery Supervised Classification workflow in ENVI 4.8 using WorldView-2 imagery WorldView-2 is the first commercial high-resolution satellite to provide eight spectral sensors in the visible to near-infrared

More information

Using Remote Sensing to Monitor Soil Carbon Sequestration

Using Remote Sensing to Monitor Soil Carbon Sequestration Using Remote Sensing to Monitor Soil Carbon Sequestration E. Raymond Hunt, Jr. USDA-ARS Hydrology and Remote Sensing Beltsville Agricultural Research Center Beltsville, Maryland Introduction and Overview

More information

WATER BODY EXTRACTION FROM MULTI SPECTRAL IMAGE BY SPECTRAL PATTERN ANALYSIS

WATER BODY EXTRACTION FROM MULTI SPECTRAL IMAGE BY SPECTRAL PATTERN ANALYSIS WATER BODY EXTRACTION FROM MULTI SPECTRAL IMAGE BY SPECTRAL PATTERN ANALYSIS Nguyen Dinh Duong Department of Environmental Information Study and Analysis, Institute of Geography, 18 Hoang Quoc Viet Rd.,

More information

Resolutions of Remote Sensing

Resolutions of Remote Sensing Resolutions of Remote Sensing 1. Spatial (what area and how detailed) 2. Spectral (what colors bands) 3. Temporal (time of day/season/year) 4. Radiometric (color depth) Spatial Resolution describes how

More information

ANALYSIS OF FOREST CHANGE IN FIRE DAMAGE AREA USING SATELLITE IMAGES

ANALYSIS OF FOREST CHANGE IN FIRE DAMAGE AREA USING SATELLITE IMAGES ANALYSIS OF FOREST CHANGE IN FIRE DAMAGE AREA USING SATELLITE IMAGES Joon Mook Kang, Professor Joon Kyu Park, Ph.D Min Gyu Kim, Ph.D._Candidate Dept of Civil Engineering, Chungnam National University 220

More information

TerraColor White Paper

TerraColor White Paper TerraColor White Paper TerraColor is a simulated true color digital earth imagery product developed by Earthstar Geographics LLC. This product was built from imagery captured by the US Landsat 7 (ETM+)

More information

Data Processing Flow Chart

Data Processing Flow Chart Legend Start V1 V2 V3 Completed Version 2 Completion date Data Processing Flow Chart Data: Download a) AVHRR: 1981-1999 b) MODIS:2000-2010 c) SPOT : 1998-2002 No Progressing Started Did not start 03/12/12

More information

Measurement of the effect of biomass burning aerosol on inhibition of cloud formation over the Amazon

Measurement of the effect of biomass burning aerosol on inhibition of cloud formation over the Amazon Supporting Online Material for Koren et al. Measurement of the effect of biomass burning aerosol on inhibition of cloud formation over the Amazon 1. MODIS new cloud detection algorithm The operational

More information

Land Use/Land Cover Map of the Central Facility of ARM in the Southern Great Plains Site Using DOE s Multi-Spectral Thermal Imager Satellite Images

Land Use/Land Cover Map of the Central Facility of ARM in the Southern Great Plains Site Using DOE s Multi-Spectral Thermal Imager Satellite Images Land Use/Land Cover Map of the Central Facility of ARM in the Southern Great Plains Site Using DOE s Multi-Spectral Thermal Imager Satellite Images S. E. Báez Cazull Pre-Service Teacher Program University

More information

High Resolution Information from Seven Years of ASTER Data

High Resolution Information from Seven Years of ASTER Data High Resolution Information from Seven Years of ASTER Data Anna Colvin Michigan Technological University Department of Geological and Mining Engineering and Sciences Outline Part I ASTER mission Terra

More information

Electromagnetic Radiation (EMR) and Remote Sensing

Electromagnetic Radiation (EMR) and Remote Sensing Electromagnetic Radiation (EMR) and Remote Sensing 1 Atmosphere Anything missing in between? Electromagnetic Radiation (EMR) is radiated by atomic particles at the source (the Sun), propagates through

More information

Using Remote Sensing Imagery to Evaluate Post-Wildfire Damage in Southern California

Using Remote Sensing Imagery to Evaluate Post-Wildfire Damage in Southern California Graham Emde GEOG 3230 Advanced Remote Sensing February 22, 2013 Lab #1 Using Remote Sensing Imagery to Evaluate Post-Wildfire Damage in Southern California Introduction Wildfires are a common disturbance

More information

The Role of SPOT Satellite Images in Mapping Air Pollution Caused by Cement Factories

The Role of SPOT Satellite Images in Mapping Air Pollution Caused by Cement Factories The Role of SPOT Satellite Images in Mapping Air Pollution Caused by Cement Factories Dr. Farrag Ali FARRAG Assistant Prof. at Civil Engineering Dept. Faculty of Engineering Assiut University Assiut, Egypt.

More information

Multinomial Logistics Regression for Digital Image Classification

Multinomial Logistics Regression for Digital Image Classification Multinomial Logistics Regression for Digital Image Classification Dr. Moe Myint, Chief Scientist, Mapping and Natural Resources Information Integration (MNRII), Switzerland maungmoe.myint@mnrii.com KEY

More information

Selecting the appropriate band combination for an RGB image using Landsat imagery

Selecting the appropriate band combination for an RGB image using Landsat imagery Selecting the appropriate band combination for an RGB image using Landsat imagery Ned Horning Version: 1.0 Creation Date: 2004-01-01 Revision Date: 2004-01-01 License: This document is licensed under a

More information

Calculation of Minimum Distances. Minimum Distance to Means. Σi i = 1

Calculation of Minimum Distances. Minimum Distance to Means. Σi i = 1 Minimum Distance to Means Similar to Parallelepiped classifier, but instead of bounding areas, the user supplies spectral class means in n-dimensional space and the algorithm calculates the distance between

More information

Evaluation of the Effect of Upper-Level Cirrus Clouds on Satellite Retrievals of Low-Level Cloud Droplet Effective Radius

Evaluation of the Effect of Upper-Level Cirrus Clouds on Satellite Retrievals of Low-Level Cloud Droplet Effective Radius Evaluation of the Effect of Upper-Level Cirrus Clouds on Satellite Retrievals of Low-Level Cloud Droplet Effective Radius F.-L. Chang and Z. Li Earth System Science Interdisciplinary Center University

More information

Landsat Monitoring our Earth s Condition for over 40 years

Landsat Monitoring our Earth s Condition for over 40 years Landsat Monitoring our Earth s Condition for over 40 years Thomas Cecere Land Remote Sensing Program USGS ISPRS:Earth Observing Data and Tools for Health Studies Arlington, VA August 28, 2013 U.S. Department

More information

SAMPLE MIDTERM QUESTIONS

SAMPLE MIDTERM QUESTIONS Geography 309 Sample MidTerm Questions Page 1 SAMPLE MIDTERM QUESTIONS Textbook Questions Chapter 1 Questions 4, 5, 6, Chapter 2 Questions 4, 7, 10 Chapter 4 Questions 8, 9 Chapter 10 Questions 1, 4, 7

More information

How to calculate reflectance and temperature using ASTER data

How to calculate reflectance and temperature using ASTER data How to calculate reflectance and temperature using ASTER data Prepared by Abduwasit Ghulam Center for Environmental Sciences at Saint Louis University September, 2009 This instructions walk you through

More information

RESOLUTION MERGE OF 1:35.000 SCALE AERIAL PHOTOGRAPHS WITH LANDSAT 7 ETM IMAGERY

RESOLUTION MERGE OF 1:35.000 SCALE AERIAL PHOTOGRAPHS WITH LANDSAT 7 ETM IMAGERY RESOLUTION MERGE OF 1:35.000 SCALE AERIAL PHOTOGRAPHS WITH LANDSAT 7 ETM IMAGERY M. Erdogan, H.H. Maras, A. Yilmaz, Ö.T. Özerbil General Command of Mapping 06100 Dikimevi, Ankara, TURKEY - (mustafa.erdogan;

More information

Land Use/ Land Cover Mapping Initiative for Kansas and the Kansas River Watershed

Land Use/ Land Cover Mapping Initiative for Kansas and the Kansas River Watershed Land Use/ Land Cover Mapping Initiative for Kansas and the Kansas River Watershed Kansas Biological Survey Kansas Applied Remote Sensing Program April 2008 Previous Kansas LULC Projects Kansas LULC Map

More information

Sub-pixel mapping: A comparison of techniques

Sub-pixel mapping: A comparison of techniques Sub-pixel mapping: A comparison of techniques Koen C. Mertens, Lieven P.C. Verbeke & Robert R. De Wulf Laboratory of Forest Management and Spatial Information Techniques, Ghent University, 9000 Gent, Belgium

More information

A remote sensing instrument collects information about an object or phenomenon within the

A remote sensing instrument collects information about an object or phenomenon within the Satellite Remote Sensing GE 4150- Natural Hazards Some slides taken from Ann Maclean: Introduction to Digital Image Processing Remote Sensing the art, science, and technology of obtaining reliable information

More information

ARM SWS to study cloud drop size within the clear-cloud transition zone

ARM SWS to study cloud drop size within the clear-cloud transition zone ARM SWS to study cloud drop size within the clear-cloud transition zone (GSFC) Yuri Knyazikhin Boston University Christine Chiu University of Reading Warren Wiscombe GSFC Thanks to Peter Pilewskie (UC)

More information

THE SPECTRAL DIMENSION IN URBAN LAND COVER MAPPING FROM HIGH - RESOLUTION OPTICAL REMOTE SENSING DATA *

THE SPECTRAL DIMENSION IN URBAN LAND COVER MAPPING FROM HIGH - RESOLUTION OPTICAL REMOTE SENSING DATA * THE SPECTRAL DIMENSION IN URBAN LAND COVER MAPPING FROM HIGH - RESOLUTION OPTICAL REMOTE SENSING DATA * Martin Herold 1, Meg Gardner 1, Brian Hadley 2 and Dar Roberts 1 1 Department of Geography, University

More information

D.S. Boyd School of Earth Sciences and Geography, Kingston University, U.K.

D.S. Boyd School of Earth Sciences and Geography, Kingston University, U.K. PHYSICAL BASIS OF REMOTE SENSING D.S. Boyd School of Earth Sciences and Geography, Kingston University, U.K. Keywords: Remote sensing, electromagnetic radiation, wavelengths, target, atmosphere, sensor,

More information

Digital image processing

Digital image processing 746A27 Remote Sensing and GIS Lecture 4 Digital image processing Chandan Roy Guest Lecturer Department of Computer and Information Science Linköping University Digital Image Processing Most of the common

More information

Adaptive HSI Data Processing for Near-Real-time Analysis and Spectral Recovery *

Adaptive HSI Data Processing for Near-Real-time Analysis and Spectral Recovery * Adaptive HSI Data Processing for Near-Real-time Analysis and Spectral Recovery * Su May Hsu, 1 Hsiao-hua Burke and Michael Griffin MIT Lincoln Laboratory, Lexington, Massachusetts 1. INTRODUCTION Hyperspectral

More information

Impact of sensor s point spread function on land cover characterization: assessment and deconvolution

Impact of sensor s point spread function on land cover characterization: assessment and deconvolution Remote Sensing of Environment 80 (2002) 203 212 www.elsevier.com/locate/rse Impact of sensor s point spread function on land cover characterization: assessment and deconvolution Chengquan Huang a, *, John

More information

SATELLITE IMAGES IN ENVIRONMENTAL DATA PROCESSING

SATELLITE IMAGES IN ENVIRONMENTAL DATA PROCESSING SATELLITE IMAGES IN ENVIRONMENTAL DATA PROCESSING Magdaléna Kolínová Aleš Procházka Martin Slavík Prague Institute of Chemical Technology Department of Computing and Control Engineering Technická 95, 66

More information

AAFC Medium-Resolution EO Data Activities for Agricultural Risk Assessment

AAFC Medium-Resolution EO Data Activities for Agricultural Risk Assessment AAFC Medium-Resolution EO Data Activities for Agricultural Risk Assessment North American Drought Monitor (NADM) Ottawa, Ontario, Canada. October 15-17 2008. A. Davidson 1, A. Howard 1,2, K. Sun 1, M.

More information

INSPIRE implementation pilot project

INSPIRE implementation pilot project INSPIRE implementation pilot project Implementation of INSPIRE directive in Hungarian e-environment sector KEOP-7.6.3.0-2008-0020 Tamás Tomor PhD, project manager Trans-Tisza Environmental Inspectorate

More information

2.3 Spatial Resolution, Pixel Size, and Scale

2.3 Spatial Resolution, Pixel Size, and Scale Section 2.3 Spatial Resolution, Pixel Size, and Scale Page 39 2.3 Spatial Resolution, Pixel Size, and Scale For some remote sensing instruments, the distance between the target being imaged and the platform,

More information

Institute of Agro-Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China; E-Mail: liwj@caas.net.

Institute of Agro-Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China; E-Mail: liwj@caas.net. Sensors 2015, 15, 304-330; doi:10.3390/s150100304 Article OPEN ACCESS sensors ISSN 1424-8220 www.mdpi.com/journal/sensors An Efficient Approach for Pixel Decomposition to Increase the Spatial Resolution

More information

CONTINUING EROSION IN SOUTHEASTERN COASTAL MISSISSIPPI - POINT AUX CHENES BAY, WEST GRAND BAY, MIDDLE BAY, GRANDE BATTURE ISLANDS: 1995-1997

CONTINUING EROSION IN SOUTHEASTERN COASTAL MISSISSIPPI - POINT AUX CHENES BAY, WEST GRAND BAY, MIDDLE BAY, GRANDE BATTURE ISLANDS: 1995-1997 Summary of a Poster Presented at the: Sixty-Second Annual Meeting of the Mississippi Academy of Sciences in Biloxi, Mississippi February 26-27, 1998 ===============================================================

More information

STAR Algorithm and Data Products (ADP) Beta Review. Suomi NPP Surface Reflectance IP ARP Product

STAR Algorithm and Data Products (ADP) Beta Review. Suomi NPP Surface Reflectance IP ARP Product STAR Algorithm and Data Products (ADP) Beta Review Suomi NPP Surface Reflectance IP ARP Product Alexei Lyapustin Surface Reflectance Cal Val Team 11/26/2012 STAR ADP Surface Reflectance ARP Team Member

More information

Quantifying Seasonal Variation in Cloud Cover with Predictive Models

Quantifying Seasonal Variation in Cloud Cover with Predictive Models Quantifying Seasonal Variation in Cloud Cover with Predictive Models Ashok N. Srivastava, Ph.D. ashok@email.arc.nasa.gov Deputy Area Lead, Discovery and Systems Health Group Leader, Intelligent Data Understanding

More information

Environmental Remote Sensing GEOG 2021

Environmental Remote Sensing GEOG 2021 Environmental Remote Sensing GEOG 2021 Lecture 4 Image classification 2 Purpose categorising data data abstraction / simplification data interpretation mapping for land cover mapping use land cover class

More information

Evaluation of Wildfire Duration Time Over Asia using MTSAT and MODIS

Evaluation of Wildfire Duration Time Over Asia using MTSAT and MODIS Evaluation of Wildfire Duration Time Over Asia using MTSAT and MODIS Wataru Takeuchi * and Yusuke Matsumura Institute of Industrial Science, University of Tokyo, Japan Ce-504, 6-1, Komaba 4-chome, Meguro,

More information

Digital Remote Sensing Data Processing Digital Remote Sensing Data Processing and Analysis: An Introduction and Analysis: An Introduction

Digital Remote Sensing Data Processing Digital Remote Sensing Data Processing and Analysis: An Introduction and Analysis: An Introduction Digital Remote Sensing Data Processing Digital Remote Sensing Data Processing and Analysis: An Introduction and Analysis: An Introduction Content Remote sensing data Spatial, spectral, radiometric and

More information

LANDSAT 8 Level 1 Product Performance

LANDSAT 8 Level 1 Product Performance Réf: IDEAS-TN-10-QualityReport LANDSAT 8 Level 1 Product Performance Quality Report Month/Year: January 2016 Date: 26/01/2016 Issue/Rev:1/9 1. Scope of this document On May 30, 2013, data from the Landsat

More information

How Landsat Images are Made

How Landsat Images are Made How Landsat Images are Made Presentation by: NASA s Landsat Education and Public Outreach team June 2006 1 More than just a pretty picture Landsat makes pretty weird looking maps, and it isn t always easy

More information

Remote sensing and GIS applications in coastal zone monitoring

Remote sensing and GIS applications in coastal zone monitoring Remote sensing and GIS applications in coastal zone monitoring T. Alexandridis, C. Topaloglou, S. Monachou, G.Tsakoumis, A. Dimitrakos, D. Stavridou Lab of Remote Sensing and GIS School of Agriculture

More information

Authors: Thierry Phulpin, CNES Lydie Lavanant, Meteo France Claude Camy-Peyret, LPMAA/CNRS. Date: 15 June 2005

Authors: Thierry Phulpin, CNES Lydie Lavanant, Meteo France Claude Camy-Peyret, LPMAA/CNRS. Date: 15 June 2005 Comments on the number of cloud free observations per day and location- LEO constellation vs. GEO - Annex in the final Technical Note on geostationary mission concepts Authors: Thierry Phulpin, CNES Lydie

More information

FOR375 EXAM #2 STUDY SESSION SPRING 2016. Lecture 14 Exam #2 Study Session

FOR375 EXAM #2 STUDY SESSION SPRING 2016. Lecture 14 Exam #2 Study Session FOR375 EXAM #2 STUDY SESSION SPRING 2016 Lecture 14 Exam #2 Study Session INTRODUCTION TO REMOTE SENSING TYPES OF REMOTE SENSING Ground based platforms Airborne based platforms Space based platforms TYPES

More information

Objectives. Raster Data Discrete Classes. Spatial Information in Natural Resources FANR 3800. Review the raster data model

Objectives. Raster Data Discrete Classes. Spatial Information in Natural Resources FANR 3800. Review the raster data model Spatial Information in Natural Resources FANR 3800 Raster Analysis Objectives Review the raster data model Understand how raster analysis fundamentally differs from vector analysis Become familiar with

More information

SYNERGISTIC USE OF IMAGER WINDOW OBSERVATIONS FOR CLOUD- CLEARING OF SOUNDER OBSERVATION FOR INSAT-3D

SYNERGISTIC USE OF IMAGER WINDOW OBSERVATIONS FOR CLOUD- CLEARING OF SOUNDER OBSERVATION FOR INSAT-3D SYNERGISTIC USE OF IMAGER WINDOW OBSERVATIONS FOR CLOUD- CLEARING OF SOUNDER OBSERVATION FOR INSAT-3D ABSTRACT: Jyotirmayee Satapathy*, P.K. Thapliyal, M.V. Shukla, C. M. Kishtawal Atmospheric and Oceanic

More information

Computer Vision: Machine Vision Filters. Computer Vision. Optical Filters. 25 August 2014

Computer Vision: Machine Vision Filters. Computer Vision. Optical Filters. 25 August 2014 Computer Vision Optical Filters 25 August 2014 Copyright 2001 2014 by NHL Hogeschool, Van de Loosdrecht Machine Vision BV and Klaas Dijkstra All rights reserved j.van.de.loosdrecht@nhl.nl, jaap@vdlmv.nl,

More information

ENVI Classic Tutorial: Atmospherically Correcting Multispectral Data Using FLAASH 2

ENVI Classic Tutorial: Atmospherically Correcting Multispectral Data Using FLAASH 2 ENVI Classic Tutorial: Atmospherically Correcting Multispectral Data Using FLAASH Atmospherically Correcting Multispectral Data Using FLAASH 2 Files Used in this Tutorial 2 Opening the Raw Landsat Image

More information

Surface-Based Remote Sensing of the Aerosol Indirect Effect at Southern Great Plains

Surface-Based Remote Sensing of the Aerosol Indirect Effect at Southern Great Plains Surface-Based Remote Sensing of the Aerosol Indirect Effect at Southern Great Plains G. Feingold and W. L. Eberhard National Oceanic and Atmospheric Administration Environmental Technology Laboratory Boulder,

More information

PIXEL-LEVEL IMAGE FUSION USING BROVEY TRANSFORME AND WAVELET TRANSFORM

PIXEL-LEVEL IMAGE FUSION USING BROVEY TRANSFORME AND WAVELET TRANSFORM PIXEL-LEVEL IMAGE FUSION USING BROVEY TRANSFORME AND WAVELET TRANSFORM Rohan Ashok Mandhare 1, Pragati Upadhyay 2,Sudha Gupta 3 ME Student, K.J.SOMIYA College of Engineering, Vidyavihar, Mumbai, Maharashtra,

More information

MOD09 (Surface Reflectance) User s Guide

MOD09 (Surface Reflectance) User s Guide MOD09 (Surface ) User s Guide MODIS Land Surface Science Computing Facility Principal Investigator: Dr. Eric F. Vermote Web site: http://modis-sr.ltdri.org Correspondence e-mail address: mod09@ltdri.org

More information

Chapter Contents Page No

Chapter Contents Page No Chapter Contents Page No Preface Acknowledgement 1 Basics of Remote Sensing 1 1.1. Introduction 1 1.2. Definition of Remote Sensing 1 1.3. Principles of Remote Sensing 1 1.4. Various Stages in Remote Sensing

More information

Obtaining and Processing MODIS Data

Obtaining and Processing MODIS Data Obtaining and Processing MODIS Data MODIS is an extensive program using sensors on two satellites that each provide complete daily coverage of the earth. The data have a variety of resolutions; spectral,

More information

Software requirements * :

Software requirements * : Title: Product Type: Developer: Target audience: Format: Software requirements * : Data: Estimated time to complete: Fire Mapping using ASTER Part I: The ASTER instrument and fire damage assessment Part

More information

Automatic Cloud Detection and Removal Algorithm for MODIS Remote Sensing Imagery

Automatic Cloud Detection and Removal Algorithm for MODIS Remote Sensing Imagery JOURNAL OF SOFTWARE, VOL. 6, NO. 7, JULY 011 189 Automatic Cloud Detection and Removal Algorithm for MODIS Remote Sensing Imagery Lingjia Gu, Ruizhi Ren, Shuang Zhang College of electronic science & engineering,

More information

APPLICATION OF TERRA/ASTER DATA ON AGRICULTURE LAND MAPPING. Genya SAITO*, Naoki ISHITSUKA*, Yoneharu MATANO**, and Masatane KATO***

APPLICATION OF TERRA/ASTER DATA ON AGRICULTURE LAND MAPPING. Genya SAITO*, Naoki ISHITSUKA*, Yoneharu MATANO**, and Masatane KATO*** APPLICATION OF TERRA/ASTER DATA ON AGRICULTURE LAND MAPPING Genya SAITO*, Naoki ISHITSUKA*, Yoneharu MATANO**, and Masatane KATO*** *National Institute for Agro-Environmental Sciences 3-1-3 Kannondai Tsukuba

More information

'Developments and benefits of hydrographic surveying using multispectral imagery in the coastal zone

'Developments and benefits of hydrographic surveying using multispectral imagery in the coastal zone Abstract With the recent launch of enhanced high-resolution commercial satellites, available imagery has improved from four-bands to eight-band multispectral. Simultaneously developments in remote sensing

More information

Collection 005 Change Summary for MODIS Aerosol (04_L2) Algorithms

Collection 005 Change Summary for MODIS Aerosol (04_L2) Algorithms Collection 005 Change Summary for MODIS Aerosol (04_L2) Algorithms Lorraine Remer, Yoram Kaufman, Didier Tanré Shana Mattoo, Rong-Rong Li, J.Vanderlei Martins, Robert Levy, D. Allen Chu, Richard Kleidman,

More information

GLOBAL FORUM London, October 24 & 25, 2012

GLOBAL FORUM London, October 24 & 25, 2012 GLOBAL FORUM London, October 24 & 25, 2012-1 - Global Observations of Gas Flares Improving Global Observations of Gas Flares With Data From the Suomi NPP Visible Infrared Imaging Radiometer Suite (VIIRS)

More information

Multiscale Object-Based Classification of Satellite Images Merging Multispectral Information with Panchromatic Textural Features

Multiscale Object-Based Classification of Satellite Images Merging Multispectral Information with Panchromatic Textural Features Remote Sensing and Geoinformation Lena Halounová, Editor not only for Scientific Cooperation EARSeL, 2011 Multiscale Object-Based Classification of Satellite Images Merging Multispectral Information with

More information

Lectures Remote Sensing

Lectures Remote Sensing Lectures Remote Sensing ATMOSPHERIC CORRECTION dr.ir. Jan Clevers Centre of Geo-Information Environmental Sciences Wageningen UR Atmospheric Correction of Optical RS Data Background When needed? Model

More information

Remote Sensing Method in Implementing REDD+

Remote Sensing Method in Implementing REDD+ Remote Sensing Method in Implementing REDD+ FRIM-FFPRI Research on Development of Carbon Monitoring Methodology for REDD+ in Malaysia Remote Sensing Component Mohd Azahari Faidi, Hamdan Omar, Khali Aziz

More information

CROP CLASSIFICATION WITH HYPERSPECTRAL DATA OF THE HYMAP SENSOR USING DIFFERENT FEATURE EXTRACTION TECHNIQUES

CROP CLASSIFICATION WITH HYPERSPECTRAL DATA OF THE HYMAP SENSOR USING DIFFERENT FEATURE EXTRACTION TECHNIQUES Proceedings of the 2 nd Workshop of the EARSeL SIG on Land Use and Land Cover CROP CLASSIFICATION WITH HYPERSPECTRAL DATA OF THE HYMAP SENSOR USING DIFFERENT FEATURE EXTRACTION TECHNIQUES Sebastian Mader

More information

Best practices for RGB compositing of multi-spectral imagery

Best practices for RGB compositing of multi-spectral imagery Best practices for RGB compositing of multi-spectral imagery User Service Division, EUMETSAT Introduction Until recently imagers on geostationary satellites were limited to 2-3 spectral channels, i.e.

More information

GOES-R AWG Cloud Team: ABI Cloud Height

GOES-R AWG Cloud Team: ABI Cloud Height GOES-R AWG Cloud Team: ABI Cloud Height June 8, 2010 Presented By: Andrew Heidinger 1 1 NOAA/NESDIS/STAR 1 Outline Executive Summary Algorithm Description ADEB and IV&V Response Summary Requirements Specification

More information

COMPARISON OF OBJECT BASED AND PIXEL BASED CLASSIFICATION OF HIGH RESOLUTION SATELLITE IMAGES USING ARTIFICIAL NEURAL NETWORKS

COMPARISON OF OBJECT BASED AND PIXEL BASED CLASSIFICATION OF HIGH RESOLUTION SATELLITE IMAGES USING ARTIFICIAL NEURAL NETWORKS COMPARISON OF OBJECT BASED AND PIXEL BASED CLASSIFICATION OF HIGH RESOLUTION SATELLITE IMAGES USING ARTIFICIAL NEURAL NETWORKS B.K. Mohan and S. N. Ladha Centre for Studies in Resources Engineering IIT

More information

Active Fire Monitoring: Product Guide

Active Fire Monitoring: Product Guide Active Fire Monitoring: Product Guide Doc.No. Issue : : EUM/TSS/MAN/15/801989 v1c EUMETSAT Eumetsat-Allee 1, D-64295 Darmstadt, Germany Tel: +49 6151 807-7 Fax: +49 6151 807 555 Date : 14 April 2015 http://www.eumetsat.int

More information

A Novel Method to Improve Resolution of Satellite Images Using DWT and Interpolation

A Novel Method to Improve Resolution of Satellite Images Using DWT and Interpolation A Novel Method to Improve Resolution of Satellite Images Using DWT and Interpolation S.VENKATA RAMANA ¹, S. NARAYANA REDDY ² M.Tech student, Department of ECE, SVU college of Engineering, Tirupati, 517502,

More information

ASSESSMENT OF FOREST RECOVERY AFTER FIRE USING LANDSAT TM IMAGES AND GIS TECHNIQUES: A CASE STUDY OF MAE WONG NATIONAL PARK, THAILAND

ASSESSMENT OF FOREST RECOVERY AFTER FIRE USING LANDSAT TM IMAGES AND GIS TECHNIQUES: A CASE STUDY OF MAE WONG NATIONAL PARK, THAILAND ASSESSMENT OF FOREST RECOVERY AFTER FIRE USING LANDSAT TM IMAGES AND GIS TECHNIQUES: A CASE STUDY OF MAE WONG NATIONAL PARK, THAILAND Sunee Sriboonpong 1 Yousif Ali Hussin 2 Alfred de Gier 2 1 Forest Resource

More information

Overview. What is EMR? Electromagnetic Radiation (EMR) LA502 Special Studies Remote Sensing

Overview. What is EMR? Electromagnetic Radiation (EMR) LA502 Special Studies Remote Sensing LA502 Special Studies Remote Sensing Electromagnetic Radiation (EMR) Dr. Ragab Khalil Department of Landscape Architecture Faculty of Environmental Design King AbdulAziz University Room 103 Overview What

More information

LiDAR for vegetation applications

LiDAR for vegetation applications LiDAR for vegetation applications UoL MSc Remote Sensing Dr Lewis plewis@geog.ucl.ac.uk Introduction Introduction to LiDAR RS for vegetation Review instruments and observational concepts Discuss applications

More information

Opportunities for the generation of high resolution digital elevation models based on small format aerial photography

Opportunities for the generation of high resolution digital elevation models based on small format aerial photography Opportunities for the generation of high resolution digital elevation models based on small format aerial photography Boudewijn van Leeuwen 1, József Szatmári 1, Zalán Tobak 1, Csaba Németh 1, Gábor Hauberger

More information

Field Techniques Manual: GIS, GPS and Remote Sensing

Field Techniques Manual: GIS, GPS and Remote Sensing Field Techniques Manual: GIS, GPS and Remote Sensing Section A: Introduction Chapter 1: GIS, GPS, Remote Sensing and Fieldwork 1 GIS, GPS, Remote Sensing and Fieldwork The widespread use of computers

More information

Evaluation of surface runoff conditions. scanner in an intensive apple orchard

Evaluation of surface runoff conditions. scanner in an intensive apple orchard Evaluation of surface runoff conditions by high resolution terrestrial laser scanner in an intensive apple orchard János Tamás 1, Péter Riczu 1, Attila Nagy 1, Éva Lehoczky 2 1 Faculty of Agricultural

More information

163 ANALYSIS OF THE URBAN HEAT ISLAND EFFECT COMPARISON OF GROUND-BASED AND REMOTELY SENSED TEMPERATURE OBSERVATIONS

163 ANALYSIS OF THE URBAN HEAT ISLAND EFFECT COMPARISON OF GROUND-BASED AND REMOTELY SENSED TEMPERATURE OBSERVATIONS ANALYSIS OF THE URBAN HEAT ISLAND EFFECT COMPARISON OF GROUND-BASED AND REMOTELY SENSED TEMPERATURE OBSERVATIONS Rita Pongrácz *, Judit Bartholy, Enikő Lelovics, Zsuzsanna Dezső Eötvös Loránd University,

More information

Shoreline Change Prediction Model for Coastal Zone Management in Thailand

Shoreline Change Prediction Model for Coastal Zone Management in Thailand Journal of Shipping and Ocean Engineering 2 (2012) 238-243 D DAVID PUBLISHING Shoreline Change Prediction Model for Coastal Zone Management in Thailand Siriluk Prukpitikul, Varatip Buakaew, Watchara Keshdet,

More information

REMOTE SENSING OF CLOUD-AEROSOL RADIATIVE EFFECTS FROM SATELLITE DATA: A CASE STUDY OVER THE SOUTH OF PORTUGAL

REMOTE SENSING OF CLOUD-AEROSOL RADIATIVE EFFECTS FROM SATELLITE DATA: A CASE STUDY OVER THE SOUTH OF PORTUGAL REMOTE SENSING OF CLOUD-AEROSOL RADIATIVE EFFECTS FROM SATELLITE DATA: A CASE STUDY OVER THE SOUTH OF PORTUGAL D. Santos (1), M. J. Costa (1,2), D. Bortoli (1,3) and A. M. Silva (1,2) (1) Évora Geophysics

More information

Mineral Exploration Using GIS and Processed Aster Images

Mineral Exploration Using GIS and Processed Aster Images Mineral Exploration Using GIS and Processed Aster Images Carlos A. Torres Advance GIS EES 6513 (Spring 2007) University of Texas at San Antonio Abstract The risks of developing mineral resources need to

More information

SMEX04 Land Use Classification Data

SMEX04 Land Use Classification Data Notice to Data Users: The documentation for this data set was provided solely by the Principal Investigator(s) and was not further developed, thoroughly reviewed, or edited by NSIDC. Thus, support for

More information

A Quantitative and Comparative Analysis of Endmember Extraction Algorithms From Hyperspectral Data

A Quantitative and Comparative Analysis of Endmember Extraction Algorithms From Hyperspectral Data 650 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 42, NO. 3, MARCH 2004 A Quantitative and Comparative Analysis of Endmember Extraction Algorithms From Hyperspectral Data Antonio Plaza, Pablo

More information

Modelling, Extraction and Description of Intrinsic Cues of High Resolution Satellite Images: Independent Component Analysis based approaches

Modelling, Extraction and Description of Intrinsic Cues of High Resolution Satellite Images: Independent Component Analysis based approaches Modelling, Extraction and Description of Intrinsic Cues of High Resolution Satellite Images: Independent Component Analysis based approaches PhD Thesis by Payam Birjandi Director: Prof. Mihai Datcu Problematic

More information

Comparison of Satellite Imagery and Conventional Aerial Photography in Evaluating a Large Forest Fire

Comparison of Satellite Imagery and Conventional Aerial Photography in Evaluating a Large Forest Fire Purdue University Purdue e-pubs LARS Symposia Laboratory for Applications of Remote Sensing --98 Comparison of Satellite Imagery and Conventional Aerial Photography in Evaluating a Large Forest Fire G.

More information

Remote Sensing and Land Use Classification: Supervised vs. Unsupervised Classification Glen Busch

Remote Sensing and Land Use Classification: Supervised vs. Unsupervised Classification Glen Busch Remote Sensing and Land Use Classification: Supervised vs. Unsupervised Classification Glen Busch Introduction In this time of large-scale planning and land management on public lands, managers are increasingly

More information

Redundant Wavelet Transform Based Image Super Resolution

Redundant Wavelet Transform Based Image Super Resolution Redundant Wavelet Transform Based Image Super Resolution Arti Sharma, Prof. Preety D Swami Department of Electronics &Telecommunication Samrat Ashok Technological Institute Vidisha Department of Electronics

More information

Topic 13 Predictive Modeling. Topic 13. Predictive Modeling

Topic 13 Predictive Modeling. Topic 13. Predictive Modeling Topic 13 Predictive Modeling Topic 13 Predictive Modeling 13.1 Predicting Yield Maps Talk about the future of Precision Ag how about maps of things yet to come? Sounds a bit far fetched but Spatial Data

More information

CLOUD FREE MOSAIC IMAGES

CLOUD FREE MOSAIC IMAGES CLOUD FREE MOSAIC IMAGES T. Hosomura, P.K.M.M. Pallewatta Division of Computer Science Asian Institute of Technology GPO Box 2754, Bangkok 10501, Thailand ABSTRACT Certain areas of the earth's surface

More information

A COMPARISON OF THE PERFORMANCE OF PIXEL-BASED AND OBJECT-BASED CLASSIFICATIONS OVER IMAGES WITH VARIOUS SPATIAL RESOLUTIONS

A COMPARISON OF THE PERFORMANCE OF PIXEL-BASED AND OBJECT-BASED CLASSIFICATIONS OVER IMAGES WITH VARIOUS SPATIAL RESOLUTIONS A COMPARISON OF THE PERFORMANCE OF PIXEL-BASED AND OBJECT-BASED CLASSIFICATIONS OVER IMAGES WITH VARIOUS SPATIAL RESOLUTIONS Y. Gao a, *, J.F. Mas a a Centro de Investigaciones en Geografía Ambiental,

More information

Research On The Classification Of High Resolution Image Based On Object-oriented And Class Rule

Research On The Classification Of High Resolution Image Based On Object-oriented And Class Rule Research On The Classification Of High Resolution Image Based On Object-oriented And Class Rule Li Chaokui a,b, Fang Wen a,b, Dong Xiaojiao a,b a National-Local Joint Engineering Laboratory of Geo-Spatial

More information

Data processing (3) Cloud and Aerosol Imager (CAI)

Data processing (3) Cloud and Aerosol Imager (CAI) Data processing (3) Cloud and Aerosol Imager (CAI) 1) Nobuyuki Kikuchi, 2) Haruma Ishida, 2) Takashi Nakajima, 3) Satoru Fukuda, 3) Nick Schutgens, 3) Teruyuki Nakajima 1) National Institute for Environmental

More information

INVESTIGA I+D+i 2013/2014

INVESTIGA I+D+i 2013/2014 INVESTIGA I+D+i 2013/2014 SPECIFIC GUIDELINES ON AEROSPACE OBSERVATION OF EARTH Text by D. Eduardo de Miguel October, 2013 Introducction Earth observation is the use of remote sensing techniques to better

More information

Solar Energy. Outline. Solar radiation. What is light?-- Electromagnetic Radiation. Light - Electromagnetic wave spectrum. Electromagnetic Radiation

Solar Energy. Outline. Solar radiation. What is light?-- Electromagnetic Radiation. Light - Electromagnetic wave spectrum. Electromagnetic Radiation Outline MAE 493R/593V- Renewable Energy Devices Solar Energy Electromagnetic wave Solar spectrum Solar global radiation Solar thermal energy Solar thermal collectors Solar thermal power plants Photovoltaics

More information

3.4 Cryosphere-related Algorithms

3.4 Cryosphere-related Algorithms 3.4 Cryosphere-related Algorithms GLI Algorithm Description 3.4.-1 3.4.1 CTSK1 A. Algorithm Outline (1) Algorithm Code: CTSK1 (2) Product Code: CLFLG_p (3) PI Name: Dr. Knut Stamnes (4) Overview of Algorithm

More information

DEVELOPMENT OF A SUPERVISED SOFTWARE TOOL FOR AUTOMATED DETERMINATION OF OPTIMAL SEGMENTATION PARAMETERS FOR ECOGNITION

DEVELOPMENT OF A SUPERVISED SOFTWARE TOOL FOR AUTOMATED DETERMINATION OF OPTIMAL SEGMENTATION PARAMETERS FOR ECOGNITION DEVELOPMENT OF A SUPERVISED SOFTWARE TOOL FOR AUTOMATED DETERMINATION OF OPTIMAL SEGMENTATION PARAMETERS FOR ECOGNITION Y. Zhang* a, T. Maxwell, H. Tong, V. Dey a University of New Brunswick, Geodesy &

More information

y = Xβ + ε B. Sub-pixel Classification

y = Xβ + ε B. Sub-pixel Classification Sub-pixel Mapping of Sahelian Wetlands using Multi-temporal SPOT VEGETATION Images Jan Verhoeye and Robert De Wulf Laboratory of Forest Management and Spatial Information Techniques Faculty of Agricultural

More information