Rotational Motion: Moment of Inertia



Similar documents
EXPERIMENT: MOMENT OF INERTIA

Experiment 9. The Pendulum

Acceleration due to Gravity

Torque and Rotary Motion

Lab 7: Rotational Motion

Simple Harmonic Motion

Rotational Inertia Demonstrator

Newton s Second Law. ΣF = m a. (1) In this equation, ΣF is the sum of the forces acting on an object, m is the mass of

Lab 8: Ballistic Pendulum

Solution Derivations for Capa #11

EXPERIMENT 3 Analysis of a freely falling body Dependence of speed and position on time Objectives

Practice Exam Three Solutions

E X P E R I M E N T 8

Midterm Solutions. mvr = ω f (I wheel + I bullet ) = ω f 2 MR2 + mr 2 ) ω f = v R. 1 + M 2m

Chapter 10 Rotational Motion. Copyright 2009 Pearson Education, Inc.

Center of Gravity. We touched on this briefly in chapter 7! x 2

Physics 201 Homework 8

Lecture 16. Newton s Second Law for Rotation. Moment of Inertia. Angular momentum. Cutnell+Johnson: 9.4, 9.6

Conservation of Energy Physics Lab VI

A Determination of g, the Acceleration Due to Gravity, from Newton's Laws of Motion

Determination of Acceleration due to Gravity

Angular acceleration α

Lecture 17. Last time we saw that the rotational analog of Newton s 2nd Law is

v v ax v a x a v a v = = = Since F = ma, it follows that a = F/m. The mass of the arrow is unchanged, and ( )

Moment of Inertia & Rotational Energy Physics Lab IX Objective

PHYSICS 111 HOMEWORK SOLUTION #10. April 8, 2013

Laboratory Report Scoring and Cover Sheet

SOLID MECHANICS DYNAMICS TUTORIAL MOMENT OF INERTIA. This work covers elements of the following syllabi.

Linear Motion vs. Rotational Motion

TORQUE AND FIRST-CLASS LEVERS

Physics 1A Lecture 10C

Pre-lab Quiz/PHYS 224 Magnetic Force and Current Balance. Your name Lab section

Prelab Exercises: Hooke's Law and the Behavior of Springs

PHYSICS 111 HOMEWORK SOLUTION #9. April 5, 2013

AP1 Oscillations. 1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false?

Unit 4 Practice Test: Rotational Motion

Awell-known lecture demonstration1

3600 s 1 h. 24 h 1 day. 1 day

General Physics Lab: Atwood s Machine

FRICTION, WORK, AND THE INCLINED PLANE

Lecture Presentation Chapter 7 Rotational Motion

AP Physics C. Oscillations/SHM Review Packet

Physics 40 Lab 1: Tests of Newton s Second Law

Acceleration of Gravity Lab Basic Version

PHY121 #8 Midterm I

Physics 41 HW Set 1 Chapter 15

Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam

Experiment 4 ~ Newton s Second Law: The Atwood Machine

Centripetal Force. This result is independent of the size of r. A full circle has 2π rad, and 360 deg = 2π rad.

Rotation: Moment of Inertia and Torque

11. Rotation Translational Motion: Rotational Motion:

Wind Turbines. Wind Turbines 2. Wind Turbines 4. Wind Turbines 3. Wind Turbines 5. Wind Turbines 6

Objective: Equilibrium Applications of Newton s Laws of Motion I

Experiment 7: Forces and Torques on Magnetic Dipoles

FREE FALL. Introduction. Reference Young and Freedman, University Physics, 12 th Edition: Chapter 2, section 2.5

Torque Analyses of a Sliding Ladder

Magnetic Force on a Current-Carrying Wire Warm Up

PHY231 Section 2, Form A March 22, Which one of the following statements concerning kinetic energy is true?

PHYS 211 FINAL FALL 2004 Form A

PHY231 Section 1, Form B March 22, 2012

LAB 6: GRAVITATIONAL AND PASSIVE FORCES

5.1 The First Law: The Law of Inertia

Chapter 3.8 & 6 Solutions

Oscillations: Mass on a Spring and Pendulums

Force on Moving Charges in a Magnetic Field

C B A T 3 T 2 T What is the magnitude of the force T 1? A) 37.5 N B) 75.0 N C) 113 N D) 157 N E) 192 N

PHYS 2425 Engineering Physics I EXPERIMENT 9 SIMPLE HARMONIC MOTION

Chapter 11. h = 5m. = mgh mv Iω 2. E f. = E i. v = 4 3 g(h h) = m / s2 (8m 5m) = 6.26m / s. ω = v r = 6.

Chapter 18 Static Equilibrium

Two-Body System: Two Hanging Masses

Chapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces. Copyright 2009 Pearson Education, Inc.

ACCELERATION DUE TO GRAVITY

LAB 6 - GRAVITATIONAL AND PASSIVE FORCES

Torque and Rotation. Physics

Simple Harmonic Motion Experiment. 1 f

Let s first see how precession works in quantitative detail. The system is illustrated below: ...

Experiment 5 ~ Friction

Determining the Acceleration Due to Gravity

Experiment 2: Conservation of Momentum

D Alembert s principle and applications

Ideal Cable. Linear Spring - 1. Cables, Springs and Pulleys

Lab 2: Vector Analysis

Kinetic Friction. Experiment #13

Work and Energy. W =!KE = KE f

6. Block and Tackle* Block and tackle

Experiment #9, Magnetic Forces Using the Current Balance

AP Physics Applying Forces

Mechanics 1: Conservation of Energy and Momentum

Lecture L22-2D Rigid Body Dynamics: Work and Energy

ELASTIC FORCES and HOOKE S LAW

Physics 41, Winter 1998 Lab 1 - The Current Balance. Theory

PHYS 101-4M, Fall 2005 Exam #3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Hand Held Centripetal Force Kit

PHYSICS 111 HOMEWORK SOLUTION, week 4, chapter 5, sec 1-7. February 13, 2013

Physics Lab Report Guidelines

FORCE ON A CURRENT IN A MAGNETIC FIELD

ENERGYand WORK (PART I and II) 9-MAC

Chapter 4. Forces and Newton s Laws of Motion. continued

Fundamental Mechanics: Supplementary Exercises

Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx Acceleration Velocity (v) Displacement x

Transcription:

Experiment 8 Rotational Motion: Moment of Inertia 8.1 Objectives Familiarize yourself with the concept of moment of inertia, I, which plays the same role in the description of the rotation of a rigid body as mass plays in the description of linear motion. Investigate how changing the moment of inertia of a body affects its rotational motion. 8.2 Introduction In physics, we encounter various types of motion, primarily linear or rotational. Today we will investigate rotational motion and measure one of the most important quantities pertaining to that: the moment of inertia. The way mass is distributed greatly affects how easily an object can rotate. For example, if you are sitting in a spinning office chair and extend your arms out away from your body, your rotation speed will slow down. If you then pull your arms back in as close as possible, you will start to rotate much faster than when your arms were extended. This illustrates that not only mass but also how it is distributed (i.e. moment of inertia) affects rotational motion. 83

8. Rotational Motion: Moment of Inertia 8.3 Key Concepts You can find a summary on-line at Hyperphysics. 1 moment of inertia, torque, angular acceleration Look for keywords: 8.4 Theory If we apply a single unbalanced force, F, to an object, the object will undergo a linear acceleration, a, which is determined by the unbalanced force acting on the object and the mass, m, of the object. Newton s Second Law expresses this relationship: F = ma where the mass is a measure of an object s inertia, or its resistance to being accelerated. In rotational motion, torque (represented by the Greek letter τ), is the rotational equivalent of force. Torque, roughly speaking, measures how effective a force is at causing an object to rotate about a pivot point. Torque, τ is defined as: τ = rfsin(θ) (8.1) where r is the lever arm, F is the force and θ is the angle between the force and the lever arm. In this lab the lever arm, r, will be the radius at which the force is applied (i.e. the radius of the axle). The force will be applied tangentially (i.e. perpendicular) to the radius so θ is 90 and sin(90 )=1 making Eq. 8.1 become τ = rf. Newton s Second law applied to rotational motion says that a single unbalanced torque, τ, on an object produces an angular acceleration, α, which depends not only on the mass of the object but on how that mass is distributed, called the moment of inertia, I. The equation which is analogous to F = ma for an object that is accelerating rotationally is τ = Iα (8.2) where the units of τ are in Newton-meters (N*m), α is in radians/sec 2 and I is in kg-m 2. 2 1 http://hyperphysics.phy-astr.gsu.edu/hbase/hph.html 2 A radian is an angle measure based upon the circumference of a circle C =2πr where r is the radius of the circle. A complete circle (360 )issaidtohave2π radians. Therefore, a 1/4 circle (90 )isπ/2 radians. 84 Last updated August 20, 2015

8.4. Theory The moment of inertia, I, isameasureofthewaythemassis distributed on the object and determines its resistance to angular acceleration. Every rigid object has a definite moment of inertia about a particular axis of rotation. The moment of inertia of a collection of masses is given by: I =Σm i r 2 i (8.3) If there is only one mass (as shown in Fig. 8.1) theneq.8.3 becomes I = mr 2. (In order to simplify the calculation we have assumed that the mass m is a point at the end of the lever arm r and the rod it is attached to is massless.) To illustrate, we will calculate the moment of inertia for a mass of 2 kg at the end of a massless rod that is 2 m in length: I = mr 2 = (2 kg)(2 m) 2 =8kgm 2 If a force of 5 N were applied to the mass perpendicular to the rod (to make the lever arm equal to r) the torque is given by: τ = rf =(2m)(5N)=10Nm By Eq. 8.2 we can now calculate the angular acceleration: α = τ I = 10 N m =1.25 rad/sec2 8kgm2 Figure 8.1: One point mass m on a massless rod of radius r (I = mr 2 ). Last updated August 20, 2015 85

8. Rotational Motion: Moment of Inertia The moment of inertia of a more complicated object is found by adding up the moments of each individual piece. For example, the moment of inertia of the system shown in Fig. 8.2 is found by adding up the moments of each mass so Eq. 8.3 becomes I = m 1 r1 2 + m 2r2 2. (Note that Fig. 8.2 is equivalent to the sum of two Fig. 8.1 components.) Figure 8.2: Two point masses on a massless rod (I = m 1 r 2 1 + m 2r 2 2 ). 8.5 In today s lab Today you will measure the moment of inertia for several different mass distributions. You will make a plot of the moment of inertia, I, vs. r 2, the radii that your masses were placed at, and determine if the moment of inertia does indeed depend on both mass and its distribution. Your setup will resemble Fig. 8.2 where the rigid body consists of two cylinders, which are placed on a metallic rod at varying radii from the axis of rotation. You will assume the rod is massless and will place the masses, m 1 and m 2,an equal distance from the center pivot point so that r 1 = r 2 = r. For this case Eq. 8.3 then becomes: I = m 1 r 2 1 + m 2r 2 2 =(m 1 + m 2 )r 2 (8.4) 86 Last updated August 20, 2015

8.5. In today s lab A schematic of the equipment you will be using today is shown in Fig. 8.3. The masses and rod are supported by a rotating platform attached to a central pulley and nearly frictionless air bearings. If the two masses are placed on the axis of rotation (so r = 0), then the measured moment of inertia I is the moment of inertia of the rotating apparatus alone plus the moment of inertia of each of the two cylinders about an axis through their own centers of mass, which we ll call I 0. So when the masses are placed at r =0,I = I 0. Now if the two masses are each placed a distance r from the axis of rotation Eq. 8.4 becomes: I =(m 1 + m 2 )r 2 + I 0 (8.5) Compare Eq. 8.5 to the equation for a straight line: y = mx + b Notice that a plot of I vs. r 2 should be a straight line. The slope of this line is the sum of the masses (m 1 + m 2 )andthey intercept is I 0. Figure 8.3: Schematic of the moment of inertia apparatus. To verify that the moment of inertia, I, does indeed depend on how the masses are distributed you will use the apparatus shown in Fig. 8.3 to calculate the angular acceleration, α, and torque, τ, of the rotating masses andthenuseeq.8.2 to calculate I. You will plot your measured I vs. r 2 Last updated August 20, 2015 87

8. Rotational Motion: Moment of Inertia and check that your slope is consistent with your mass value (m 1 + m 2 ) thus verifying Eq. 8.5. The Excel spreadsheet requires several calculations to arrive at values for the angular acceleration and torque that are used to calculate the moment of inertia. The needed formulas are outlined below. In order to get your rigid body to rotate you will wrap a string around the central axle (also called the central pulley) and run it over the side pulley to a known weight, M, as shown in Fig. 8.3. When you release the weight from rest just below the side pulley and let it fall to the floor, the tension, T, in the string will exert a torque, τ, on the rigid body causing it to rotate with a constant angular acceleration, α. NOTE: Be careful to not mix up the symbol for tension (T ) with the symbol for torque (τ) andthe symbol for linear acceleration (a) with the symbol for angular acceleration (α) in the following equations. The angular acceleration (α) of your rigid body is related to the linear acceleration (a) of your falling mass by: Linear acceleration α = = a Radius of axle R where R is the radius of the central axle at shown in Fig. 8.4. (8.6) Figure 8.4: A top view of the central axle with radius R and the string providing the tension T. You will use your knowledge of the equations of motion to find the linear acceleration a of the weight as it falls to the floor. Remember that the position, y, of an object released from rest (v i = 0) with an initial position y 0 (in your case y 0 = h, the starting height h above the floor) is found using: y = h 1 2 at2 (8.7) 88 Last updated August 20, 2015

8.6. Equipment where the floor is defined to be at a height of y = 0. Since the final position of your mass will be the floor, y =0,andEq.8.7 can be rearranged to find the linear acceleration, a: a = 2h t 2 (8.8) where t is the time it takes the weight to fall to the floor. Using your measured values for the time and height you can calculate the linear acceleration a which can then be used to calculate the angular acceleration α that will be used in Eq. 8.2. Next you need to find the torque τ so you can calculate I using Eq. 8.2. Remember that torque was defined in Eq. 8.1 as the force applied times the lever arm when the force is applied tangentially: τ = rf (8.9) In this lab the force (F ) comes from the tension (T ) in the string that is acting perpendicular to the lever arm r, which here is the radius of the central axle (R), as shown in Fig. 8.4. So for this experiment Eq. 8.9 becomes: τ = R T (8.10) The tension in the string, T, comes from the weight which is hanging off the side pulley (see Fig. 8.3). By drawing the free-body diagram acting on the hanging mass and using Newton s Second Law, the tension in the string is: T = Mg Ma (8.11) where M is the amount of mass hanging below the side pulley, g is the acceleration due to gravity and a is the linear acceleration given in Eq. 8.8. Now you have all of the pieces to calculate the moment of inertia I of the rigid body using Eq. 8.2 (I = τ/α). 8.6 Equipment Two cylindrical masses Hanger with mass Air bearing with central pulley String Last updated August 20, 2015 89

8. Rotational Motion: Moment of Inertia 8.7 Procedure In this experiment, you will change the moment of inertia of the rotating body by changing how the mass is distributed on the rotating body. You will place two cylindrical masses at four different radii, such that r = r 1 = r 2 in each case, on a metallic rod. You will then use your measurements to calculate the moment of inertia (I) for each of the four radial positions of the cylindrical masses (r). The sum of the two cylindrical masses (m 1 + m 2 ) can then be found from a graph of I versus r 2. 1. Measure and record the masses of the hanging mass, M, andthetwo cylinders, m 1 and m 2. 2. Place the cylinders on the horizontal rod such that the axes of the cylinders are along the horizontal rod as far away from the center as possible (as shown in Fig. 8.5). Make sure the thumbscrew on each cylinder is tightened. The center of mass of each cylinder MUST be the same distance (r) from the axis of rotation (i.e. r 1 = r 2 in Fig. 8.3). Figure 8.5: View of the apparatus with 2 masses at the same radius r. 3. Estimate the uncertainty in r (called δr). This should include both the uncertainty in reading your ruler and the uncertainty in locating the cylinder s center of mass. 90 Last updated August 20, 2015

8.7. Procedure 4. With the air supply on, attach the hanging mass (M) tooneendofa string and wind the other end around the central axle (pulley). The string should also pass over the side pulley such that the hanging mass is just below the side pulley as shown in Fig. 8.3. Hold the hanging mass stationary and measure its height (h) using the floor as your reference point. Record this elevation in your spreadsheet and assign an appropriate uncertainty to this measurement. Make sure to return your mass to this same height for each of your trials. 5. Release the hanging mass and simultaneously start the desktop timer. When the mass hits the floor, stop the timer and enter your value in the spreadsheet under t. For the uncertainty in this time (δt), use the standard deviation (denoted by s) from your reaction time which you measured in Lab #2 Reaction Time. (If you don t have your reaction time value then ask your TA for a reasonable value.) 6. Calculate the ( linear acceleration ) of the falling mass (M) using Eq. 8.8. Use δa = a 2 δt t + δh h to calculate its uncertainty. 7. Use ( Eq. 8.11 ) to calculate the tension in the string (T )andδt = T δmm + g a δa to calculate its uncertainty. 8. Use Eq. 8.6 and the given radius of R =1.27 ± 0.01 cm for the central pulley to calculate ( the) angular acceleration of the rotating apparatus. Use δα = α δaa + δr R to calculate its uncertainty. 9. Use Eq. 8.10 ( to calculate ) the torque on the rotating apparatus and use δτ = τ δtt + δr R to calculate its uncertainty. (Note: in this equation the Greek letter τ is the torque and T is the tension in the string.) 10. Use Eq. 8.2 to calculate the moment of inertia ( I of) the rotating apparatus. Its uncertainty is given by δi = I δτ τ + δα α. 11. Calculate r 2 and its uncertainty, δr 2 =2rδr. 12. Repeat the above steps for 2 additional, non-zero values of r. Make sure that the values of r for each trial differ by at least 2 cm. Last updated August 20, 2015 91

8. Rotational Motion: Moment of Inertia 13. For the last trial you will place the two cylinders at r = 0. To do this, you will use the vertical bar on the support (see Fig. 8.6). When you place the cylinders on the vertical bar, make sure they are oriented the same way as in your previous trials, i.e. with the axes of the two cylinders perpendicular to the vertical bar. As before, make sure to tighten the thumbscrews on the cylinders. Follow the above procedure to calculate the moment of inertia of the body with the two cylinders at r = 0. Include this data in your data table. Figure 8.6: View of apparatus with 2 masses at radius r =0. 14. Transfer your data into KaleidaGraph and make a plot of I vs. r 2. Your data points should have both horizontal and vertical error bars. Fit your data with a best fit line making sure to display the fit values for slope and y-intercept with their uncertainties. 8.8 Checklist 1. Excel spreadsheets (both data and formula views) 2. Plot of I vs. r 2 with both horizontal and vertical error bars, a best fit line and observations. 3. Answers to questions 92 Last updated August 20, 2015

8.9. Questions 8.9 Questions 1. The moment of inertia of a body depends not only on its mass, but also on how the mass is distributed. Does your data support this? Why or why not? 2. In your plot of I vs. r 2,whydidyouuser 2 and not r in the plot? What are the units of the slope of I vs. r 2? Last updated August 20, 2015 93

8. Rotational Motion: Moment of Inertia 3. Discuss the consistency of the slope of the plot of I vs. r 2 with the value you measured for (m 1 + m 2 ). If they are not consistent, suggest possible reasons why. The uncertainty in your measured mass is given by: δ(m 1 + m 2 )=δ(m 1 )+δ(m 2 ) 4. In the procedure, you were given that R =1.27 ± 0.01 cm. Using only the experimental apparatus and a meter stick, how would you verify this radius with an uncertainty of less than or equal to 0.01 cm? (Hint: You cannot get this uncertainty by holding the meter stick next to the axle and measuring the diameter. Also note that the string is a part of the apparatus.) 94 Last updated August 20, 2015

Sheet1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 A B C D E F G H I J K L M N Measure grey fields Calculate yellow fields Use standard deviation from exp. 2 Value Uncertainty Units Rotating mass m 1 : gm Rotating mass m 2 : gm Falling mass M : gm Radius of axle R: 1.270 0.01 cm Gravitational acceleration g: 980 cm/sec 2 Starting elevation of M h: cm Uncertainty in time below sec Moment of Inertia Determination of the moment of inertia Mount the masses on the rod and measure the time it takes the mass M to fall to the floor for 4 different positions of the masses along the rod. Calculate the linear acceleration a, the angular acceleration α, the tension in the string, the torque and the moment of inertia (I) and their associated uncertainities for each configuration from the angular acceleration using equation using equations 1 through 4 in the tables below Trial r δr t a δa T δt α δα Torque δ(torque) cm cm sec cm/sec 2 cm/sec 2 dyne dyne rad/sec 2 rad/sec 2 dyne-cm dyne-cm 1 2 3 4 0.00 Trial r 2 δr 2 I I cm 2 cm 2 gm*cm 2 gm*cm 2 1 2 3 4 0.00 0.00 Page 1