Mathematicians look at particle physics. Matilde Marcolli



Similar documents
Theoretical Particle Physics FYTN04: Oral Exam Questions, version ht15

Gauge theories and the standard model of elementary particle physics

STRING THEORY: Past, Present, and Future

A Theory for the Cosmological Constant and its Explanation of the Gravitational Constant

Concepts in Theoretical Physics

REALIZING EINSTEIN S DREAM Exploring Our Mysterious Universe

Connections, Gauges and Field Theories

Unification - The Standard Model

Kaluza-Klein for Kids. William O. Straub Pasadena, California June 27, 2014

arxiv:hep-ph/ v2 2 Nov 2004

Mathematics Course 111: Algebra I Part IV: Vector Spaces

Monodromies, Fluxes, and Compact Three-Generation F-theory GUTs

Spontaneous symmetry breaking in particle physics: a case of cross fertilization

Vector Algebra and Calculus


Standard Model of Particle Physics

Quantum Mechanics and Representation Theory

1 Introduction. 1 There may, of course, in principle, exist other universes, but they are not accessible to our

A tentative theory of large distance physics

LINEAR ALGEBRA W W L CHEN

old supersymmetry as new mathematics

Towards Online Recognition of Handwritten Mathematics

Mathematical Physics, Lecture 9

PROJECTIVE GEOMETRY. b3 course Nigel Hitchin

Liouville Brownian motion. Nathanaël Berestycki University of Cambridge

The future of string theory

Particle Physics. The Standard Model. A New Periodic Table

Outline. book content motivations storyline

m i: is the mass of each particle

Channels & Challenges New Physics at LHC

The Elegant Universe Teacher s Guide

Weak Interactions: towards the Standard Model of Physics

Invariant Metrics with Nonnegative Curvature on Compact Lie Groups

Solutions to Problems in Goldstein, Classical Mechanics, Second Edition. Chapter 7

MATH1231 Algebra, 2015 Chapter 7: Linear maps

Relations among Frenet Apparatus of Space-like Bertrand W-Curve Couples in Minkowski Space-time

APPLIED MATHEMATICS ADVANCED LEVEL

How Gravitational Forces arise from Curvature

Lecture 3 SU(2) January 26, Lecture 3

UNIVERSITETET I OSLO

Generally Covariant Quantum Mechanics

Big Bang Cosmology. Big Bang vs. Steady State

3. Open Strings and D-Branes

Basic Geometry Review For Trigonometry Students. 16 June 2010 Ventura College Mathematics Department 1

On the Frenet Frame and a Characterization of Space-like Involute-Evolute Curve Couple in Minkowski Space-time

0.33 d down c charm s strange t top b bottom 1 3

Notes on Elastic and Inelastic Collisions

UN PICCOLO BIG BANG IN LABORATORIO: L'ESPERIMENTO ALICE AD LHC

Particle Physics. Michaelmas Term 2011 Prof Mark Thomson. Handout 7 : Symmetries and the Quark Model. Introduction/Aims

Lecture 5 Motion of a charged particle in a magnetic field

7. A UNIFICATION OF ELECTROSTATIC AND GRAVITATIONAL FORCES. Abstract

THEORY OF EVERYTHING. Michael Duff INSTANT EXPERT 12

ISOMETRIES OF R n KEITH CONRAD

Masses in Atomic Units

A QUICK GUIDE TO THE FORMULAS OF MULTIVARIABLE CALCULUS

arxiv:hep-th/ v3 21 Sep 2004

A CONFRONTATION WITH INFINITY

Smarandache Curves in Minkowski Space-time

Lessons on Teaching Undergraduate General Relativity and Differential Geometry Courses

Selected Topics in Elementary Particle Physics ( Haupt-Seminar )

Chapter 22 The Hamiltonian and Lagrangian densities. from my book: Understanding Relativistic Quantum Field Theory. Hans de Vries

Vector Spaces; the Space R n

Why do mathematicians make things so complicated?

INVARIANT METRICS WITH NONNEGATIVE CURVATURE ON COMPACT LIE GROUPS

How To Teach Physics At The Lhc

A Study of the Top Quark Production Threshold at a Future Electron-Positron Linear Collider

The Einstein field equations

Data Mining: Algorithms and Applications Matrix Math Review

CARTAN S GENERALIZATION OF LIE S THIRD THEOREM

Euclidean quantum gravity revisited

Continuous Groups, Lie Groups, and Lie Algebras

Chapter 1: Statics. A) Newtonian Mechanics B) Relativistic Mechanics

Unit 3 (Review of) Language of Stress/Strain Analysis

Geometry and Topology

1 VECTOR SPACES AND SUBSPACES

1 Variational calculation of a 1D bound state

Pre-requisites

Vector Algebra CHAPTER 13. Ü13.1. Basic Concepts

MAT 242 Test 3 SOLUTIONS, FORM A

THREE DIMENSIONAL GEOMETRY

1 Symmetries of regular polyhedra

Pearson Physics Level 30 Unit VIII Atomic Physics: Chapter 17 Solutions

Transcription:

Mathematicians look at particle physics Matilde Marcolli Year of Mathematics talk July 2008

We do not do these things because they are easy. We do them because they are hard. (J.F.Kennedy Sept. 12, 1962) 1

Elementary particle physics Constituents of all known matters and forces (except gravity) Is there new physics beyond? (massive neutrinos; supersymmetry? dark matter? dark energy?) Unification with gravity? (loops? strings? branes? noncommutative spaces?) 2

Parameters of the Standard Model from experiments (particle accelerators) 3

Particle accelerators are giant microscopes Higher energies = smaller scales Theory: perform calculations that predict results of events that can be seen in accelerators Formula: Standard Model Lagrangian 4

L SM = 1 2 νgµ a ν gµ a g s f abc µ gνg a µg b ν c 1 4 g2 sf abc f ade gµg b νg c µg d ν e ν W µ + ν Wµ M 2 W µ + Wµ 1 2 νzµ 0 ν Zµ 0 1 2cwM 2 ZµZ 0 0 2 µ 1 2 µa ν µ A ν igc w ( ν Zµ(W 0 µ + Wν W ν + W µ ) Z0 ν (W µ + νwµ W µ νw µ + ) + Z0 µ (W ν + νwµ W ν νw µ + )) igs w ( ν A µ (W µ + W ν W ν + W µ ) A ν(w µ + νwµ W µ νw µ + ) + A µ(w ν + νwµ Wν νw µ + )) 1 2 g2 W µ + W µ W ν + W ν + 1 2 g2 W µ + W ν W µ + W ν + g2 c 2 w (Z0 µ W µ + Z0 ν W ν ZµZ 0 µw 0 ν + Wν ) + g 2 s 2 w(a µ W µ + A ν Wν A µ A µ W ν + Wν ) + g 2 s w c w (A µ Zν(W 0 µ + Wν W ν + Wµ ) 2A µ Z ( µw 0 ν + Wν ) 1 2 µh µ H 2M 2 α h H 2 ) µ φ + µ φ 1 2 µφ 0 µ φ 0 2M β 2 h + 2M H + 1 g 2 g 2 (H2 + φ 0 φ 0 + 2φ + φ ) + 2M4 α g 2 h gα h M (H 3 + Hφ 0 φ 0 + 2Hφ + φ ) 1 8 g2 α h (H 4 + (φ 0 ) 4 + 4(φ + φ ) 2 + 4(φ 0 ) 2 φ + φ + 4H 2 φ + φ + 2(φ 0 ) 2 H 2 ) gmw µ + Wµ H 1 g M 2 cwzµz 0 µh 0 2 1 ig ( W + 2 µ (φ 0 µ φ φ µ φ 0 ) Wµ (φ 0 µ φ + φ + µ φ 0 ) ) + 1 g ( W + 2 µ (H µφ φ µ H) + Wµ (H µφ + φ + µ H) ) + 1g 1 2 c w (Zµ 0 (H µφ 0 φ 0 µ H) + M ( 1 c w Zµ 0 µφ 0 +W µ + µφ +Wµ µφ + ) ig s2 w cw MZµ 0 (W µ + φ Wµ φ+ )+igs w MA µ (W µ + φ Wµ φ+ ) ig 1 2c2 w 2c w Zµ 0 (φ+ µ φ φ µ φ + ) + igs w A µ (φ + µ φ φ µ φ + ) 1 4 g2 W µ + W µ (H2 + (φ 0 ) 2 + 2φ + φ ) 1 8 g2 1 cwz 0 2 µ Z0 µ (H2 + (φ 0 ) 2 + 2(2s 2 w 1)2 φ + φ ) 1 2 g2 s 2 w cw Zµ 0 φ0 (W µ + φ + Wµ φ+ ) 1 2 ig2 s 2 w cw Zµ 0 H(W µ + φ Wµ φ+ ) + 1 2 g2 s w A µ φ 0 (W µ + φ + Wµ φ+ ) + 1 2 ig2 s w A µ H(W µ + φ Wµ φ+ ) g 2 sw c w (2c 2 w 1)Z0 µ A µφ + φ g 2 s 2 wa µ A µ φ + φ + 1 ig 2 s λ a ij( q i σ γ µ qj σ )gµ a ē λ (γ + m λ e)e λ ν λ (γ + m λ ν)ν λ ū λ j (γ + m λ u )uλ j d λ j (γ + mλ d )dλ j + igs ( wa µ (ē λ γ µ e λ ) + 2 3 (ūλ j γµ u λ j ) 1( d λ 3 j γµ d λ j )) + ig 4c w Zµ{( ν 0 λ γ µ (1 + γ 5 )ν λ ) + (ē λ γ µ (4s 2 w 1 γ 5 )e λ ) + ( d λ jγ µ ( 4 3 s2 w 1 γ 5 )d λ j ) + (ū λ j γµ (1 8 3 s2 w + γ5 )u λ ig j )} + 2 W ( + 2 µ ( ν λ γ µ (1 + γ 5 )U lep λκe κ ) + (ū λ j γµ (1 + γ 5 )C λκ d κ j )) + ( ig (ē κ U lep κλγ µ (1 + γ 5 )ν λ ) + ( d ) κ jc κλ γµ (1 + γ 5 )u λ j) + ( ig 2M 2 φ 2 W 2 µ ig ( 2M 2 φ+ m κ e ( νλ U lep λκ(1 γ 5 )e κ ) + m λ ν ( νλ U lep λκ(1 + γ 5 )e κ) + ) m λ e(ē λ U lep λκ(1 + γ 5 )ν κ ) m κ ν(ē λ U lep λκ(1 γ 5 )ν κ g 2 m λ ν M H( νλ ν λ ) g m λ e 2 M H(ēλ e λ ) + ig m λ ν 2 M φ0 ( ν λ γ 5 ν λ ) ig m λ e 2 M φ0 (ē λ γ 5 e λ ) 1 ν 4 λ Mλκ R (1 γ 5)ˆν κ 1 ν 4 λ Mλκ R (1 γ 5)ˆν κ + ( ) ig 2M 2 φ+ m κ d (ūλ jc λκ (1 γ 5 )d κ j) + m λ u(ū λ jc λκ (1 + γ 5 )d κ j + ig (m 2M 2 φ λ d ( d λ j C λκ (1 + γ5 )u κ j ) mκ u ( d ) λ j C λκ (1 γ5 )u κ j g m λ u 2 M H(ūλ j uλ j ) g m λ d 2 m λ u H( d λ M j dλ j ) + ig 2 M φ0 (ū λ j γ5 u λ j ) ig 2 X + ( 2 M 2 )X + + X ( 2 M 2 )X + X 0 ( 2 M2 c 2 w m λ d M φ0 ( d λ j γ5 d λ j ) + Ḡa 2 G a + g s f abc µ Ḡ a G b gµ c + )X 0 + Ȳ 2 Y + igc w W µ + ( X0 µ X X+ µ X 0 )+igs w W µ + ( µȳ X X+ µ Y ) + igc w Wµ ( X µ X 0 X0 µ X + )+igs w Wµ ( X µ Y µ Ȳ X + ) + igc w Zµ( 0 X+ µ X + X µ X )+igs w A µ ( X+ µ X + µ X X ) 1 2 gm ( X+ X + H + X X H + 1 X 0 X 0 H ) + 1 2c2 w 2c w igm ( X+ X 0 φ + X X 0 φ ) + c 2 w 1 2c w igm ( X0 X φ + X 0 X + φ ) ( +igms X0 w X φ + X 0 X + φ ) + 1 2 igm ( X+ X + φ 0 X X φ 0). 1

We have a formula: does it mean we understand? The task of mathematics: Is there a simple principle behind? Does the formula follow? What does it mean? Geometry: guiding principle for tackling complexity Collision II Dawn N. Meson, San Francisco artist 5

Geometrization of physics Kaluza Klein theory General Relativity: gravity = metric on 4-dim spacetime Electromagnetism: 5-dimensions Circle bundle over spacetime Gauge theories 6

Evolution of the Kaluza Klein idea, I Gauge theories: vector bundles connections and curvatures (gauge potentials, force fields) sections (matter particles/fields) bundle symmetries (gauge symmetries) 7

Evolution of the Kaluza Klein idea, II String theory: fibration of Calabi-Yau manifolds over 4-dim spacetime Kaluza-Klein (Invisible Architecture III) Dawn N.Meson 8

Evolution of the Kaluza Klein idea, III Noncommutative geometry (Connes, 1980s) Product of spacetime by a noncommutative space Jackson Pollock Untitled N.3 9

What is a noncommutative space? Example: composition law for spectral lines Compose when target of one is source of next: G = groupoid 10

First instance of noncommutive variables in Quantum Mechanics ( ) ( ) ( ) a b u v au + bx av + by = c d x y cu + dx cv + dy ( ) ( ) ( ) au + cv bu + dv u v a b = ax + cy bx + dy x y c d Observables in quantum mechanics usually don t commute Uncertainty principle NCG: Geometry of Quantum Mechanics 11

The main idea: There are more dimensions than the 4-dimensions of space and time The extra dimensions account for forces and particles and their interactions (internal symmetries) 12

But when is a mathematical model a good model of the physical world? Simplicity: difficult computations follow from simple principles Predictive power: new insight on physics, new testable calculations Elegance: entia non sunt multiplicanda praeter necessitatem (Ockham s razor) More than one mathematical model may be needed to explain different aspects of the same physical phenomenon 13

Example: Composite particles (baryons) Classification in terms of elementary particles (quarks) Mathematics: Lie group SU(3) Linear representations of Lie groups 14

Example: Noncommutative Geometry: Standard Model Lagrangian computed from simple input Matrix algebras and quaternions A = C H M 3 (C) Predictions: Higgs mass, mass relation Mathematics: Spectral triples, spectral action 15

Mathematics and reality The test of experiments (different models predict different Higgs masses) Large Hadron Collider (CERN) September 2008 (?) 16