M5A42 APPLIED STOCHASTIC PROCESSES PROBLEM SHEET 1 SOLUTIONS Term 1 2010-2011



Similar documents
MODULE 3. 0, y = 0 for all y

Lecture 3 Gaussian Probability Distribution

and thus, they are similar. If k = 3 then the Jordan form of both matrices is

9 CONTINUOUS DISTRIBUTIONS

Section 5.1 Continuous Random Variables: Introduction

Density Curve. Continuous Distributions. Continuous Distribution. Density Curve. Meaning of Area Under Curve. Meaning of Area Under Curve

Harvard College. Math 21a: Multivariable Calculus Formula and Theorem Review

Department of Mathematics, Indian Institute of Technology, Kharagpur Assignment 2-3, Probability and Statistics, March Due:-March 25, 2015.

Math 461 Fall 2006 Test 2 Solutions

Example A rectangular box without lid is to be made from a square cardboard of sides 18 cm by cutting equal squares from each corner and then folding

Second Term MAT2060B 1. Supplementary Notes 3 Interchange of Differentiation and Integration

Distributions. (corresponding to the cumulative distribution function for the discrete case).

QUADRATURE METHODS. July 19, Kenneth L. Judd. Hoover Institution

The Exponential Distribution

LINEAR TRANSFORMATIONS AND THEIR REPRESENTING MATRICES

Maximum Likelihood Estimation

RIGHT TRIANGLES AND THE PYTHAGOREAN TRIPLETS

Stirling s formula, n-spheres and the Gamma Function

ECE302 Spring 2006 HW5 Solutions February 21,

4.11 Inner Product Spaces

SECOND-ORDER LINEAR DIFFERENTIAL EQUATIONS

Review guide for the final exam in Math 233

Section 6.1 Joint Distribution Functions

Exponential Distribution

Lecture 5. Inner Product

MATH 150 HOMEWORK 4 SOLUTIONS

Statistics 100A Homework 8 Solutions

Statistics 100A Homework 7 Solutions

Feb 28 Homework Solutions Math 151, Winter Chapter 6 Problems (pages )

MATH 425, PRACTICE FINAL EXAM SOLUTIONS.

1 Sufficient statistics

Integration by Substitution

INSURANCE RISK THEORY (Problems)

The invention of line integrals is motivated by solving problems in fluid flow, forces, electricity and magnetism.

2.6. Probability. In general the probability density of a random variable satisfies two conditions:

MATH 381 HOMEWORK 2 SOLUTIONS

5.2. LINE INTEGRALS 265. Let us quickly review the kind of integrals we have studied so far before we introduce a new one.

STAT 830 Convergence in Distribution

Physics 43 Homework Set 9 Chapter 40 Key

1.1 Introduction, and Review of Probability Theory Random Variable, Range, Types of Random Variables CDF, PDF, Quantiles...

SF2940: Probability theory Lecture 8: Multivariate Normal Distribution

5. Continuous Random Variables

Modeling and Analysis of Information Technology Systems

Graphs on Logarithmic and Semilogarithmic Paper

e.g. arrival of a customer to a service station or breakdown of a component in some system.

Lectures 8 and 9 1 Rectangular waveguides

CHAPTER IV - BROWNIAN MOTION

Notes on Continuous Random Variables

Joint Exam 1/P Sample Exam 1

Math 314, Homework Assignment Prove that two nonvertical lines are perpendicular if and only if the product of their slopes is 1.

SF2940: Probability theory Lecture 8: Multivariate Normal Distribution

A Uniform Asymptotic Estimate for Discounted Aggregate Claims with Subexponential Tails

Lecture 7: Continuous Random Variables

Manual for SOA Exam MLC.

6.041/6.431 Spring 2008 Quiz 2 Wednesday, April 16, 7:30-9:30 PM. SOLUTIONS

Lecture 25: More Rectangular Domains: Neumann Problems, mixed BC, and semi-infinite strip problems

All pay auctions with certain and uncertain prizes a comment

Factoring Polynomials

ISyE 6761 Fall 2012 Homework #2 Solutions

2WB05 Simulation Lecture 8: Generating random variables

Notes on the Negative Binomial Distribution

Vectors Recap of vectors

g(y(a), y(b)) = o, B a y(a)+b b y(b)=c, Boundary Value Problems Lecture Notes to Accompany

Karlstad University. Division for Engineering Science, Physics and Mathematics. Yury V. Shestopalov and Yury G. Smirnov. Integral Equations

Aggregate Loss Models

6.2 Volumes of Revolution: The Disk Method

Review Problems for the Final of Math 121, Fall 2014

Statistical Machine Learning

PROBLEMS 13 - APPLICATIONS OF DERIVATIVES Page 1

UNIT I: RANDOM VARIABLES PART- A -TWO MARKS

Reasoning to Solve Equations and Inequalities

Example 27.1 Draw a Venn diagram to show the relationship between counting numbers, whole numbers, integers, and rational numbers.

Practice problems for Homework 11 - Point Estimation

1. Find the zeros Find roots. Set function = 0, factor or use quadratic equation if quadratic, graph to find zeros on calculator

6.2 Permutations continued

MATH2740: Environmental Statistics

Homework # 3 Solutions

Probability Generating Functions

MATH4427 Notebook 2 Spring MATH4427 Notebook Definitions and Examples Performance Measures for Estimators...

Applications to Physics and Engineering

Chapter 2: Binomial Methods and the Black-Scholes Formula

Estimating the Degree of Activity of jumps in High Frequency Financial Data. joint with Yacine Aït-Sahalia

Overview of Monte Carlo Simulation, Probability Review and Introduction to Matlab

Generating Random Variables and Stochastic Processes

MULTIVARIATE PROBABILITY DISTRIBUTIONS

AREA OF A SURFACE OF REVOLUTION

Probability Theory. Florian Herzog. A random variable is neither random nor variable. Gian-Carlo Rota, M.I.T..

Notes on metric spaces

Metric Spaces Joseph Muscat 2003 (Last revised May 2009)

Tables of Common Transform Pairs

THE NUMBER OF GRAPHS AND A RANDOM GRAPH WITH A GIVEN DEGREE SEQUENCE. Alexander Barvinok

What is Statistics? Lecture 1. Introduction and probability review. Idea of parametric inference

15.6. The mean value and the root-mean-square value of a function. Introduction. Prerequisites. Learning Outcomes. Learning Style

Derivatives and Rates of Change

M2S1 Lecture Notes. G. A. Young ayoung

Final Mathematics 5010, Section 1, Fall 2004 Instructor: D.A. Levin

Transcription:

M5A42 APPLIED STOCHASTIC PROCESSES PROBLEM SHEET 1 SOLUTIONS Term 1 21-211 1. Clculte the men, vrince nd chrcteristic function of the following probbility density functions. ) The exponentil distribution with density with λ >. fx) b) The uniform distribution with density with < b. fx) { λe λx x >, x <, { 1 b < x < b, x /, b), c) The Gmm distribution with density { λ fx) Γα) λx)α 1 e λx x >, x <, with λ >, α > nd Γα) is the Gmm function SOLUTION ) EX) Γα) 1 λ. + ξ α 1 e ξ dξ, α >. xfx) dx λ + xe λx dx EX 2 ) + 2 λ 2. x 2 fx) dx λ + x 2 e λx dx 1

b) Consequently, The chrcteristic function is vrx) EX 2 ) EX) 2 1 λ 2. φt) Ee itx ) λ EX) + + b 2. e itx e λx dt xfx) dx b λ λ it. x b dx c) Consequently, EX 2 ) The chrcteristic function is + x 2 fx) dx λ b2 + b + 2. 3 vrx) EX 2 ) EX) 2 φt) Ee itx ) λ b EX) λα Γα) λ b x 2 x2 b )2. 12 b dx e itx 1 b dt eitb e it itb ). + Γα + 1) λγα) α λ. x α e λx dx Consequently, The chrcteristic function is EX 2 ) λ + Γα + 2) λ 2 Γα) x 1+α e λx dx αα + 1) λ 2. vrx) EX 2 ) EX) 2 α λ 2. φt) Ee itx ) λα Γα) λα 1 Γα) λ it) α λ α λ it) α. e itx x α 1 dt e y y α 1 dy 2

2. ) Let X be continuous rndom vrible with chrcteristic function φt). Show tht EX k 1 i k φk) ), where φ k) t) denotes the k-th derivtive of φ evluted t t. b) Let X be nonnegtive rndom vrible with distribution function F x). Show tht EX) + 1 F x)) dx. c) Let X be continuous rndom vrible with probbility density function fx) nd chrcteristic function φt). Find the probbility density nd chrcteristic function of the rndom vrible Y X + b with, b R. d) Let X be rndom vrible with uniform distribution on [, 2π]. Find the probbility density of the rndom vrible Y sinx). SOLUTION ) We hve Consequently Thus: φt) Ee itx ) R R e itx fx) dx. φ k) t) ix) k e itx fx) dx. φ k) ) ix) k fx) dx i k EX k, R nd EX k 1 i k φ k) ). b) Let R > nd consider Thus, PX < R) R R xfx) dx x df dx dx xf x) R R R F x) dx F R) F x)) dx. EX lim 3 R PX < R) 1 F x)) dx,

where the fct lim x F x) 1 ws used. Alterntively: 1 F x)) dx x y fy) dydx fy) dxdy yfy) dx EX. c) We hve: PY y) PX + b y) PX y b ) y b fx) dx. Consequently, Similrly, f Y y) y PY y) 1 ) y b f. d) The density of the rndom vrible X is φ Y t) Ee ity Ee itx+b) e itb Ee itx e itb φt). f X x) { 1 2π, x [, 2π],, x / [, 2π]. The distribution function is F X x) { x <, x 2π, x [, 2π], 1, x > 2π. The rndom vrible Y tkes vlues on [ 1, 1]. Hence, PY PY y) 1 for y 1. Let now y 1, 1). We hve y) for y 1 nd F Y y) PY y) PsinX) y). The eqution sinx) y hs two solutions in the intervl [, 2π]: x rcsiny), π rcsiny) for y > nd x π rcsiny), 2π + rcsiny) for y <. Hence, F Y y) π + 2 rcsiny), y 1, 1). 2π 4

The distribution function of Y is F Y y) { y, π+2 rcsiny) 2π, y 1, 1), 1, y 1. We differentite the bove expression to obtin the probbility density: f Y y) { 1 π 1, 1 y 2 y 1, 1),, y / 1, 1). 3. Let X be discrete rndom vrible tking vles on the set of nonnegtive integers with probbility mss function p k PX k) with p k, + k p k 1. The generting function is defined s ) Show tht gs) Es X ) where the prime denotes differentition. k p k s k. EX g 1) nd EX 2 g 1) + g 1), b) Clculte the generting function of the Poisson rndom vrible with p k PX k) e λ λ k, k, 1, 2,... nd λ >. k! c) Prove tht the generting function of sum of independent nonnegtive integer vlued rndom vribles is the product of their generting functions. ) We hve Hence nd from which it follows b) We clculte g s) k g 1) kp k s k 1 nd g s) k g 1) k 2 p k k k k kp k EX EX 2 g 1) + g 1). gs) 5 k kk 1)p k s k 2. kp k EX 2 g 1) e λ λ k k! e λs 1). s k

c) Consider the independent nonnegtive integer vlued rndom vribles X i, i 1,... d. Since the X i s re independent, so re the rndom vribles e X i, i 1,.... Consequently, g P d i1 X s) d EeP i1 X i ) Π d i i1ee X i ) Π d i1g Xi s). 4. Let b R n nd Σ R n n symmetric nd positive definite mtrix. Let X be the multivrite Gussin rndom vrible with probbility density function 1 1 γx) 2π) n/2 exp 1 ) detσ) 2 Σ 1 x b), x b. ) Show tht R d γx) dx 1. b) Clculte the men nd the covrince mtrix of X. c) Clculte the chrcteristic function of X. ) From the spectrl theorem for symmetric positive definite mtrices we hve tht there exists digonl mtrix Λ with positive entries nd n orthogonl mtrix B such tht Let z x b nd y Bz. We hve Σ 1 B T ΛB. Σ 1 z, z B T ΛBz, z ΛBz, Bz Λy, y d λ i yi 2. Furthermore, we hve tht detσ 1 ) Π d i1 λ i, tht detσ) Π d i1 λ 1 i of n orthogonl trnsformtion is J detb) 1. Hence, R d exp 1 ) 2 Σ 1 x b), x b i1 dx exp R d exp 1 R d 2 Π n i1 exp R 1 ) 2 Σ 1 z, z dz nd tht the Jcobin ) d λ i yi 2 J dy i1 1 2 λ iy 2 i 2π) n/2 Π n i1λ 1/2 i ) dy i 2π) n/2 detσ), from which we get tht R d γx) dx 1. 6

b) From the bove clcultion we hve tht Consequently γx) dx γb T y + b) dy 1 2π) n/2 detσ) Πn i1 exp 1 ) 2 λ iyi 2 dy i. EX xγx) dx R d B T y + b)γb T y + b) dy R d b γb T y + b) dy b. R d We note tht, since Σ 1 B T ΛB, we hve tht Σ B T Λ 1 B. Furthermore, z B T y. We clculte EX i b i )X j b j )) z i z j γz + b) dz R d ) 1 2π) n/2 B ki y k B mi y m exp 1 λ l yl 2 dy detσ) R d 2 k m l ) 1 2π) n/2 B ki B mj y k y m exp detσ) R 1 λ l yl 2 dy d 2 k,m B ki B mj λ 1 k δ km k,m Σ ij. c) Let y be multivrite Gussin rndom vrible with men nd covrince I. Let lso C B Λ. We hve tht Σ CC T C T C. We hve tht X CY + b. To see this, we first note tht X is Gussin since it is given through liner trnsformtion of Gussin rndom vrible. Furthermore, EX b nd EX i b i )X j b j )) Σ ij. l Now we hve: φt) Ee i X,t e i b,t Ee i CY,t e i b,t Ee i Y,CT t e i b,t Ee i P j P k C jkt k )y j e i b,t e 1 2 Pj P k C jkt k 2 e i b,t e 1 2 Ct,Ct e i b,t e 1 2 t,ct Ct e i b,t e 1 2 t,σt. 7

Consequently, φt) e i b,t 1 2 t,σt. 8