Tables of Common Transform Pairs
|
|
|
- Frederick McDaniel
- 10 years ago
- Views:
Transcription
1 ble of Common rnform Pir 0 by Mrc Ph. Stoecklin mrc toecklin.net verion v.5.3 Engineer nd tudent in communiction nd mthemtic re confronted with tion uch the -rnform, the ourier, or the plce. Often it i quite hrd to quickly find the pproprite in book or the Internet, much le to hve comprehenive overview of tion pir nd correponding propertie. In thi document I compiled hndy collection of the mot common pir nd propertie of the continuou-time frequency ourier (πf), continuou-time pultion ourier (), -rnform, dicrete-time ourier D, nd plce. Plee note tht, before including tion pir in the tble, I verified it correctne. Neverthele, it i till poible tht you my find error or typo. I m very grteful to everyone dropping me line nd pointing out ny concern or typo. Nottion, Convention, nd Ueful ormul Imginry unit j = Complex conjugte = + jb = jb Rel prt Re {f(t)} = [f(t) + f (t)] Imginry prt Im {f(t)} = [f(t) f (t)] j { Dirc delt/unit impule δ[n] =, n = 0 0, n 0 Heviide tep/unit tep u[n] = {, n 0 0, n < 0 Sine/Coine Sinc function in (x) = ejx e jx j inc (x) in(x) x co (x) = ejx +e jx (unnormlied) { Rectngulr function rect( t ) = if t 0 if t > ringulr function tring ( ) t = rect( t ) rect( t ) = t t 0 t > Convolution continuou-time: (f g)(t) = + f(τ) g (t τ)dτ Prevl theorem Geometric erie dicrete-time: generl ttement: continuou-time: dicrete-time: k=0 xk = x (u v)[n] = m= u[m] v [n m] + f(t)g (t)dt = + (f)g (f)df + f(t) dt = + (f) df + n= x[n] = +π π π X(ej ) d n k=0 xk = xn+ x in generl: n k=m xk = xm x n+ x
2 Mrc Ph. Stoecklin ABES O RANSORM PAIRS v.5.3 ble of Continuou-time requency ourier rnform Pir f(t) = { (f)} = + f(t)ejπft df (f) = {f(t)} = + f(t)e jπft dt time reverl complex conjugtion revered conjugtion even/ymmetry odd/ntiymmetry f(t) f( t) f (t) f ( t) f(t) i purely rel f(t) i purely imginry f(t) = f ( t) f(t) = f ( t) (f) ( f) frequency reverl ( f) revered conjugtion (f) complex conjugtion (f) = ( f) even/ymmetry (f) = ( f) odd/ntiymmetry (f) i purely rel (f) i purely imginry time hifting f(t t 0 ) time cling linerity time multipliction delt function f(t)e jπf 0t f (f) f f f(t) + bg(t) f(t)g(t) f(t) g(t) δ(t) hifted delt function δ(t t 0 ) e jπf 0t two-ided exponentil decy e t > 0 e πt e jπt ine in (πf 0 t + φ) coine co (πf 0 t + φ) ine modultion f(t) in (πf 0 t) coine modultion f(t) co (πf 0 t) qured ine qured coine in (t) co (t) (f)e jπft 0 (f ( f 0 ) frequency hifting f (f) frequency cling (f) + bg(t) (f) G(f) (f)g(f) frequency multipliction e jπft 0 δ(f) delt function δ(f f 0 ) hifted delt function +4π f e πf e jπ( 4 f ) j [ e jφ δ (f + f 0 ) e jφ δ (f f 0 ) ] [ e jφ δ (f + f 0 ) + e jφ δ (f f 0 ) ] j [ (f + f 0) (f f 0 )] [ (f + f 0) + (f f 0 )] [ ] 4 δ(f) δ f π δ f + π [ ] 4 δ(f) + δ f π + δ f + π rectngulr rect ( t t = 0 t > tringulr tring ( t = t t 0 t > t 0 tep u(t) = [0,+ ] (t) = 0 t < 0 t 0 ignum gn (t) = t < 0 inc qured inc n-th time derivtive n-th frequency derivtive inc (Bt) inc (Bt) d n dt n f(t) t n f(t) +t inc f inc f jπf + δ(f) jπf B rect ( f B B tring ( f B (jπf) n (f) ( jπ) n dn df n (f) πe π f ) = B [ ) B,+ B ](f)
3 Mrc Ph. Stoecklin ABES O RANSORM PAIRS v ble of Continuou-time Pultion ourier rnform Pir x(t) = {X()} = + x(t)ejt d X() = {x(t)} = + x(t)e jt dt time reverl complex conjugtion revered conjugtion even/ymmetry odd/ntiymmetry x(t) x( t) x (t) x ( t) x(t) i purely rel x(t) i purely imginry x(t) = x ( t) x(t) = x ( t) X() X( ) frequency reverl X ( ) revered conjugtion X () complex conjugtion X(f) = X ( ) even/ymmetry X(f) = X ( ) odd/ntiymmetry X() i purely rel X() i purely imginry time hifting x(t t 0 ) time cling x(t)e j 0t x (f) x f X()e jt 0 X( 0 ) frequency hifting X X() frequency cling linerity time multipliction x (t) + bx (t) x (t)x (t) x (t) x (t) X () + bx () π X () X () X ()X () frequency multipliction delt function δ(t) hifted delt function δ(t t 0 ) e j 0t two-ided exponentil decy e t > 0 exponentil decy e t u(t) R{} > 0 revered exponentil decy e t u( t) R{} > 0 e t σ ine in ( 0 t + φ) coine co ( 0 t + φ) ine modultion x(t) in ( 0 t) coine modultion x(t) co ( 0 t) qured ine in ( 0 t) qured coine co ( 0 t) rectngulr rect ( t t = 0 t > tringulr tring ( t = t t 0 t > t 0 tep u(t) = [0,+ ] (t) = 0 t < 0 t 0 ignum gn (t) = t < 0 inc inc ( t) qured inc inc ( t) e jt 0 πδ() delt function πδ( 0 ) hifted delt function + +j j σ πe σ [ jπ e jφ δ ( + 0 ) e jφ δ ( 0 ) ] [ π e jφ δ ( + 0 ) + e jφ δ ( 0 ) ] j [X ( + 0) X ( 0 )] [X ( + 0) + X ( 0 )] π [δ(f) δ ( 0 ) δ ( + 0 )] π [δ() + δ ( 0 ) + δ ( + 0 )] inc inc πδ(f) + j j rect π = [ π,+π ](f) tring π n-th time derivtive n-th frequency derivtive time invere d n dt n f(t) t n f(t) t (j) n X() j n d n df n X() jπgn()
4 Mrc Ph. Stoecklin ABES O RANSORM PAIRS v ble of -rnform Pir x[n] = {X()} = πj X() n d X() = {x[n]} = + n= x[n] n ROC time reverl complex conjugtion revered conjugtion rel prt imginry prt x[n] x[ n] x [n] x [ n] Re{x[n]} Im{x[n]} X() R x X( ) R x X ( ) R x X ( ) R x [X() + X ( )] R x j [X() X ( )] R x time hifting x[n n 0 ] n 0X() R x cling in n x[n] X R x downmpling by N x[nn], N N 0 N N k=0 X WN k N W N = e j N R x linerity time multipliction x [n] + bx [n] x [n]x [n] x [n] x [n] X () + bx () R x R y ( X (u)x ) πj u u du R x R y X ()X (t) R x R y delt function δ[n] hifted delt function δ[n n 0 ] n 0 tep rmp u[n] u[ n ] nu[n] n u[n] n u[ n ] n 3 u[n] n 3 u[ n ] ( ) n > < ( ) > (+) ( ) 3 > (+) ( ) 3 < ( +4+) ( ) 4 > ( +4+) ( ) 4 < + < exponentil exp. intervl n u[n] n u[ n ] n u[n ] n n u[n] n n u[n] e n u[n] { n n = 0,..., N 0 otherwie > < > ( ) > (+ ( ) 3 > e > e N N > 0 ine coine in ( 0 n) u[n] co ( 0 n) u[n] n in ( 0 n) u[n] n co ( 0 n) u[n] in( 0 ) co( 0 )+ ( co( 0 )) co( 0 )+ in( 0 ) co( 0 )+ ( co( 0 )) co( 0 )+ > > > > differentition in integrtion in mi= (n i+) m m! nx[n] x[n] n m u[n] dx() R d x X() 0 d R x ( ) m+ Note: =
5 Mrc Ph. Stoecklin ABES O RANSORM PAIRS v ble of Common Dicrete ime ourier rnform (D) Pir x[n] = +π π π X(ej )e jn d D X(e j ) = + n= x[n]e jn time reverl complex conjugtion revered conjugtion even/ymmetry odd/ntiymmetry x[n] x[ n] x [n] x [ n] x[n] i purely rel x[n] i purely imginry x[n] = x [ n] x[n] = x [ n] D X(e j ) D X(e j ) D X (e j ) D X (e j ) D X(e j ) = X (e j ) even/ymmetry D X(e j ) = X (e j ) odd/ntiymmetry D D X(e j ) i purely rel X(e j ) i purely imginry time hifting x[n n 0 ] x[n]e j 0n D X(e j )e jn 0 D X(e j( 0) ) frequency hifting D downmpling by N x[nn] N N 0 x [ ] n n = kn upmpling by N N 0 otherwie N D X(e jn ) N πk k=0 X(ej N ) linerity time multipliction x [n] + bx [n] x [n]x [n] x [n] x [n] D X (e j ) + bx (e j ) D X (e j ) X (e j ) = +π π π X (e j( σ) )X (e jσ )dσ D X (e j )X (e j ) frequency multipliction delt function δ[n] hifted delt function δ[n n 0 ] e j 0n D D e jn 0 D δ() delt function D δ( 0 ) hifted delt function ine in ( 0 n + φ) coine co ( 0 n + φ) D D j [e jφ δ ( πk) e +jφ δ ( 0 + πk)] [e jφ δ ( πk) + e +jφ δ ( 0 + πk)] rectngulr tep rect ( n n M M = 0 otherwie u[n] decying tep n u[n] ( < ) pecil decying tep (n + ) n u[n] ( < ) inc MA MA derivtion in( cn) πn D D D D = c π inc (cn) D rect ( n M 0 n M = 0 otherwie rect n M 0 n M = 0 otherwie nx[n] difference x[n] x[n ] n in[ 0 (n+)] u[n] < in 0 D D in[(m+ )] in(/) e j + δ() e j ( e j ) ( rect < = c c 0 c < < π in[(m+)/] e in(/) jm/ in[m/] in(/) e j(m )/ D j d d X(ej ) D ( e j )X(e j ) D co( 0 e j )+ e j Note: Prevl: δ() = + n= + k= x[n] = π δ( + πk) +π X(e j ) d π rect() = + k= rect( + πk)
6 Mrc Ph. Stoecklin ABES O RANSORM PAIRS v ble of plce rnform Pir f(t) = { ()} = πj lim c+j c j ()et d () = {f(t)} = + f(t)e t dt complex conjugtion f(t) f (t) () ( ) time hifting f(t ) t > 0 e t f(t) time cling f(t) linerity f (t) + bf (t) time multipliction f (t)f (t) time convolution f (t) f (t) () ( + ) frequency hifting ( ) () + b () () () () () frequency product delt function δ(t) hifted delt function δ(t ) e exponentil decy unit tep u(t) rmp tu(t) prbol t u(t) 3 n-th power t n n! n+ exponentil decy e t two-ided exponentil decy e t te t ( t)e t exponentil pproch e t ine coine hyperbolic ine hyperbolic coine exponentilly decying ine exponentilly decying coine in (t) co (t) inh (t) coh (t) e t in (t) e t co (t) + (+) (+) (+) + + (+) + + (+) + frequency differentition frequency n-th differentition tf(t) t n f(t) () ( ) n (n) () time differentition f (t) = d dt f(t) () f(0) time nd differentition f (t) = d dt f(t) () f(0) f (0) time n-th differentition f (n) (t) = dn dt n f(t) n () n f(0)... f (n ) (0) time integrtion frequency integrtion t 0 f(τ)dτ = (u f)(t) t f(t) () (u)du time invere time differentition f (t) f n (t) () f () n + f (0) n + f (0) n f n (0)
EE 179 April 21, 2014 Digital and Analog Communication Systems Handout #16 Homework #2 Solutions
EE 79 April, 04 Digital and Analog Communication Systems Handout #6 Homework # Solutions. Operations on signals (Lathi& Ding.3-3). For the signal g(t) shown below, sketch: a. g(t 4); b. g(t/.5); c. g(t
Lecture 8 ELE 301: Signals and Systems
Lecture 8 ELE 3: Signals and Systems Prof. Paul Cuff Princeton University Fall 2-2 Cuff (Lecture 7) ELE 3: Signals and Systems Fall 2-2 / 37 Properties of the Fourier Transform Properties of the Fourier
M5A42 APPLIED STOCHASTIC PROCESSES PROBLEM SHEET 1 SOLUTIONS Term 1 2010-2011
M5A42 APPLIED STOCHASTIC PROCESSES PROBLEM SHEET 1 SOLUTIONS Term 1 21-211 1. Clculte the men, vrince nd chrcteristic function of the following probbility density functions. ) The exponentil distribution
Integration by Substitution
Integrtion by Substitution Dr. Philippe B. Lvl Kennesw Stte University August, 8 Abstrct This hndout contins mteril on very importnt integrtion method clled integrtion by substitution. Substitution is
Example A rectangular box without lid is to be made from a square cardboard of sides 18 cm by cutting equal squares from each corner and then folding
1 Exmple A rectngulr box without lid is to be mde from squre crdbord of sides 18 cm by cutting equl squres from ech corner nd then folding up the sides. 1 Exmple A rectngulr box without lid is to be mde
Class Note for Signals and Systems. Stanley Chan University of California, San Diego
Class Note for Signals and Systems Stanley Chan University of California, San Diego 2 Acknowledgement This class note is prepared for ECE 101: Linear Systems Fundamentals at the University of California,
Harvard College. Math 21a: Multivariable Calculus Formula and Theorem Review
Hrvrd College Mth 21: Multivrible Clculus Formul nd Theorem Review Tommy McWillim, 13 [email protected] December 15, 2009 1 Contents Tble of Contents 4 9 Vectors nd the Geometry of Spce 5 9.1
Solution to Problem Set 1
CSE 5: Introduction to the Theory o Computtion, Winter A. Hevi nd J. Mo Solution to Prolem Set Jnury, Solution to Prolem Set.4 ). L = {w w egin with nd end with }. q q q q, d). L = {w w h length t let
Review of Fourier series formulas. Representation of nonperiodic functions. ECE 3640 Lecture 5 Fourier Transforms and their properties
ECE 3640 Lecture 5 Fourier Transforms and their properties Objective: To learn about Fourier transforms, which are a representation of nonperiodic functions in terms of trigonometric functions. Also, to
Example 27.1 Draw a Venn diagram to show the relationship between counting numbers, whole numbers, integers, and rational numbers.
2 Rtionl Numbers Integers such s 5 were importnt when solving the eqution x+5 = 0. In similr wy, frctions re importnt for solving equtions like 2x = 1. Wht bout equtions like 2x + 1 = 0? Equtions of this
Basically, logarithmic transformations ask, a number, to what power equals another number?
Wht i logrithm? To nwer thi, firt try to nwer the following: wht i x in thi eqution? 9 = 3 x wht i x in thi eqution? 8 = 2 x Biclly, logrithmic trnformtion k, number, to wht power equl nother number? In
Factoring Polynomials
Fctoring Polynomils Some definitions (not necessrily ll for secondry school mthemtics): A polynomil is the sum of one or more terms, in which ech term consists of product of constnt nd one or more vribles
Section 7-4 Translation of Axes
62 7 ADDITIONAL TOPICS IN ANALYTIC GEOMETRY Section 7-4 Trnsltion of Aes Trnsltion of Aes Stndrd Equtions of Trnslted Conics Grphing Equtions of the Form A 2 C 2 D E F 0 Finding Equtions of Conics In the
5 Signal Design for Bandlimited Channels
225 5 Signal Design for Bandlimited Channels So far, we have not imposed any bandwidth constraints on the transmitted passband signal, or equivalently, on the transmitted baseband signal s b (t) I[k]g
Lectures 8 and 9 1 Rectangular waveguides
1 Lectures 8 nd 9 1 Rectngulr wveguides y b x z Consider rectngulr wveguide with 0 < x b. There re two types of wves in hollow wveguide with only one conductor; Trnsverse electric wves
MODULE 3. 0, y = 0 for all y
Topics: Inner products MOULE 3 The inner product of two vectors: The inner product of two vectors x, y V, denoted by x, y is (in generl) complex vlued function which hs the following four properties: i)
Math 22B, Homework #8 1. y 5y + 6y = 2e t
Math 22B, Homework #8 3.7 Problem # We find a particular olution of the ODE y 5y + 6y 2e t uing the method of variation of parameter and then verify the olution uing the method of undetermined coefficient.
TRANSFORM AND ITS APPLICATION
LAPLACE TRANSFORM AND ITS APPLICATION IN CIRCUIT ANALYSIS C.T. Pan. Definition of the Laplace Tranform. Ueful Laplace Tranform Pair.3 Circuit Analyi in S Domain.4 The Tranfer Function and the Convolution
Graphs on Logarithmic and Semilogarithmic Paper
0CH_PHClter_TMSETE_ 3//00 :3 PM Pge Grphs on Logrithmic nd Semilogrithmic Pper OBJECTIVES When ou hve completed this chpter, ou should be ble to: Mke grphs on logrithmic nd semilogrithmic pper. Grph empiricl
SUBSTITUTION I.. f(ax + b)
Integrtion SUBSTITUTION I.. f(x + b) Grhm S McDonld nd Silvi C Dll A Tutoril Module for prctising the integrtion of expressions of the form f(x + b) Tble of contents Begin Tutoril c 004 [email protected]
Binary Representation of Numbers Autar Kaw
Binry Representtion of Numbers Autr Kw After reding this chpter, you should be ble to: 1. convert bse- rel number to its binry representtion,. convert binry number to n equivlent bse- number. In everydy
15.6. The mean value and the root-mean-square value of a function. Introduction. Prerequisites. Learning Outcomes. Learning Style
The men vlue nd the root-men-squre vlue of function 5.6 Introduction Currents nd voltges often vry with time nd engineers my wish to know the verge vlue of such current or voltge over some prticulr time
4.11 Inner Product Spaces
314 CHAPTER 4 Vector Spces 9. A mtrix of the form 0 0 b c 0 d 0 0 e 0 f g 0 h 0 cnnot be invertible. 10. A mtrix of the form bc d e f ghi such tht e bd = 0 cnnot be invertible. 4.11 Inner Product Spces
Lecture 5. Inner Product
Lecture 5 Inner Product Let us strt with the following problem. Given point P R nd line L R, how cn we find the point on the line closest to P? Answer: Drw line segment from P meeting the line in right
AREA OF A SURFACE OF REVOLUTION
AREA OF A SURFACE OF REVOLUTION h cut r πr h A surfce of revolution is formed when curve is rotted bout line. Such surfce is the lterl boundr of solid of revolution of the tpe discussed in Sections 7.
Actuarial Science with
Actuarial Science with 1. life insurance & actuarial notations Arthur Charpentier joint work with Christophe Dutang & Vincent Goulet and Giorgio Alfredo Spedicato s lifecontingencies package Meielisalp
The invention of line integrals is motivated by solving problems in fluid flow, forces, electricity and magnetism.
Instrutor: Longfei Li Mth 43 Leture Notes 16. Line Integrls The invention of line integrls is motivted by solving problems in fluid flow, fores, eletriity nd mgnetism. Line Integrls of Funtion We n integrte
Actuarial mathematics 2
Actuarial mathematics 2 Life insurance contracts Edward Furman Department of Mathematics and Statistics York University January 3, 212 Edward Furman Actuarial mathematics MATH 328 1 / 45 Definition.1 (Life
9 CONTINUOUS DISTRIBUTIONS
9 CONTINUOUS DISTIBUTIONS A rndom vrible whose vlue my fll nywhere in rnge of vlues is continuous rndom vrible nd will be ssocited with some continuous distribution. Continuous distributions re to discrete
Integration. 148 Chapter 7 Integration
48 Chpter 7 Integrtion 7 Integrtion t ech, by supposing tht during ech tenth of second the object is going t constnt speed Since the object initilly hs speed, we gin suppose it mintins this speed, but
Review Problems for the Final of Math 121, Fall 2014
Review Problems for the Finl of Mth, Fll The following is collection of vrious types of smple problems covering sections.,.5, nd.7 6.6 of the text which constitute only prt of the common Mth Finl. Since
5.2. LINE INTEGRALS 265. Let us quickly review the kind of integrals we have studied so far before we introduce a new one.
5.2. LINE INTEGRALS 265 5.2 Line Integrls 5.2.1 Introduction Let us quickly review the kind of integrls we hve studied so fr before we introduce new one. 1. Definite integrl. Given continuous rel-vlued
Representation of functions as power series
Representation of functions as power series Dr. Philippe B. Laval Kennesaw State University November 9, 008 Abstract This document is a summary of the theory and techniques used to represent functions
Module Summary Sheets. C3, Methods for Advanced Mathematics (Version B reference to new book) Topic 2: Natural Logarithms and Exponentials
MEI Mthemtics in Ection nd Instry Topic : Proof MEI Structured Mthemtics Mole Summry Sheets C, Methods for Anced Mthemtics (Version B reference to new book) Topic : Nturl Logrithms nd Eponentils Topic
Review Solutions MAT V1102. 1. (a) If u = 4 x, then du = dx. Hence, substitution implies 1. dx = du = 2 u + C = 2 4 x + C.
Review Solutions MAT V. (a) If u 4 x, then du dx. Hence, substitution implies dx du u + C 4 x + C. 4 x u (b) If u e t + e t, then du (e t e t )dt. Thus, by substitution, we have e t e t dt e t + e t u
FUNDAMENTALS OF ENGINEERING (FE) EXAMINATION REVIEW
FE: Electric Circuits C.A. Gross EE1-1 FUNDAMENTALS OF ENGINEERING (FE) EXAMINATION REIEW ELECTRICAL ENGINEERING Charles A. Gross, Professor Emeritus Electrical and Comp Engineering Auburn University Broun
Exam 1 Study Guide. Differentiation and Anti-differentiation Rules from Calculus I
Exm Stuy Guie Mth 2020 - Clculus II, Winter 204 The following is list of importnt concepts from ech section tht will be teste on exm. This is not complete list of the mteril tht you shoul know for the
Manual for SOA Exam MLC.
Chapter 5 Life annuities Extract from: Arcones Manual for the SOA Exam MLC Fall 2009 Edition available at http://wwwactexmadrivercom/ 1/94 Due n year temporary annuity Definition 1 A due n year term annuity
Application of Fourier Transform to PDE (I) Fourier Sine Transform (application to PDEs defined on a semi-infinite domain)
Application of Fourier Transform to PDE (I) Fourier Sine Transform (application to PDEs defined on a semi-infinite domain) The Fourier Sine Transform pair are F. T. : U = 2/ u x sin x dx, denoted as U
CHAPTER 9: Moments of Inertia
HPTER 9: Moments of nerti! Moment of nerti of res! Second Moment, or Moment of nerti, of n re! Prllel-is Theorem! Rdius of Grtion of n re! Determintion of the Moment of nerti of n re ntegrtion! Moments
The Exponential Distribution
21 The Exponential Distribution From Discrete-Time to Continuous-Time: In Chapter 6 of the text we will be considering Markov processes in continuous time. In a sense, we already have a very good understanding
2005-06 Second Term MAT2060B 1. Supplementary Notes 3 Interchange of Differentiation and Integration
Source: http://www.mth.cuhk.edu.hk/~mt26/mt26b/notes/notes3.pdf 25-6 Second Term MAT26B 1 Supplementry Notes 3 Interchnge of Differentition nd Integrtion The theme of this course is bout vrious limiting
6.2 Volumes of Revolution: The Disk Method
mth ppliction: volumes of revolution, prt ii Volumes of Revolution: The Disk Method One of the simplest pplictions of integrtion (Theorem ) nd the ccumultion process is to determine so-clled volumes of
g(y(a), y(b)) = o, B a y(a)+b b y(b)=c, Boundary Value Problems Lecture Notes to Accompany
Lecture Notes to Accompny Scientific Computing An Introductory Survey Second Edition by Michel T Heth Boundry Vlue Problems Side conditions prescribing solution or derivtive vlues t specified points required
Manual for SOA Exam MLC.
Chapter 4. Life Insurance. c 29. Miguel A. Arcones. All rights reserved. Extract from: Arcones Manual for the SOA Exam MLC. Fall 29 Edition. available at http://www.actexmadriver.com/ c 29. Miguel A. Arcones.
Derivatives and Rates of Change
Section 2.1 Derivtives nd Rtes of Cnge 2010 Kiryl Tsiscnk Derivtives nd Rtes of Cnge Te Tngent Problem EXAMPLE: Grp te prbol y = x 2 nd te tngent line t te point P(1,1). Solution: We ve: DEFINITION: Te
4. Life Insurance. 4.1 Survival Distribution And Life Tables. Introduction. X, Age-at-death. T (x), time-until-death
4. Life Insurance 4.1 Survival Distribution And Life Tables Introduction X, Age-at-death T (x), time-until-death Life Table Engineers use life tables to study the reliability of complex mechanical and
1. Revision 2. Revision pv 3. - note that there are other equivalent formulae! 1 pv 16.5 4. A x A 1 x:n A 1
Tutorial 1 1. Revision 2. Revision pv 3. - note that there are other equivalent formulae! 1 pv 16.5 4. A x A 1 x:n A 1 x:n a x a x:n n a x 5. K x = int[t x ] - or, as an approximation: T x K x + 1 2 6.
Use Geometry Expressions to create a more complex locus of points. Find evidence for equivalence using Geometry Expressions.
Lerning Objectives Loci nd Conics Lesson 3: The Ellipse Level: Preclculus Time required: 120 minutes In this lesson, students will generlize their knowledge of the circle to the ellipse. The prmetric nd
Lectures 5-6: Taylor Series
Math 1d Instructor: Padraic Bartlett Lectures 5-: Taylor Series Weeks 5- Caltech 213 1 Taylor Polynomials and Series As we saw in week 4, power series are remarkably nice objects to work with. In particular,
6 Energy Methods And The Energy of Waves MATH 22C
6 Energy Methods And The Energy of Wves MATH 22C. Conservtion of Energy We discuss the principle of conservtion of energy for ODE s, derive the energy ssocited with the hrmonic oscilltor, nd then use this
CONVOLUTION Digital Signal Processing
CONVOLUTION Digital Signal Processing Introduction As digital signal processing continues to emerge as a major discipline in the field of electrical engineering an even greater demand has evolved to understand
ECG590I Asset Pricing. Lecture 2: Present Value 1
ECG59I Asset Pricing. Lecture 2: Present Value 1 2 Present Value If you have to decide between receiving 1$ now or 1$ one year from now, then you would rather have your money now. If you have to decide
Distributions. (corresponding to the cumulative distribution function for the discrete case).
Distributions Recll tht n integrble function f : R [,] such tht R f()d = is clled probbility density function (pdf). The distribution function for the pdf is given by F() = (corresponding to the cumultive
ECE 5520: Digital Communications Lecture Notes Fall 2009
ECE 5520: Digital Communications Lecture Notes Fall 2009 Dr. Neal Patwari University of Utah Department of Electrical and Computer Engineering c 2006 ECE 5520 Fall 2009 2 Contents 1 Class Organization
www.mathsbox.org.uk e.g. f(x) = x domain x 0 (cannot find the square root of negative values)
www.mthsbo.org.uk CORE SUMMARY NOTES Functions A function is rule which genertes ectl ONE OUTPUT for EVERY INPUT. To be defined full the function hs RULE tells ou how to clculte the output from the input
How To Understand The Theory Of Inequlities
Ostrowski Type Inequlities nd Applictions in Numericl Integrtion Edited By: Sever S Drgomir nd Themistocles M Rssis SS Drgomir) School nd Communictions nd Informtics, Victori University of Technology,
Regular Sets and Expressions
Regulr Sets nd Expressions Finite utomt re importnt in science, mthemtics, nd engineering. Engineers like them ecuse they re super models for circuits (And, since the dvent of VLSI systems sometimes finite
1.1 Discrete-Time Fourier Transform
1.1 Discrete-Time Fourier Transform The discrete-time Fourier transform has essentially the same properties as the continuous-time Fourier transform, and these properties play parallel roles in continuous
Section 5.1 Continuous Random Variables: Introduction
Section 5. Continuous Random Variables: Introduction Not all random variables are discrete. For example:. Waiting times for anything (train, arrival of customer, production of mrna molecule from gene,
FUNCTIONS AND EQUATIONS. xεs. The simplest way to represent a set is by listing its members. We use the notation
FUNCTIONS AND EQUATIONS. SETS AND SUBSETS.. Definition of set. A set is ny collection of objects which re clled its elements. If x is n element of the set S, we sy tht x belongs to S nd write If y does
CHAPTER IV - BROWNIAN MOTION
CHAPTER IV - BROWNIAN MOTION JOSEPH G. CONLON 1. Construction of Brownian Motion There are two ways in which the idea of a Markov chain on a discrete state space can be generalized: (1) The discrete time
Mathematics of Life Contingencies MATH 3281
Mathematics of Life Contingencies MATH 3281 Life annuities contracts Edward Furman Department of Mathematics and Statistics York University February 13, 2012 Edward Furman Mathematics of Life Contingencies
Taylor and Maclaurin Series
Taylor and Maclaurin Series In the preceding section we were able to find power series representations for a certain restricted class of functions. Here we investigate more general problems: Which functions
Lecture 7 ELE 301: Signals and Systems
Lecture 7 ELE 3: Signals and Systems Prof. Paul Cuff Princeton University Fall 2-2 Cuff (Lecture 7) ELE 3: Signals and Systems Fall 2-2 / 22 Introduction to Fourier Transforms Fourier transform as a limit
Lecture 3 Gaussian Probability Distribution
Lecture 3 Gussin Probbility Distribution Introduction l Gussin probbility distribution is perhps the most used distribution in ll of science. u lso clled bell shped curve or norml distribution l Unlike
LINEAR TRANSFORMATIONS AND THEIR REPRESENTING MATRICES
LINEAR TRANSFORMATIONS AND THEIR REPRESENTING MATRICES DAVID WEBB CONTENTS Liner trnsformtions 2 The representing mtrix of liner trnsformtion 3 3 An ppliction: reflections in the plne 6 4 The lgebr of
Roots of Polynomials. Ch. 7. Roots of Polynomials. Roots of Polynomials. dy dt. a dt. y = General form:
Roots o Polynomils C. 7 Generl orm: Roots o Polynomils ( ) n n order o te polynomil i constnt coeicients n Roots Rel or Comple. For n n t order polynomil n rel or comple roots. I n is odd At lest rel root
The Black-Scholes-Merton Approach to Pricing Options
he Black-Scholes-Merton Approach to Pricing Options Paul J Atzberger Comments should be sent to: atzberg@mathucsbedu Introduction In this article we shall discuss the Black-Scholes-Merton approach to determining
Introduction to Integration Part 2: The Definite Integral
Mthemtics Lerning Centre Introduction to Integrtion Prt : The Definite Integrl Mr Brnes c 999 Universit of Sdne Contents Introduction. Objectives...... Finding Ares 3 Ares Under Curves 4 3. Wht is the
Radius of the Earth - Radii Used in Geodesy James R. Clynch February 2006
dius of the Erth - dii Used in Geodesy Jmes. Clynch Februry 006 I. Erth dii Uses There is only one rdius of sphere. The erth is pproximtely sphere nd therefore, for some cses, this pproximtion is dequte.
From Fundamentals of Digital Communication Copyright by Upamanyu Madhow, 2003-2006
Chapter Introduction to Modulation From Fundamentals of Digital Communication Copyright by Upamanyu Madhow, 003-006 Modulation refers to the representation of digital information in terms of analog waveforms
Unit 6: Exponents and Radicals
Eponents nd Rdicls -: The Rel Numer Sstem Unit : Eponents nd Rdicls Pure Mth 0 Notes Nturl Numers (N): - counting numers. {,,,,, } Whole Numers (W): - counting numers with 0. {0,,,,,, } Integers (I): -
and thus, they are similar. If k = 3 then the Jordan form of both matrices is
Homework ssignment 11 Section 7. pp. 249-25 Exercise 1. Let N 1 nd N 2 be nilpotent mtrices over the field F. Prove tht N 1 nd N 2 re similr if nd only if they hve the sme miniml polynomil. Solution: If
Hedging Options In The Incomplete Market With Stochastic Volatility. Rituparna Sen Sunday, Nov 15
Hedging Options In The Incomplete Market With Stochastic Volatility Rituparna Sen Sunday, Nov 15 1. Motivation This is a pure jump model and hence avoids the theoretical drawbacks of continuous path models.
Mean value theorems for long Dirichlet polynomials and tails of Dirichlet series
ACA ARIHMEICA LXXXIV.2 998 Mean value theorems for long Dirichlet polynomials and tails of Dirichlet series by D. A. Goldston San Jose, Calif. and S. M. Gonek Rochester, N.Y. We obtain formulas for computing
Laplace Transform. f(t)e st dt,
Chapter 7 Laplace Tranform The Laplace tranform can be ued to olve differential equation. Beide being a different and efficient alternative to variation of parameter and undetermined coefficient, the Laplace
Math 630 Problem Set 2
Math 63 Problem Set 2 1. AN n-year term insurance payable at the moment of death has an actuarial present value (i.e. EPV) of.572. Given µ x+t =.7 and δ =.5, find n. (Answer: 11) 2. Given: Ā 1 x:n =.4275,
SAMPLE SOLUTIONS DIGITAL SIGNAL PROCESSING: Signals, Systems, and Filters Andreas Antoniou
SAMPLE SOLUTIONS DIGITAL SIGNAL PROCESSING: Signals, Systems, and Filters Andreas Antoniou (Revision date: February 7, 7) SA. A periodic signal can be represented by the equation x(t) k A k sin(ω k t +
Manual for SOA Exam MLC.
Chapter 5 Life annuities Extract from: Arcones Manual for the SOA Exam MLC Fall 2009 Edition available at http://wwwactexmadrivercom/ 1/70 Due n year deferred annuity Definition 1 A due n year deferred
UNIVERSITY OF CALIFORNIA, SAN DIEGO Electrical & Computer Engineering Department ECE 101 - Fall 2010 Linear Systems Fundamentals
UNIVERSITY OF CALIFORNIA, SAN DIEGO Electrical & Computer Engineering Department ECE 101 - Fall 2010 Linear Systems Fundamentals FINAL EXAM WITH SOLUTIONS (YOURS!) You are allowed one 2-sided sheet of
Review guide for the final exam in Math 233
Review guide for the finl exm in Mth 33 1 Bsic mteril. This review includes the reminder of the mteril for mth 33. The finl exm will be cumultive exm with mny of the problems coming from the mteril covered
Density Curve. Continuous Distributions. Continuous Distribution. Density Curve. Meaning of Area Under Curve. Meaning of Area Under Curve
Continuous Distributions Rndom Vribles of the Continuous Tye Density Curve Perent Density funtion f () f() A smooth urve tht fit the distribution 6 7 9 Test sores Density Curve Perent Probbility Density
Probability density function : An arbitrary continuous random variable X is similarly described by its probability density function f x = f X
Week 6 notes : Continuous random variables and their probability densities WEEK 6 page 1 uniform, normal, gamma, exponential,chi-squared distributions, normal approx'n to the binomial Uniform [,1] random
CURVES ANDRÉ NEVES. that is, the curve α has finite length. v = p q p q. a i.e., the curve of smallest length connecting p to q is a straight line.
CURVES ANDRÉ NEVES 1. Problems (1) (Ex 1 of 1.3 of Do Crmo) Show tht the tngent line to the curve α(t) (3t, 3t 2, 2t 3 ) mkes constnt ngle with the line z x, y. (2) (Ex 6 of 1.3 of Do Crmo) Let α(t) (e
Introduction to the Finite Element Method (FEM)
Introduction to the Finite Element Method (FEM) ecture First and Second Order One Dimensional Shape Functions Dr. J. Dean Discretisation Consider the temperature distribution along the one-dimensional
Vectors. The magnitude of a vector is its length, which can be determined by Pythagoras Theorem. The magnitude of a is written as a.
Vectors mesurement which onl descries the mgnitude (i.e. size) of the oject is clled sclr quntit, e.g. Glsgow is 11 miles from irdrie. vector is quntit with mgnitude nd direction, e.g. Glsgow is 11 miles
Web Content Management System: Page Type Reference Guide
Wb Cnn Mnn : P T Rnc Gu Auu 2012 CM P T Rnc Gu CM P T Rnc Gu...3 W D I Cnc F H?...3 Gnc P...3 Nw H P...7 T Nw R H C P...7 Nw R P...8 Evn H P...10 Invu Evn P...11 H...13 I D P...14 D P...18 Qun n Anw H
Discrete-Time Signals and Systems
2 Discrete-Time Signals and Systems 2.0 INTRODUCTION The term signal is generally applied to something that conveys information. Signals may, for example, convey information about the state or behavior
Frequency Domain and Fourier Transforms
Chapter 4 Frequency Domain and Fourier Transforms Frequency domain analysis and Fourier transforms are a cornerstone of signal and system analysis. These ideas are also one of the conceptual pillars within
QUADRATURE METHODS. July 19, 2011. Kenneth L. Judd. Hoover Institution
QUADRATURE METHODS Kenneth L. Judd Hoover Institution July 19, 2011 1 Integrtion Most integrls cnnot be evluted nlyticlly Integrls frequently rise in economics Expected utility Discounted utility nd profits
Fourier Analysis. u m, a n u n = am um, u m
Fourier Analysis Fourier series allow you to expand a function on a finite interval as an infinite series of trigonometric functions. What if the interval is infinite? That s the subject of this chapter.
Babylonian Method of Computing the Square Root: Justifications Based on Fuzzy Techniques and on Computational Complexity
Bbylonin Method of Computing the Squre Root: Justifictions Bsed on Fuzzy Techniques nd on Computtionl Complexity Olg Koshelev Deprtment of Mthemtics Eduction University of Texs t El Pso 500 W. University
The wave equation is an important tool to study the relation between spectral theory and geometry on manifolds. Let U R n be an open set and let
1. The wave equation The wave equation is an important tool to stuy the relation between spectral theory an geometry on manifols. Let U R n be an open set an let = n j=1 be the Eucliean Laplace operator.
Fundamentals of Analytical Chemistry
Homework Fundmentls of Anlyticl hemistry 7-0,, 4, 8, 0, 7 hpter 5 Polyfunctionl Acids nd Bses Acids tht cn donte more thn proton per molecule Strong cid H SO 4 Severl wek cids Well behved dissocition For
Scalar Valued Functions of Several Variables; the Gradient Vector
Scalar Valued Functions of Several Variables; the Gradient Vector Scalar Valued Functions vector valued function of n variables: Let us consider a scalar (i.e., numerical, rather than y = φ(x = φ(x 1,
8 Continuous-Time Fourier Transform
8 Continuous-Time Fourier Transform Solutions to Recommended Problems S8. (a) x(t) Tj Tj t Figure S8.- (b) Note that the total width is T,. i(t) t 3T -- T To T T To Tl 3 T =O Figure S8.- (c) Using the
