Experiment 6 Qualitative Tests for Alcohols, Alcohol Unknown, IR of Unknown



Similar documents
Experiment #8 properties of Alcohols and Phenols

Properties of Alcohols and Phenols Experiment #3

IDENTIFICATION OF ALCOHOLS

Laboratory 22: Properties of Alcohols

Identification of Unknown Organic Compounds

LABORATORY 5 DETECTION OF FUNCTIONAL GROUPS IN ORGANIC COMPOUNDS

EXPERIMENT 6 (Organic Chemistry II) Identification of Ketones and Aldehydes

Reactions of Aldehydes and Ketones

Experiment 8 Preparation of Cyclohexanone by Hypochlorite Oxidation

Name Lab #3: Solubility of Organic Compounds Objectives: Introduction: soluble insoluble partially soluble miscible immiscible

Austin Peay State University Department of Chemistry CHEM 1021 TESTING FOR ORGANIC FUNCTIONAL GROUPS

Avg / 25 Stnd. Dev. 8.2

But in organic terms: Oxidation: loss of H 2 ; addition of O or O 2 ; addition of X 2 (halogens).

Chapter 16: Tests for ions and gases

One problem often faced in qualitative analysis is to test for one ion in a

OXIDATION-REDUCTION TITRATIONS-Permanganometry

Experiment 5 Preparation of Cyclohexene

Oxidation of Cyclohexanol to Cyclohexanone

Chapter 5 Classification of Organic Compounds by Solubility

CHM220 Addition lab. Experiment: Reactions of alkanes, alkenes, and cycloalkenes*

The Chemistry of Carbohydrates

ALKENES AND ALKYNES REACTIONS A STUDENT WHO HAS MASTERED THE MATERIAL IN THIS SECTION SHOULD BE ABLE TO:

Assessment Schedule 2013 Chemistry: Demonstrate understanding of the properties of organic compounds (91391)

H H H O. Pre-Lab Exercises Lab 6: Organic Chemistry. Lab 6: Organic Chemistry Chemistry Define the following: a.

Saturated NaCl solution rubber tubing (2) Glass adaptor (2) thermometer adaptor heating mantle

Santa Monica College Chemistry 11

Reminder: These notes are meant to supplement, not replace the laboratory manual. SN1 Reaction Notes

Suggested solutions for Chapter 3

Q.1 Carbonyl compounds are formed by oxidation of alcohols;

A Volumetric Analysis (Redox Titration) of Hypochlorite in Bleach

Conduct A Qualitative Test For Starch, Fat, A Reducing Sugar, A Protein

Separation by Solvent Extraction

CHM220 Nucleophilic Substitution Lab. Studying S N 1 and S N 2 Reactions: Nucloephilic Substitution at Saturated Carbon*

F322: Chains, Energy and Resources Alcohols

ISOLATION OF CAFFEINE FROM TEA

ALCOHOLS: Properties & Preparation

Identifying an Unknown Compound by Solubility, Functional Group Tests and Spectral Analysis

MOLECULAR REPRESENTATIONS AND INFRARED SPECTROSCOPY

Alcohols An alcohol contains a hydroxyl group ( OH) attached to a carbon chain. A phenol contains a hydroxyl group ( OH) attached to a benzene ring.

HOMEWORK PROBLEMS: IR SPECTROSCOPY AND 13C NMR. The peak at 1720 indicates a C=O bond (carbonyl). One possibility is acetone:

Experiment 5. Chemical Reactions A + X AX AX A + X A + BX AX + B AZ + BX AX + BZ

Chapter 12 Organic Compounds with Oxygen and Sulfur

Willem Elbers. October 9, 2015

Non-polar hydrocarbon chain

Organic Qualitative Analysis

Molecular Models in Biology

Lab #13: Qualitative Analysis of Cations and Anions

Alcohols. Copyright 2009 by Pearson Education, Inc. Copyright 2009 Pearson Education, Inc. CH 3 CH 2 CH 2 OH 1-propanol OH

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Chemistry Assessment Unit AS 1

CHEMICAL DETERMINATION OF EVERYDAY HOUSEHOLD CHEMICALS

Chemical Reactions in Water Ron Robertson

Physical Changes and Chemical Reactions

Acids and Bases: Molecular Structure and Acidity

SYNTHESIS AND ANALYSIS OF A COORDINATION COMPOUND OF COPPER

Carboxylic Acid Derivatives and Nitriles

Summer Holidays Questions

This experiment involves the separation and identification of ions using

CH 102 Practice Exam 2 PCC-Sylvania

Lab: Properties of Polar and Nonpolar Substances

Analysis of Vitamin C Using Iodine. Introduction

Recovery of Elemental Copper from Copper (II) Nitrate

Estimation of Alcohol Content in Wine by Dichromate Oxidation followed by Redox Titration

Chemical Equations and Chemical Reactions. Chapter 8.1

SOLUBILITY OF A SALT IN WATER AT VARIOUS TEMPERATURES LAB

Chapter 22 Carbonyl Alpha-Substitution Reactions

Making Biodiesel from Virgin Vegetable Oil: Teacher Manual

JUNIOR COLLEGE CHEMISTRY DEPARTMENT EXPERIMENT 21 SECOND YEAR PRACTICAL. Name: Group: Date: THE CHEMISTRY OF COPPER AND IRON

Unit 2 Review: Answers: Review for Organic Chemistry Unit Test

Chapter 8: Chemical Equations and Reactions

(1) Hydrochloric acid reacts with sodium hypochlorite to form hypochlorous acid: NaOCl(aq) + HCl(aq) HOCl(aq) + NaCl(aq) hypochlorous acid

Properties of Acids and Bases

17.5 ALLYLIC AND BENZYLIC OXIDATION

IB Chemistry. DP Chemistry Review

Synthesis of Isopentyl Acetate

Organic Chemistry Lab Experiment 4 Preparation and Properties of Soap

Instructions Answer all questions in the spaces provided. Do all rough work in this book. Cross through any work you do not want to be marked.

Page 1 of 5. Purification of Cholesterol An Oxidative Addition-Reductive Elimination Sequence

Experiment #10: Liquids, Liquid Mixtures and Solutions

BOND TYPES: THE CLASSIFICATION OF SUBSTANCES

Petri Dish Electrolysis Electrolysis Reactions

Experiment 8 - Double Displacement Reactions

Cambridge International Examinations Cambridge International General Certificate of Secondary Education

1. Oxidation number is 0 for atoms in an element. 3. In compounds, alkalis have oxidation number +1; alkaline earths have oxidation number +2.

Determination of Specific Nutrients in Various Foods. Abstract. Humans need to consume food compounds such as carbohydrates, proteins, fats,

DYES AND DYEING 2003 by David A. Katz. All rights reserved. Permission for classroom use provided original copyright is included.

ANALYSIS OF ASPIRIN INFRARED (IR) SPECTROSCOPY AND MELTING POINT DETERMINATION

GRIGNARD REACTION: PREPARATION OF TRIPHENYLMETHANOL (12/22/2009)

Molarity of Ions in Solution

methyl RX example primary RX example secondary RX example secondary RX example tertiary RX example

Stains for Developing TLC Plates

CHEMICAL REACTIONS AND REACTING MASSES AND VOLUMES

EXPERIMENT 8: Activity Series (Single Displacement Reactions)

CHEM 51LB EXP 1 SPECTROSCOPIC METHODS: INFRARED AND NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY

Copyright 2010 Pearson Education, Inc. Chapter Fourteen 1

Amino Acids, Peptides, and Proteins

Enantiomers: Synthesis, characterization, and resolution of tris(ethylenediamine)cobalt(iii) chloride Introduction:

Chapter 11 Homework and practice questions Reactions of Alkyl Halides: Nucleophilic Substitutions and Eliminations

4.5 Physical Properties: Solubility

Synthesis of Fragrant Esters

Transcription:

Experiment 6 Qualitative Tests for Alcohols, Alcohol Unknown, I of Unknown In this experiment you are going to do a series of tests in order to determine whether or not an alcohol is a primary (1 ), secondary (2 ) or tertiary (3 ) alcohol. The tests can also determine whether or not there is a secondary methyl alcohol functionality in the molecule. You will do four chemical tests: (1) hromic Acid Test (or Jones xidation), (2) itter Test using potassium permanganate (3) the Lucas Test using Znl 2 and l, and (4) the Iodoform Test. The experiment has three parts, all of which can be done in one laboratory session. First, you will practice all four of the chemical test using known alcohols. You will perform each of the first three tests three times, once with a primary, once with a secondary and once with a tertiary alcohol. The fourth test we will do two times, once with a secondary methyl containing alcohol and once with a not secondary methyl alcohol. The tests on the three known alcohols can be done at the same time. Then you will perform all four chemical tests on your unknown. Finally, you will take an Infrared Spectrum of your unknown. You will identify your unknown alcohol and as many peaks as you can using our I tables at the back of this manual. PLEASE ETUN TE EAGENT BTTLES T TE ENTAL BEN WEN YU AE FINISED WIT TEM S TAT TES AN USE TEM. Test 1: hromic Acid xidation This test distinguishes primary and secondary alcohols from tertiary. hromic acid will oxidize a primary alcohol first to an aldehyde and then to a carboxylic acid and it will oxidize a secondary alcohol to a ketone. Tertiary alcohols do not react. The -bearing carbon must have a hydrogen atom attached. ecall, that a carbon is oxidized when it loses a hydrogen or hydrogens or gains a more electronegative atom. Since the carbon atom is being oxidized in primary and secondary, the orange chromium r 6 ion is being reduced to the blue-green r 3 ion. The reactions involved are shown in Figure 6.1. Primary Alcohol Secondary Alcohol ' Tertiary alcohol '' ' 2 r 2 7 2 S 4 orange 2 r 2 7 orange 2 r 2 7 orange Figure 6.1 hromic Acid xidation of Alcohols 2 S 4 2 S 4 ' r 2 (S 4 ) 3 blue-green r 2 (S 4 ) 3 blue-green No reaction, no color change Procedure: Set-up three small test tubes in your test tube rack. The tubes do not need to be dry. Label the first test tube as a primary alcohol, the next as a secondary alcohol and the third as a tertiary alcohol. Write down in your notebook which alcohols you are going to be using. Add 2 ml of acetone to each test tube and then add 3-4 drops of your test alcohol. Be sure that the drops fall into the acetone and do not remain on the sides of the tube. Add 2 drops of the hromic Acid Test eagent (also called the Bordwell-Wellman eagent). Shake

vigorously using a small, tight fitting cork. You should see a color change to a blue or blue-green or similarly colored precipitate within a few seconds to indicate a positive test. ecord your results in your notebook. Test 2: itter Test This test is similar to the hromic Acid xidation and provides the same information. It is the oxidation of primary and secondary alcohols to carboxylic acids and ketones using potassium permanganate (KMn 4 ). Again, tertiary alcohols cannot be oxidized by this reagent because there is no hydrogen to be lost from the carbon that bears the group. In the itter Test the Mn 7 of KMn 4 (bright purple) is reduced to Mn 4. The Mn 4 is brownish in color. The reactions involved are as follows. 2 2 Figure 6.2 Potassium Permangante xidation KMn 4 purple Ac or Mn 2 brown 3 KMn 4 purple Ac No reaction, no color change Procedure: As for the hromic Acid xidation, set-up three small, labeled tests tubes. Add 2 ml acetic acid (AUTIN: Stench!) to each tube. Add 3-4 drops of the test alcohol to each tube and then add NE drop of saturated KMn 4 solution to each test tube. Shake vigorously to mix, using a small cork as before. For the 1 and 2 alcohols you should see a brownish color develop as the purple KMn 4 color disappears. Do not add too much KMn 4. If you add an excess of this reagent, the purple color will persist even though you have a primary or secondary alcohol. With the tertiary alcohol you should see no color change since the purple color remains. ecord your observations in your notebook. Test 3: Lucas Test This test distinguishes tertiary, secondary and primary alcohols from each other. It uses zinc chloride as the reagent in concentrated hydrochloric acid (Lucas eagent). It is based on the rate of formation of insoluble alkyl chloride. An emulsion is formed. This test is reliable only for alcohols that are fairly soluble in water. Tertiary Alcohols Secondary Alcohols Primary alcohols eact immediately to form an emulsion of the alkyl halide and water (cloudy solution). eact in 5-10 minutes. eating in warm water and shaking is sometimes necessary with water-insoluble alcohols. These generally take more than one hour to react. The rate of reaction of the alcohols is determined by the ease of formation of the carbocation intermediate. Tertiary alcohols react quickly because they form a relatively stable tertiary carbocation and secondary alcohols react more slowly because the secondary carbocation is less stabilized than the tertiary carbocation. The first step, shown below for a tertiary alcohol, involves a Lewis acid- base reaction between zinc chloride and a lone pair of electrons on the alcohol oxygen. In the next step, which is the slow, rate determining step, the -Znl complex leaves and the carbocation is then attacked by a chloride anion from the l solvent to form the insoluble alkyl chloride which forms the cloudy emulsion indicative of a positive test. Again, the overall rate of the reaction is determined by the slow step, which is the breaking of the --Znl bond. This rate is determined by the stability of the carbocation being formed.

Tertiary alcohol Figure 6.3 Lucas Test '' Znl 2 l ' Lewis Base Lewis Acid ecall: Stability of carbocations: '' ' Zn l - l '' ' - l '' l ' insoluble '' ' ' Procedure: Set-up three small test tubes as above, labeling each of them. Add 0.5 ml of the test alcohol to each test tube. To the first test tube, add 3 ml of the Lucas reagent. Shake vigorously using a small cork to stopper the test tube. Wait at least 10 minutes. If you have a water insoluble alcohol (you see two layers in your test tube) then repeat the experiment using a hot water bath set at 60, immersing the test tube in the water bath immediately after shaking and waiting the 10 minutes with occasional shaking. Also repeat the experiment using a water-soluble alcohol of the appropriate class. ecord your results. epeat on all three classes of alcohol. Test 4: Iodoform Test This test is slightly different from the previous three tests. This test does not distinguish 1, 2, 3 alcohol but is specific for only one class of alcohol. This is the secondary methyl alcohol. If the alcohol contains a methyl group attached to a carbon that also has a hydrogen and an group then it will give a positive iodoform test. The formation of a yellow precipitate indicates a positive test. This is shown in figure 6.4. Figure 6.4 3 =, 3, 2 3, etc This group must be present in the molecule in order to give a positive iodoform test. The mechanism of the reaction is somewhat complex (Figure 6.5) and will be studied in detail in the second semester. nly the outline of the mechanism is shown here. Notice that the first step is the formation of the mild oxidizing agent sodium hypoiodite, NaI, from sodium hydroxide and iodine. NaI oxidizes the alcohol to a carbonyl in the second step. NaI is similar to sodium hypochlorite, Nal, which is the active ingredient in household bleach. Notice that the oxidation state of the halogen is 1, not the usual 1. In the second step, the alcohol is oxidized to a ketone (loss of two hydrogens) and the oxidation state of the iodine changes from 1 to 1 (gain of 2 electrons). In the third step, which really consists of several individual steps, the methyl ketone is converted to the anion of a carboxylic acid (with one carbon less than the alcohol) and iodoform (yellow precipitate). nly the second and third steps involve oxidation/reduction.

Note that the initial product formed is a methyl ketone derivative and acetone contains this functionality. Acetone therefore gives a positive Iodoform Test. Be sure that your test tube does not contain any traces of acetone. Step 1: Step 2: I I Na - Na - I 3 Figure 6.5 Iodoform Test Step 3: 3 3 I 2 4 - - I 3 3 2 3I - Iodoform - yellow solid I - Na I - Na 3 2 I - Procedure: We will do the iodoform test only twice with known alcohols, once with an alcohol that contains the methyl secondary alcohol functionality and once with a compound that does not. You will need two mediumsized test tubes. Make sure there is no acetone present in your test tubes. Acetone also gives a positive Iodoform Test. To each test tube, add 4-5 drops of test alcohol, 2 ml 2, 2 ml 10% sodium hydroxide solution. If your alcohol does not fully dissolve, add 1 ml of methanol. Add a 10% solution of iodine (I 2 ) in potassium iodide (KI) dropwise. Keep adding the dark iodine solution with stirring until you see a faint yellow color persisting in the test tube. Note the reaction that is occurring. As you add the I 2 to the Na solution, you are forming your sodium hypoiodite reagent. Add enough iodine so that you have a slight excess of iodine as evidenced by a persistent yellow or brownish color. You should see a yellow precipitate starting to form within five minutes. Sometimes you may need to heat the mixture to 60 in a water bath. Unknown Alcohol When you have finished all four tests and are confident that you can perform them accurately and can distinguish a positive test from a negative one, then get an unknown alcohol from the teaching assistant. ecord your unknown number in your notebook and then repeat all four tests on your unknown. Your goal is to classify it as a primary, secondary or tertiary alcohol. ecord the results of the four tests in your notebook and on your Unknown eport Sheet. Infrared Spectrum of Your Unknown nce you have identified your unknown as a 1, 2, or 3 alcohol, then you will also take its infra-red spectrum to establish its identity. Place the spectrum in your laboratory notebook and identify as many absorbances as you can using the I correlation table given at the back of this manual and in the textbook. Positive identification can be made by comparing your spectrum to that of the authentic alcohol. These are given in Appendix 6.2. Another source is of spectra is http://webbook.nist.gov/gov/chemistry. The National Institute of Standards and Technology (NIST) provides gas-phase spectra and the absorbances due to the - stretching frequency will be much narrower and at higher wavenumbers (cm -1 ). Why? The rest of the spectrum will be very similar to that of the liquid phase. ***************************

Appendix 6.1: A possible mechanism for hypoiodite oxidation of Alcohols. Figure 6.6 I I Na - Na - I I I I 3 I - 3 3 3 I - 2 - Appendix 6.2 Infrared Spectra of Unknown Alcohols. Methyl Alcohol Ethyl Alcohol

1-Propanol 2-methyl-2-Propanol 1-Butanol

2-Butanol (s-butyl Alcohol) 1-Pentanol (Amyl Alcohol) 3-Methyl-1-butanol (Isoamyl Alcohol)

2-Methyl-2-butanol yclohexanol