Molecular Models in Biology
|
|
|
- Magdalene Washington
- 9 years ago
- Views:
Transcription
1 Molecular Models in Biology Objectives: After this lab a student will be able to: 1) Understand the properties of atoms that give rise to bonds. 2) Understand how and why atoms form ions. 3) Model covalent, ionic and hydrogen bonds. 4) Be able to predict which type of bond (if any) an atom is likely to form. 5) Model a carbon chain 6) Model the functional groups: hydroxyl, amino, and carboxyl 7) Understand basic carbohydrate structure. 8) Understand basic organic acid structure. 9) Model glucose, fatty acids and amino acids. Introduction: The properties of chemical compounds are directly related to the ways in which atoms are bonded together into molecules. Molecules are 3-dimensional entities that we often discuss in on a 2-dimensional surface (in our notes). Lewis dot structures and structural formulas of molecules are both examples of 2-D models. Using a ball and stick modelling kit, you will be able to see how atoms form molecules in 3-D. Atoms: Before you can begin forming models, you need to be able to predict the atomic structure of atoms of various elements. Atoms are made up of 3 parts (as discussed in lecture). Fill in the table below with your knowledge of the basic structure of an atom: Particle Location in the atom Electrical Charge Mass Proton Neutron Electron 1
2 Using the Periodic Table of Elements attached to this worksheet, complete the following chart: Element Oxygen Chemical Symbol Number of Protons Number of Neutrons Number of Electrons Atomic Mass Carbon Hydrogen Nitrogen Phosphorous Sulfur Sodium Chlorine Iodine Neon Draw a Bohr model for each of an atom of each of the following elements: O, C, H, N, P, S, Na, Cl, I, Ne 2
3 Valence electrons are those located in the outermost orbital (shell). Indicate how many valence electrons each of the following elements has and represent an atom using a Lewis dot structure. Element Number of valence electrons Lewis dot structure Oxygen Carbon Hydrogen Nitrogen Phosphorous Sulfur Sodium Chlorine Iodine Neon Models of Covalently Bonded Molecules A covalent bond occurs when 2 atoms share a pair of electrons. By sharing electrons, each atom can satisfy meeting a full valence shell and thus be stable. For each molecule below, draw both a Lewis Dot Structure and a structural formula H2O (water) CH4 (methane) NH3 (ammonia) 3
4 Now model each of the above molecules using your ball and stick model kit. Color code for the kit Atom Color and size Hole pattern Hydrogen White, very small No holes; ball and stick unit Carbon Black, large 4 holes equally spaced Oxygen Red, small 2 holes spaced far apart Nitrogen Blue, small 3 holes spaced far apart Sodium Orange, large 1 hole Chlorine Green, large 1 hole Question: What do the sticks between the balls represent? Look at your model of methane. If you drew a line connecting each hydrogen to each other, you could visualize a tetrahedron. Question: Water and ammonia also form tetrahedrons. For each of those molecules, describe what is located at the points that do not have a hydrogen. 4
5 The Polar Covalent Nature of Water and Hydrogen Bonds Because water has electrons at 2 of the 4 corners of the tetrahedron, those corners have concentrated a negative charge on that side of the molecule. Likewise, the hydrogen atoms at the other 2 corners have concentrated the positive charge of the protons on the opposite side of the molecule. The unequal distribution of charge means that water is polar. Polar molecules form hydrogen bonds. The negative side of one molecule aligns with the positive side of another molecule and forms a weak electrical attraction. You can experience these bonds with water when you watch a water strider walking on water. The insect is not heavy enough to break the hydrogen bonds that link the water molecules together. Water Strider 5
6 Make a couple of water molecules with your ball and stick set. Trace them in the space below. Show how hydrogen bonds would form between them. Ions and Ionic Compounds Ions form when an atom gains or loses electrons in order to complete a valence shell. Atoms that have gained electrons are called anions; those that have lost electrons are called cations. What charge to anions and cations have? Fill in the table below: Ion Anion Cation Charge Complete the following table indicating whether the element would readily become an anion or cation. Draw the Lewis dot structure for the ion. Element Number of Valence Electrons Becomes an anion or a cation? Lewis dot structure for the ion Sodium Chlorine Potassium Magnesium Calcium 6
7 For the following ionic compounds, indicate which atom is the anion and which is the cation. Compound Anion Cation NaCl (sodium chloride) CaCl2 (calcium chloride) KI (potassium iodide) HCl (hydrogen chloride) Use your ball and stick model to form NaCl. Question: Should you use the sticks provided? Why or why not? If not, can you think of a better way to model this compound? Ionic compounds dissociate in polar solvents (like water). This happens because the polarity of water surrounds each ion and separates it from its partner ion. Make a few ball and stick models of water. Model how water dissolves NaCl. Question: In your own words, explain why water is an excellent solvent and why ionic compounds dissociate in water. 7
8 Organic Compounds Organic molecules contain the elements C and H. Question: Which organic molecule have you modeled in this lab? In organic molecules, carbon forms chains. In the simplest structure, the other available bonding sites on each C are H. Methane Ethane Propane Make a ball and stick model of each of these compounds. Notice how they are not flat 2- dimensional structures. 8
9 Functional Groups In organic molecules important to biology, some of the H atoms on the C-chain are replaced by groups of atoms called functional groups. Functional Group Hydroxyl Carboxyl Chemical Formula -O-H O -C-OH Amino Phosphate -NH2 -PO4 Modelling glucose. Glucose (C6H12O6) is a typical carbohydrate. The molecule is a 6 carbon chain. Each carbon is connected to another carbon. Each C has two other bonding sites (besides those connected to the neighboring C). One of those sites has an H, and the other has a hydroxyl group (OH). Notice that H + OH = H2O. Carbo hydrate means that each carbon has the components of water (hydration) attached to it. Using the information above, make a ball and stick model of glucose. Question: Using that ball and stick model. Draw a 2-D structural formula of glucose below. Question: How many hydroxyl groups are in glucose? Circle them in your diagram above. 9
10 Modelling Fatty Acids All organic acids have a carboxyl group. Fatty acids are just a long chain of carbon atoms with a carboxyl group at one end. In saturated fatty acids, all other bonding sites on each C in the chain are filled with hydrogen. Use your ball and stick model to create a saturated fatty acid that is 6 C s long. Question: Using that model as a guide, draw the structural formula of your saturated fatty acid below. Circle the carboxyl group. Modelling Amino Acids Like fatty acids, amino acids are organic acids. Question: What functional group must an amino acid have if it is an organic acid? In addition to that carboxyl group, amino acids have an amino group. Both the carboxyl group and amino group are attached to the same carbon. The generalized structural formula for an amino acid is: The R indicates the rest of the molecule. 10
11 Question: There are 20 different amino acids. How many different R configurations do you think there are? Using your ball and stick model, create a model of this basic amino acid structure. Leave the R location unfilled. For the amino acid glycine, the R group is just a hydrogen atom. Add that to your model. Draw the structural formula of glycine below. Circle the amino group and the carboxyl group. For the amino acid alanine, the R group is CH3. Change your model to reflect alanine. Draw the structural formula of alanine below. Circle the amino group and the carboxyl group. You can see that ball and stick models can get complicated fast! Rather than continue making more and more complicated models, we will go back to 2-D representations of molecules. Now you have a basic understanding of the 3-D structure underlying those 2-D models. 11
Chapter 2 The Chemical Context of Life
Chapter 2 The Chemical Context of Life Multiple-Choice Questions 1) About 25 of the 92 natural elements are known to be essential to life. Which four of these 25 elements make up approximately 96% of living
List the 3 main types of subatomic particles and indicate the mass and electrical charge of each.
Basic Chemistry Why do we study chemistry in a biology course? All living organisms are composed of chemicals. To understand life, we must understand the structure, function, and properties of the chemicals
Test Bank - Chapter 4 Multiple Choice
Test Bank - Chapter 4 The questions in the test bank cover the concepts from the lessons in Chapter 4. Select questions from any of the categories that match the content you covered with students. The
Laboratory 11: Molecular Compounds and Lewis Structures
Introduction Laboratory 11: Molecular Compounds and Lewis Structures Molecular compounds are formed by sharing electrons between non-metal atoms. A useful theory for understanding the formation of molecular
Ionic and Covalent Bonds
Ionic and Covalent Bonds Ionic Bonds Transfer of Electrons When metals bond with nonmetals, electrons are from the metal to the nonmetal The becomes a cation and the becomes an anion. The between the cation
7.4. Using the Bohr Theory KNOW? Using the Bohr Theory to Describe Atoms and Ions
7.4 Using the Bohr Theory LEARNING TIP Models such as Figures 1 to 4, on pages 218 and 219, help you visualize scientific explanations. As you examine Figures 1 to 4, look back and forth between the diagrams
Lewis Dot Notation Ionic Bonds Covalent Bonds Polar Covalent Bonds Lewis Dot Notation Revisited Resonance
Lewis Dot Notation Ionic Bonds Covalent Bonds Polar Covalent Bonds Lewis Dot Notation Revisited Resonance Lewis Dot notation is a way of describing the outer shell (also called the valence shell) of an
Chapter 2: The Chemical Context of Life
Chapter 2: The Chemical Context of Life Name Period This chapter covers the basics that you may have learned in your chemistry class. Whether your teacher goes over this chapter, or assigns it for you
Which substance contains positive ions immersed in a sea of mobile electrons? A) O2(s) B) Cu(s) C) CuO(s) D) SiO2(s)
BONDING MIDTERM REVIEW 7546-1 - Page 1 1) Which substance contains positive ions immersed in a sea of mobile electrons? A) O2(s) B) Cu(s) C) CuO(s) D) SiO2(s) 2) The bond between hydrogen and oxygen in
Bonding Practice Problems
NAME 1. When compared to H 2 S, H 2 O has a higher 8. Given the Lewis electron-dot diagram: boiling point because H 2 O contains stronger metallic bonds covalent bonds ionic bonds hydrogen bonds 2. Which
In the box below, draw the Lewis electron-dot structure for the compound formed from magnesium and oxygen. [Include any charges or partial charges.
Name: 1) Which molecule is nonpolar and has a symmetrical shape? A) NH3 B) H2O C) HCl D) CH4 7222-1 - Page 1 2) When ammonium chloride crystals are dissolved in water, the temperature of the water decreases.
PROTONS AND ELECTRONS
reflect Imagine that you have a bowl of oranges, bananas, pineapples, berries, pears, and watermelon. How do you identify each piece of fruit? Most likely, you are familiar with the characteristics of
CHEMISTRY BONDING REVIEW
Answer the following questions. CHEMISTRY BONDING REVIEW 1. What are the three kinds of bonds which can form between atoms? The three types of Bonds are Covalent, Ionic and Metallic. Name Date Block 2.
Directions: T. Trimpe 2005 http://sciencespot.net/
Candy Compounds Teacher Information I use this activity after we have discussed ionic and covalent bonds to give my students a chance to practice bonding. I walk around the classroom as students work on
Survival Organic Chemistry Part I: Molecular Models
Survival Organic Chemistry Part I: Molecular Models The goal in this laboratory experience is to get you so you can easily and quickly move between empirical formulas, molecular formulas, condensed formulas,
Chapter 6 Assessment. Name: Class: Date: ID: A. Multiple Choice Identify the choice that best completes the statement or answers the question.
Name: Class: Date: ID: A Chapter 6 Assessment Multiple Choice Identify the choice that best completes the statement or answers the question. 1. When an atom loses an electron, it forms a(n) a. anion. c.
Chapter 5 TEST: The Periodic Table name
Chapter 5 TEST: The Periodic Table name HPS # date: Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The order of elements in the periodic table is based
5. Structure, Geometry, and Polarity of Molecules
5. Structure, Geometry, and Polarity of Molecules What you will accomplish in this experiment This experiment will give you an opportunity to draw Lewis structures of covalent compounds, then use those
ATOMS A T O M S, I S O T O P E S, A N D I O N S. The Academic Support Center @ Daytona State College (Science 120, Page 1 of 39)
ATOMS A T O M S, I S O T O P E S, A N D I O N S The Academic Support Center @ Daytona State College (Science 120, Page 1 of 39) THE ATOM All elements listed on the periodic table are made up of atoms.
Name Class Date. What is ionic bonding? What happens to atoms that gain or lose electrons? What kinds of solids are formed from ionic bonds?
CHAPTER 1 2 Ionic Bonds SECTION Chemical Bonding BEFORE YOU READ After you read this section, you should be able to answer these questions: What is ionic bonding? What happens to atoms that gain or lose
Molecular Models Experiment #1
Molecular Models Experiment #1 Objective: To become familiar with the 3-dimensional structure of organic molecules, especially the tetrahedral structure of alkyl carbon atoms and the planar structure of
Ionic and Metallic Bonding
Ionic and Metallic Bonding BNDING AND INTERACTINS 71 Ions For students using the Foundation edition, assign problems 1, 3 5, 7 12, 14, 15, 18 20 Essential Understanding Ions form when atoms gain or lose
7) How many electrons are in the second energy level for an atom of N? A) 5 B) 6 C) 4 D) 8
HOMEWORK CHEM 107 Chapter 3 Compounds Putting Particles Together 3.1 Multiple-Choice 1) How many electrons are in the highest energy level of sulfur? A) 2 B) 4 C) 6 D) 8 2) An atom of phosphorous has how
EXPERIMENT 1: Survival Organic Chemistry: Molecular Models
EXPERIMENT 1: Survival Organic Chemistry: Molecular Models Introduction: The goal in this laboratory experience is for you to easily and quickly move between empirical formulas, molecular formulas, condensed
ANSWER KEY. Energy Levels, Electrons and IONIC Bonding It s all about the Give and Take!
ANSWER KEY Energy Levels, Electrons and IONIC Bonding It s all about the Give and Take! From American Chemical Society Middle School Chemistry Unit: Chapter 4 Content Statements: Distinguish the difference
Modelling Compounds. 242 MHR Unit 2 Atoms, Elements, and Compounds
6.3 Figure 6.26 To build the Michael Lee-Chin Crystal at the Royal Ontario Museum, models were used at different stages to convey different types of information. Modelling Compounds The Michael Lee-Chin
WRITING CHEMICAL FORMULA
WRITING CHEMICAL FORMULA For ionic compounds, the chemical formula must be worked out. You will no longer have the list of ions in the exam (like at GCSE). Instead you must learn some and work out others.
Sample Exercise 8.1 Magnitudes of Lattice Energies
Sample Exercise 8.1 Magnitudes of Lattice Energies Without consulting Table 8.2, arrange the ionic compounds NaF, CsI, and CaO in order of increasing lattice energy. Analyze From the formulas for three
Chemistry Post-Enrolment Worksheet
Name: Chemistry Post-Enrolment Worksheet The purpose of this worksheet is to get you to recap some of the fundamental concepts that you studied at GCSE and introduce some of the concepts that will be part
(1) e.g. H hydrogen that has lost 1 electron c. anion - negatively charged atoms that gain electrons 16-2. (1) e.g. HCO 3 bicarbonate anion
GS106 Chemical Bonds and Chemistry of Water c:wou:gs106:sp2002:chem.wpd I. Introduction A. Hierarchy of chemical substances 1. atoms of elements - smallest particles of matter with unique physical and
Electrons in Atoms & Periodic Table Chapter 13 & 14 Assignment & Problem Set
Electrons in Atoms & Periodic Table Name Warm-Ups (Show your work for credit) Date 1. Date 2. Date 3. Date 4. Date 5. Date 6. Date 7. Date 8. Electrons in Atoms & Periodic Table 2 Study Guide: Things You
Elements in the periodic table are indicated by SYMBOLS. To the left of the symbol we find the atomic mass (A) at the upper corner, and the atomic num
. ATOMIC STRUCTURE FUNDAMENTALS LEARNING OBJECTIVES To review the basics concepts of atomic structure that have direct relevance to the fundamental concepts of organic chemistry. This material is essential
Chemistry Diagnostic Questions
Chemistry Diagnostic Questions Answer these 40 multiple choice questions and then check your answers, located at the end of this document. If you correctly answered less than 25 questions, you need to
Section Activity #1: Fill out the following table for biology s most common elements assuming that each atom is neutrally charged.
LS1a Fall 2014 Section Week #1 I. Valence Electrons and Bonding The number of valence (outer shell) electrons in an atom determines how many bonds it can form. Knowing the number of valence electrons present
Name Block Date Ch 17 Atomic Nature of Matter Notes Mrs. Peck. atoms- the smallest particle of an element that can be identified with that element
Name Block Date Ch 17 Atomic Nature of Matter Notes Mrs. Peck atoms- the smallest particle of an element that can be identified with that element are the building blocks of matter consists of protons and
Chapter 2 Atoms, Molecules, and Ions
Chapter 2 Atoms, Molecules, and Ions 1. Methane and ethane are both made up of carbon and hydrogen. In methane, there are 12.0 g of carbon for every 4.00 g of hydrogen, a ration of 3:1 by mass. In ethane,
Atoms and Molecules. Preparation. Objectives. Standards. Materials. Grade Level: 5-8 Group Size: 20-30 Time: 60 90 Minutes Presenters: 2-4
Atoms and Molecules Preparation Grade Level: 5-8 Group Size: 20-30 Time: 60 90 Minutes Presenters: 2-4 Objectives This lesson will enable students to: Describe how atoms are the building blocks of matter
Lewis Dot Structures of Atoms and Ions
Why? The chemical properties of an element are based on the number of electrons in the outer shell of its atoms. We use Lewis dot structures to map these valence electrons in order to identify stable electron
Nomenclature and the Periodic Table To name compounds and to determine molecular formulae from names a knowledge of the periodic table is helpful.
Nomenclature and the Periodic Table To name compounds and to determine molecular formulae from names a knowledge of the periodic table is helpful. Atomic Number = number of protons Mass Number = number
neutrons are present?
AP Chem Summer Assignment Worksheet #1 Atomic Structure 1. a) For the ion 39 K +, state how many electrons, how many protons, and how many 19 neutrons are present? b) Which of these particles has the smallest
19.1 Bonding and Molecules
Most of the matter around you and inside of you is in the form of compounds. For example, your body is about 80 percent water. You learned in the last unit that water, H 2 O, is made up of hydrogen and
Sketch the model representation of the first step in the dissociation of water. H 2. O (l) H + (aq) + OH- (aq) + H 2. OH - (aq) + H 3 O+ (aq)
Lesson Objectives Students will: Create a physical representation of the autoionization of water using the water kit. Describe and produce a physical representation of the dissociation of a strong acid
Sample Exercise 8.1 Magnitudes of Lattice Energies
Sample Exercise 8.1 Magnitudes of Lattice Energies Without consulting Table 8.2, arrange the following ionic compounds in order of increasing lattice energy: NaF, CsI, and CaO. Analyze: From the formulas
Theme 3: Bonding and Molecular Structure. (Chapter 8)
Theme 3: Bonding and Molecular Structure. (Chapter 8) End of Chapter questions: 5, 7, 9, 12, 15, 18, 23, 27, 28, 32, 33, 39, 43, 46, 67, 77 Chemical reaction valence electrons of atoms rearranged (lost,
Periodic Table Questions
Periodic Table Questions 1. The elements characterized as nonmetals are located in the periodic table at the (1) far left; (2) bottom; (3) center; (4) top right. 2. An element that is a liquid at STP is
Science 20. Unit A: Chemical Change. Assignment Booklet A1
Science 20 Unit A: Chemical Change Assignment Booklet A FOR TEACHER S USE ONLY Summary Teacher s Comments Chapter Assignment Total Possible Marks 79 Your Mark Science 20 Unit A: Chemical Change Assignment
19.2 Chemical Formulas
In the previous section, you learned how and why atoms form chemical bonds with one another. You also know that atoms combine in certain ratios with other atoms. These ratios determine the chemical formula
ATOMS AND BONDS. Bonds
ATOMS AND BONDS Atoms of elements are the simplest units of organization in the natural world. Atoms consist of protons (positive charge), neutrons (neutral charge) and electrons (negative charge). The
Chapter 8 Concepts of Chemical Bonding
Chapter 8 Concepts of Chemical Bonding Chemical Bonds Three types: Ionic Electrostatic attraction between ions Covalent Sharing of electrons Metallic Metal atoms bonded to several other atoms Ionic Bonding
Lab 3 Organic Molecules of Biological Importance
Name Biology 3 ID Number Lab 3 Organic Molecules of Biological Importance Section 1 - Organic Molecules Section 2 - Functional Groups Section 3 - From Building Blocks to Macromolecules Section 4 - Carbohydrates
ATOMS. Multiple Choice Questions
Chapter 3 ATOMS AND MOLECULES Multiple Choice Questions 1. Which of the following correctly represents 360 g of water? (i) 2 moles of H 2 0 (ii) 20 moles of water (iii) 6.022 10 23 molecules of water (iv)
Part I: Principal Energy Levels and Sublevels
Part I: Principal Energy Levels and Sublevels As you already know, all atoms are made of subatomic particles, including protons, neutrons, and electrons. Positive protons and neutral neutrons are found
EXPERIMENT 9 Dot Structures and Geometries of Molecules
EXPERIMENT 9 Dot Structures and Geometries of Molecules INTRODUCTION Lewis dot structures are our first tier in drawing molecules and representing bonds between the atoms. The method was first published
Chapter 4: Structure and Properties of Ionic and Covalent Compounds
Chapter 4: Structure and Properties of Ionic and Covalent Compounds 4.1 Chemical Bonding o Chemical Bond - the force of attraction between any two atoms in a compound. o Interactions involving valence
IB Chemistry 1 Mole. One atom of C-12 has a mass of 12 amu. One mole of C-12 has a mass of 12 g. Grams we can use more easily.
The Mole Atomic mass units and atoms are not convenient units to work with. The concept of the mole was invented. This was the number of atoms of carbon-12 that were needed to make 12 g of carbon. 1 mole
B) atomic number C) both the solid and the liquid phase D) Au C) Sn, Si, C A) metal C) O, S, Se C) In D) tin D) methane D) bismuth B) Group 2 metal
1. The elements on the Periodic Table are arranged in order of increasing A) atomic mass B) atomic number C) molar mass D) oxidation number 2. Which list of elements consists of a metal, a metalloid, and
Periodic Table, Valency and Formula
Periodic Table, Valency and Formula Origins of the Periodic Table Mendelѐѐv in 1869 proposed that a relationship existed between the chemical properties of elements and their atomic masses. He noticed
Formulae, stoichiometry and the mole concept
3 Formulae, stoichiometry and the mole concept Content 3.1 Symbols, Formulae and Chemical equations 3.2 Concept of Relative Mass 3.3 Mole Concept and Stoichiometry Learning Outcomes Candidates should be
A mutual electrical attraction between the nuclei and valence electrons of different atoms that binds the atoms together is called a(n)
Chemistry I ATOMIC BONDING PRACTICE QUIZ Mr. Scott Select the best answer. 1) A mutual electrical attraction between the nuclei and valence electrons of different atoms that binds the atoms together is
Bonds. Bond Length. Forces that hold groups of atoms together and make them function as a unit. Bond Energy. Chapter 8. Bonding: General Concepts
Bonds hapter 8 Bonding: General oncepts Forces that hold groups of atoms together and make them function as a unit. Bond Energy Bond Length It is the energy required to break a bond. The distance where
Chem101: General Chemistry Lecture 9 Acids and Bases
: General Chemistry Lecture 9 Acids and Bases I. Introduction A. In chemistry, and particularly biochemistry, water is the most common solvent 1. In studying acids and bases we are going to see that water
Electrons In Atoms Mr. O Brien (SFHS) Chapter 5 Standard 1D
Electrons In Atoms Mr. O Brien (SFHS) Chapter 5 Standard 1D Electrons in Atoms (std.1d) What are Bohr Models? planetary model in which the negatively-charged electrons orbit a small, positively-charged
Chapter 5. Chapter 5. Naming Ionic Compounds. Objectives. Chapter 5. Chapter 5
Objectives Name cations, anions, and ionic compounds. Write chemical formulas for ionic compounds such that an overall neutral charge is maintained. Explain how polyatomic ions and their salts are named
Self Assessment_Ochem I
UTID: 2013 Objective Test Section Identify the choice that best completes the statement or answers the question. There is only one correct answer; please carefully bubble your choice on the scantron sheet.
Atomic Structure. Name Mass Charge Location Protons 1 +1 Nucleus Neutrons 1 0 Nucleus Electrons 1/1837-1 Orbit nucleus in outer shells
Atomic Structure called nucleons Name Mass Charge Location Protons 1 +1 Nucleus Neutrons 1 0 Nucleus Electrons 1/1837-1 Orbit nucleus in outer shells The number of protons equals the atomic number This
CHEMICAL NAMES AND FORMULAS
6 CEMICAL NAMES AND FORMULAS SECTION 6.1 INTRODUCTION TO CEMICAL BONDING (pages 133 137) This section explains how to distinguish between ionic and molecular compounds. It also defines cation and anion
Chapter 16: Tests for ions and gases
The position of hydrogen in the reactivity series Hydrogen, although not a metal, is included in the reactivity series because it, like metals, can be displaced from aqueous solution, only this time the
Chapter 17. How are acids different from bases? Acid Physical properties. Base. Explaining the difference in properties of acids and bases
Chapter 17 Acids and Bases How are acids different from bases? Acid Physical properties Base Physical properties Tastes sour Tastes bitter Feels slippery or slimy Chemical properties Chemical properties
Amount of Substance. http://www.avogadro.co.uk/definitions/elemcompmix.htm
Page 1 of 14 Amount of Substance Key terms in this chapter are: Element Compound Mixture Atom Molecule Ion Relative Atomic Mass Avogadro constant Mole Isotope Relative Isotopic Mass Relative Molecular
Objectives. PAM1014 Introduction to Radiation Physics. Constituents of Atoms. Atoms. Atoms. Atoms. Basic Atomic Theory
PAM1014 Introduction to Radiation Physics Basic Atomic Theory Objectives Introduce and Molecules The periodic Table Electronic Energy Levels Atomic excitation & de-excitation Ionisation Molecules Constituents
How much does a single atom weigh? Different elements weigh different amounts related to what makes them unique.
How much does a single atom weigh? Different elements weigh different amounts related to what makes them unique. What units do we use to define the weight of an atom? amu units of atomic weight. (atomic
CHAPTER 6 Chemical Bonding
CHAPTER 6 Chemical Bonding SECTION 1 Introduction to Chemical Bonding OBJECTIVES 1. Define Chemical bond. 2. Explain why most atoms form chemical bonds. 3. Describe ionic and covalent bonding.. 4. Explain
Unit 3 Study Guide: Electron Configuration & The Periodic Table
Name: Teacher s Name: Class: Block: Date: Unit 3 Study Guide: Electron Configuration & The Periodic Table 1. For each of the following elements, state whether the element is radioactive, synthetic or both.
Balancing Chemical Equations
Balancing Chemical Equations Academic Success Center Science Tutoring Area Science Tutoring Area Law of Conservation of Mass Matter cannot be created nor destroyed Therefore the number of each type of
Cambridge International Examinations Cambridge International General Certificate of Secondary Education
Cambridge International Examinations Cambridge International General Certificate of Secondary Education *0123456789* CHEMISTRY 0620/03 Paper 3 Theory (Core) For Examination from 2016 SPECIMEN PAPER 1 hour
Balancing Chemical Equations Worksheet
Balancing Chemical Equations Worksheet Student Instructions 1. Identify the reactants and products and write a word equation. 2. Write the correct chemical formula for each of the reactants and the products.
Chapter 1 Structure and Bonding. Modified by Dr. Daniela Radu
John E. McMurry www.cengage.com/chemistry/mcmurry Chapter 1 Structure and Bonding Modified by Dr. Daniela Radu What is Organic Chemistry? Living things are made of organic chemicals Proteins that make
Study Guide For Chapter 7
Name: Class: Date: ID: A Study Guide For Chapter 7 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The number of atoms in a mole of any pure substance
( + and - ) ( - and - ) ( + and + ) Atoms are mostly empty space. = the # of protons in the nucleus. = the # of protons in the nucleus
Atoms are mostly empty space Atomic Structure Two regions of every atom: Nucleus - is made of protons and neutrons - is small and dense Electron cloud -is a region where you might find an electron -is
Start: 26e Used: 6e Step 4. Place the remaining valence electrons as lone pairs on the surrounding and central atoms.
Section 4.1: Types of Chemical Bonds Tutorial 1 Practice, page 200 1. (a) Lewis structure for NBr 3 : Step 1. The central atom for nitrogen tribromide is bromine. 1 N atom: 1(5e ) = 5e 3 Br atoms: 3(7e
The Mole. 6.022 x 10 23
The Mole 6.022 x 10 23 Background: atomic masses Look at the atomic masses on the periodic table. What do these represent? E.g. the atomic mass of Carbon is 12.01 (atomic # is 6) We know there are 6 protons
Lecture Overview. Hydrogen Bonds. Special Properties of Water Molecules. Universal Solvent. ph Scale Illustrated. special properties of water
Lecture Overview special properties of water > water as a solvent > ph molecules of the cell > properties of carbon > carbohydrates > lipids > proteins > nucleic acids Hydrogen Bonds polarity of water
ANSWER KEY : BUILD AN ATOM PART I: ATOM SCREEN Build an Atom simulation ( http://phet.colorado.edu/en/simulation/build an atom )
ANSWER KEY : PART I: ATOM SCREEN Build an Atom simulation ( http://phet.colorado.edu/en/simulation/build an atom ) 1. Explore the Build an Atom simulation with your group. As you explore, talk about what
Chapter 8 How to Do Chemical Calculations
Chapter 8 How to Do Chemical Calculations Chemistry is both a qualitative and a quantitative science. In the laboratory, it is important to be able to measure quantities of chemical substances and, as
TOPIC 7. CHEMICAL CALCULATIONS I - atomic and formula weights.
TOPIC 7. CHEMICAL CALCULATIONS I - atomic and formula weights. Atomic structure revisited. In Topic 2, atoms were described as ranging from the simplest atom, H, containing a single proton and usually
Instructors Guide: Atoms and Their Isotopes
Instructors Guide: Atoms and Their Isotopes Standards Connections Connections to NSTA Standards for Science Teacher Preparation C.3.a.1 Fundamental structures of atoms and molecules. C.3.b.27 Applications
Health Science Chemistry I CHEM-1180 Experiment No. 15 Molecular Models (Revised 05/22/2015)
(Revised 05/22/2015) Introduction In the early 1900s, the chemist G. N. Lewis proposed that bonds between atoms consist of two electrons apiece and that most atoms are able to accommodate eight electrons
Instructions Answer all questions in the spaces provided. Do all rough work in this book. Cross through any work you do not want to be marked.
GCSE CHEMISTRY Higher Tier Chemistry 1H H Specimen 2018 Time allowed: 1 hour 45 minutes Materials For this paper you must have: a ruler a calculator the periodic table (enclosed). Instructions Answer all
6 Reactions in Aqueous Solutions
6 Reactions in Aqueous Solutions Water is by far the most common medium in which chemical reactions occur naturally. It is not hard to see this: 70% of our body mass is water and about 70% of the surface
Untitled Document. 1. Which of the following best describes an atom? 4. Which statement best describes the density of an atom s nucleus?
Name: Date: 1. Which of the following best describes an atom? A. protons and electrons grouped together in a random pattern B. protons and electrons grouped together in an alternating pattern C. a core
Candidate Style Answer
Candidate Style Answer Chemistry A Unit F321 Atoms, Bonds and Groups High banded response This Support Material booklet is designed to accompany the OCR GCE Chemistry A Specimen Paper F321 for teaching
CHEMICAL FORMULAS AND EQUATIONS
reflect Imagine that you and three other classmates had enough supplies and the recipe to make one pepperoni pizza. The recipe might include a ball of dough, a cup of pizza sauce, a cup of cheese, and
Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.
Introduction to Chemistry Exam 2 Practice Problems 1 Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1.Atoms consist principally of what three
Question 4.2: Write Lewis dot symbols for atoms of the following elements: Mg, Na, B, O, N, Br.
Question 4.1: Explain the formation of a chemical bond. A chemical bond is defined as an attractive force that holds the constituents (atoms, ions etc.) together in a chemical species. Various theories
Chapter 2 Polar Covalent Bonds; Acids and Bases
John E. McMurry http://www.cengage.com/chemistry/mcmurry Chapter 2 Polar Covalent Bonds; Acids and Bases Javier E. Horta, M.D., Ph.D. University of Massachusetts Lowell Polar Covalent Bonds: Electronegativity
3/5/2014. iclicker Participation Question: A. MgS < AlP < NaCl B. MgS < NaCl < AlP C. NaCl < AlP < MgS D. NaCl < MgS < AlP
Today: Ionic Bonding vs. Covalent Bonding Strengths of Covalent Bonds: Bond Energy Diagrams Bond Polarities: Nonpolar Covalent vs. Polar Covalent vs. Ionic Electronegativity Differences Dipole Moments
Topic 4 National Chemistry Summary Notes. Formulae, Equations, Balancing Equations and The Mole
Topic 4 National Chemistry Summary Notes Formulae, Equations, Balancing Equations and The Mole LI 1 The chemical formula of a covalent molecular compound tells us the number of atoms of each element present
Chapter 4 Lecture Notes
Chapter 4 Lecture Notes Chapter 4 Educational Goals 1. Given the formula of a molecule, the student will be able to draw the line-bond (Lewis) structure. 2. Understand and construct condensed structural
Name: Block: Date: Test Review: Chapter 8 Ionic Bonding
Name: Block: Date: Test Review: Chapter 8 Ionic Bonding Part 1: Fill-in-the-blank. Choose the word from the word bank below. Each word may be used only 1 time. electron dot structure metallic electronegativity
Chemistry 51 Chapter 8 TYPES OF SOLUTIONS. A solution is a homogeneous mixture of two substances: a solute and a solvent.
TYPES OF SOLUTIONS A solution is a homogeneous mixture of two substances: a solute and a solvent. Solute: substance being dissolved; present in lesser amount. Solvent: substance doing the dissolving; present
