Analysis of Vitamin C Using Iodine. Introduction
|
|
|
- Matthew Ferguson
- 9 years ago
- Views:
Transcription
1 Analysis of Vitamin C Using Iodine Introduction Vitamin C (ascorbic acid) is oxidized to dehydroascorbic acid using a mild oxidizing agent such as iodine. The oxidation is a two- electron process, following the reaction: H + I 2 (ascorbic acid) H + 2I - + 2H + (dehydroascorbic acid) Vitamin C in water solution is readily oxidized by dissolved oxygen; therefore samples should be dissolved immediately before analysis. Long- term storage of vitamin C solutions must be avoided. During titration, a small amount of oxidation from oxygen already dissolved in the solution is unavoidable, but is usually not significant. However, continuous shaking of an open flask will bring about enough absorption of oxygen to cause a significant error. 1
2 Solutions needed for this experiment: Solutions prepared by the student Solutions provided by the instructor N Iodine titrant Concentrated hydrochloric acid 5% sodium hydroxide Starch Indicator Solution Specialized equipment needed: No specialized equipment is used in this experiment. Experimental Procedure Preparation and standardization of iodine titrant: 1. Using the top loading balance, weigh approximately 20.0 g of reagent grade potassium iodide. Make sure to record the exact weight of potassium iodide, to two decimal places, in your notebook. Dissolve the potassium iodide in approximately 25 ml of DI water. Weigh approximately 3.80 g of iodine, record the exact weight of iodine, to two decimal places, in your notebook, and add the iodine to the potassium iodide solution. (NTE: do NT weigh the iodine in the analytical balance!!) Stir the solution carefully to dissolve all of the iodine. (Iodine dissolves slowly, so this step may take some time.) When all of the iodine has dissolved, analytically transfer the solution to a L volumetric flask and QS with DI water. Clean a brown glass bottle with soap and water, rinse 2-3 times with small portions of DI water, followed by 2-3 rinsings with small portions of your iodine titrant. After rinsing the brown bottle with iodine titrant, store the rest of your iodine titrant in the brown bottle. Label the bottle with your name (or initials) and date. All waste materials from this step may be flushed down the sink with water. 2. Weigh ~ grams of arsenic (III) oxide on the analytical balance and transfer into a 250 ml beaker. Add ~20 ml of 5% sodium hydroxide solution and stir until the solid dissolves. Add 50 ml of deionized water and 2 ml of 12 M hydrochloric acid (concentrated hydrochloric acid). Transfer this solution quantitatively to a ml volumetric flask and QS with DI water. The chemical reactions involved in this step are: As23(s) H2 2H2As H + 2H3As3 2
3 Therefore, g arsenic (III) oxide produces moles of arsenic (III) oxide, which produces moles of arsenious acid. When diluted to ml, the resulting solution is M, or N. f course, a different mass of arsenic (III) oxide produces a different normality of solution. Calculate the normality of your solution based on the mass of arsenic (III) oxide that you used. 3. Pipette ml of the arsenious acid into each of three Erlenmeyer flasks (~125 ml size). Add 25 ml of DI water and 3.5 grams of sodium bicarbonate (a solid material) to each flask. Check the ph of each solution with ph paper (NT litmus paper). If necessary, add additional small amounts of sodium bicarbonate until the ph is between 7 and 8. If you overshoot ph 8, add small amounts of hydrochloric acid to reduce the ph. ph Test Paper color chart: 4. Add 5 ml of starch indicator to each flask and titrate with iodine solution until the first, stable, blue starch- triiodide color is achieved. Calculate the average normality of the iodine solution. Normality is calculated below. Label the iodine titrant with the normality, and record the normality in your notebook. N I2 = N H3 As 3! ml H 3 As 3 ml I2 3
4 Titration of vitamin C unknown: 1. Weigh ~0.5 grams of your unknown vitamin C sample to 4 decimal places, record the mass, and transfer to a ml volumetric flask. QS with DI water and mix by inversion several times. (NTE: a small amount of binder present in the vitamin C will not dissolve, and gives the solution a slightly cloudy appearance. This binder does not affect the results.) 2. Pipette ml of the vitamin C solution into a 250 ml Erlenmeyer flask and add 5 ml of starch indicator. Titrate the unknown with iodine titrant rapidly but accurately, to the first appearance of a stable blue starch- triiodide color. The entire contents of the Erlenmeyer flask should be the same blue color, and should maintain its color for at least 10 seconds. 3. Analyze 2 additional ml aliquots of vitamin C solution. 4. Your instructor will provide you with details concerning how to report the vitamin C concentration. Lab report A sample report is shown at the end of this procedure. WASTE DISPSAL: All solutions containing arsenic must be disposed of in the aqueous metals waste container. All other solutions may be poured down the sink. 4
5 SAMPLE REPRT: ALL VALUES ARE FICTINAL AND ARE USED FR ILLUSTRATIN NLY!! Standardization of Iodine titrant: Vitamin C Unknown # Robert Bud Fisher 1 st 2 nd 3 rd Vol. Arsenious acid, ml N Arsenious acid Volume Iodine titrant, ml N Iodine titrant N Iodine titrant (average) = Titration of vitamin C unknown: Mass of vitamin C sample: grams Vol. Vitamin C solution, ml Vol. Iodine titrant, ml Normality, vitamin C Molarity, vitamin C Moles, vitamin C mg, Vitamin C Average mg. Vitamin C in sample: Vitamin C in Sample: mg/g sample NTE: results are not rounded until the final answer!! Sample calculations shown on following pages. 5
6 Sample calculations: Normality of iodine: = ( N Iodine = ml! N arsenious _ acid arsenious _ acid ) ml Iodine ( 25.00mL! N) = N 25.04mL Normality of vitamin C: = ( N VC = ml! N Iodine Iodine) ml VC _ solution ( 4.85mL! N) = N 25.00mL Molarity vitamin C: M VC = N VC 2 = N 2 = M Moles vitamin C in sample: moles VC = M VC!V VC _ solution = M! L = moles 6
7 mg. Vitamin C in sample: mg VC = moles VC! grams mole! 1000mg g = moles! grams mole! 1000mg gram = mg Vitamin C in sample: = mg VC,average mass VC,sample,grams = mg g = 85.9 mg g Note: in final answer, volume of iodine titrant was known to 3 SF, sample mass was known to 4 SF, therefore 3 SF governs number of SF in answer. 7
Determination of calcium by Standardized EDTA Solution
Determination of calcium by Standardized EDTA Solution Introduction The classic method of determining calcium and other suitable cations is titration with a standardized solution of ethylenediaminetetraacetic
(1) Hydrochloric acid reacts with sodium hypochlorite to form hypochlorous acid: NaOCl(aq) + HCl(aq) HOCl(aq) + NaCl(aq) hypochlorous acid
The Determination of Hypochlorite in Bleach Reading assignment: Chang, Chemistry 10 th edition, pages 156-159. We will study an example of a redox titration in order to determine the concentration of sodium
Determination of the Mass Percentage of Copper in a Penny. Introduction
Determination of the Mass Percentage of Copper in a Penny Introduction This experiment will cost you one penny ($0.01). The penny must be minted after 1983. Any penny will do; for best results the penny
Determination of Citric Acid in Powdered Drink Mixes
Determination of Citric Acid in Powdered Drink Mixes Citric acid and its salts (sodium citrate and potassium citrate) are found in many foods, drinks, pharmaceuticals, shampoos, and cosmetics. The tartness
STANDARDIZATION OF A SODIUM HYDROXIDE SOLUTION EXPERIMENT 14
STANDARDIZATION OF A SODIUM HYDROXIDE SOLUTION EXPERIMENT 14 OBJECTIVE The objective of this experiment will be the standardization of sodium hydroxide using potassium hydrogen phthalate by the titration
TITRATION OF VITAMIN C
TITRATION OF VITAMIN C Introduction: In this lab, we will be performing two different types of titrations on ascorbic acid, more commonly known as Vitamin C. The first will be an acid-base titration in
Juice Titration. Background. Acid/Base Titration
Juice Titration Background Acids in Juice Juice contains both citric and ascorbic acids. Citric acid is used as a natural preservative and provides a sour taste. Ascorbic acid is a water-soluble vitamin
Dissolving of sodium hydroxide generates heat. Take care in handling the dilution container.
TITRATION: STANDARDIZATION OF A BASE AND ANALYSIS OF STOMACH ANTACID TABLETS 2009, 1996, 1973 by David A. Katz. All rights reserved. Reproduction permitted for education use provided original copyright
Calcium Analysis by EDTA Titration
Calcium Analysis by EDTA Titration ne of the factors that establish the quality of a water supply is its degree of hardness. The hardness of water is defined in terms of its content of calcium and magnesium
Experiment 7: Titration of an Antacid
1 Experiment 7: Titration of an Antacid Objective: In this experiment, you will standardize a solution of base using the analytical technique known as titration. Using this standardized solution, you will
A Volumetric Analysis (Redox Titration) of Hypochlorite in Bleach
CHEM 311L Quantitative Analysis Laboratory Revision 2.3 A Volumetric Analysis (Redox Titration) of Hypochlorite in Bleach In this laboratory exercise, we will determine the concentration of the active
ACID-BASE TITRATIONS: DETERMINATION OF CARBONATE BY TITRATION WITH HYDROCHLORIC ACID BACKGROUND
#3. Acid - Base Titrations 27 EXPERIMENT 3. ACID-BASE TITRATIONS: DETERMINATION OF CARBONATE BY TITRATION WITH HYDROCHLORIC ACID BACKGROUND Carbonate Equilibria In this experiment a solution of hydrochloric
Ascorbic Acid Titration of Vitamin C Tablets This lab will be completed individually! Make sure you come prepared!
Ascorbic Acid Titration of Vitamin C Tablets This lab will be completed individually! Make sure you come prepared! Introduction Vitamin C (also known as ascorbic acid, HC6H7O6) is a necessary ingredient
Acid Base Titrations
Acid Base Titrations Introduction A common question chemists have to answer is how much of something is present in a sample or a product. If the product contains an acid or base, this question is usually
PART I: PREPARATION OF SOLUTIONS AND STANDARDIZATION OF A BASE
TITRATION: STANDARDIZATION OF A BASE AND ANALYSIS OF STOMACH ANTACID TABLETS 2009, 1996, 1973 by David A. Katz. All rights reserved. Reproduction permitted for education use provided original copyright
Determination of Ascorbic Acid in Vitamin C Tablets by Redox and Acid/Base Titrations
hemistry 211 Spring 2011 Purpose: Determination of Ascorbic Acid in Vitamin Tablets by Redox and Acid/Base Titrations To determine the quantity of Vitamin (ascorbic acid) found in commercially available
To determine the equivalence points of two titrations from plots of ph versus ml of titrant added.
Titration Curves PURPOSE To determine the equivalence points of two titrations from plots of ph versus ml of titrant added. GOALS 1 To gain experience performing acid-base titrations with a ph meter. 2
The introduction of your report should be written on the on the topic of the role of indicators on acid base titrations.
Experiment # 13A TITRATIONS INTRODUCTION: This experiment will be written as a formal report and has several parts: Experiment 13 A: Basic methods (accuracy and precision) (a) To standardize a base (~
Determination of the Amount of Acid Neutralized by an Antacid Tablet Using Back Titration
Determination of the Amount of Acid Neutralized by an Antacid Tablet Using Back Titration GOAL AND OVERVIEW Antacids are bases that react stoichiometrically with acid. The number of moles of acid that
Solutions and Dilutions
Learning Objectives Students should be able to: Content Design a procedure for making a particular solution and assess the advantages of different approaches. Choose the appropriate glassware to ensure
Volumetric Analysis. Lecture 5 Experiment 9 in Beran page 109 Prelab = Page 115
Volumetric Analysis Lecture 5 Experiment 9 in Beran page 109 Prelab = Page 115 Experimental Aims To prepare and standardize (determine concentration) a NaOH solution Using your standardized NaOH calculate
EXPERIMENT 12 A SOLUBILITY PRODUCT CONSTANT
PURPOSE: 1. To determine experimentally the molar solubility of potassium acid tartrate in water and in a solution of potassium nitrate. 2. To examine the effect of a common ion on the solubility of slightly
The Determination of Acid Content in Vinegar
The Determination of Acid Content in Vinegar Reading assignment: Chang, Chemistry 10 th edition, pages 153-156. Goals We will use a titration to determine the concentration of acetic acid in a sample of
Vitamin-C Analysis. This is a redox titration. The two relevant half reactions for reaction (2) above are: CH OH
Vitamin-C Analysis Note: You will need to bring a powdered or liquid drink, health product, fruit samples, or other commercial sample to lab for vitamin-c analysis. You will need enough to make 500 ml
Lab 25. Acid-Base Titration and Neutralization Reactions: What Is the Concentration of Acetic Acid in Each Sample of Vinegar?
Lab 25. Acid-Base Titration and Neutralization Reactions: What Is the Concentration of Acetic Acid in Each Sample of Vinegar? Introduction Vinegar is basically a solution of acetic acid (CH3COOH). It is
Acetic Acid Content of Vinegar: An Acid-Base Titration E10-1
Experiment 10 Acetic Acid Content of Vinegar: An Acid-Base Titration E10-1 E10-2 The task The goal of this experiment is to determine accurately the concentration of acetic acid in vinegar via volumetric
Vitamin C Content of Foods
Vitamin C Content of Foods Experiment #11 Objective: To measure the heat and alkaline stability of vitamin C and its quantity in juices or tablets. Introduction Vitamin C is an essential component of the
Vitamin C Content of Fruit Juice
1 Vitamin C Content of Fruit Juice Introduction Vitamin C Vitamins are organic compounds that have important biological functions. For instance, in humans they enable a variety of enzymes in the body to
Properties of Acids and Bases
Lab 22 Properties of Acids and Bases TN Standard 4.2: The student will investigate the characteristics of acids and bases. Have you ever brushed your teeth and then drank a glass of orange juice? What
EXPERIMENT 10: TITRATION AND STANDARDIZATION
EXPERIMENT 10: TITRATION AND STANDARDIZATION PURPOSE To determine the molarity of a NaOH solution by titrating it with a standard HCl solution. To determine the molarity of acetic acid in vinegar using
OBJECTIVES: Visitors learn what an antioxidant is and how it behaves. They also learn how to test for the presence of vitamin C..
Vitamin C Visitors use iodine to compare the reactivity of two starch solutions one with vitamin C added, one without vitamin C. OBJECTIVES: Visitors learn what an antioxidant is and how it behaves. They
III. Chemical Kinetics
WARNING NOTICE: The experiments described in these materials are potentially hazardous and require a high level of safety training, special facilities and equipment, and supervision by appropriate individuals.
Determination of Vitamin C of Citrus Juices. by Dr. Walter Scharf and Dr. Charles Malerich Natural Sciences, Baruch College New York, NY 10010
Determination of Vitamin C of Citrus Juices by Dr. Walter Scharf and Dr. Charles Malerich Natural Sciences, Baruch College New York, NY 10010 Introduction--Vitamin C is a water-soluble vitamin that is
Coordination Compounds with Copper (II) Prelab (Week 2)
Coordination Compounds with Copper (II) Prelab (Week 2) Name Total /10 SHOW ALL WORK NO WORK = NO CREDIT 1. What is the purpose of this experiment? 2. Write the generic chemical formula for the coordination
Chemistry 119: Experiment 7. Potentiometric Titration of Ascorbic Acid in Vitamin C Tablets
Chemistry 119: Experiment 7 Potentiometric Titration of Ascorbic Acid in Vitamin C Tablets Vitamin C is another name for ascorbic acid (C 6 H 8 O 6, see below ), a weak acid that can be determined by titration
Stoichiometry Limiting Reagent Laboratory. Chemistry 118 Laboratory University of Massachusetts, Boston
Chemistry 118 Laboratory University of Massachusetts, Boston STOICHIOMETRY - LIMITING REAGENT --------------------------------------------------------------------------------------------------------------------------------------------
Carolina s Solution Preparation Manual
84-1201 Carolina s Solution Preparation Manual Instructions Carolina Biological Supply Company has created this reference manual to enable you to prepare solutions. Although many types of solutions may
Complexometric Titration Analysis of Ca 2+ and Mg 2+ in seawater
Complexometric Titration Analysis of Ca 2+ and Mg 2+ in seawater Introduction As the mountains on the continents are draped with snow, the mountains on the ocean floor are draped with sediment rich in
EDTA Titrations 1: Standardization of EDTA and Analysis of Zinc in a Supplement Tablet. by Professor David Cash. September, 2008
CHEMICAL, ENVIRONMENTAL, AND BIOTECHNOLOGY DEPARTMENT EDTA Titrations 1: Standardization of EDTA and Analysis of Zinc in a Supplement Tablet by Professor David Cash September, 2008 Mohawk College is the
5.0 EXPERIMENT ON DETERMINATION OF TOTAL HARDNESS
5.0 EXPERIMENT ON DETERMINATION OF TOTAL HARDNESS Sl. No. Contents Preamble 5.1 Aim 5.2 Introduction 5.2.1 Environmental Significance 5.3 Principle 5.4 Materials Required 5.4.1 Apparatus Required 5.4.2
IODINE CLOCK. A Study of Reaction Rates.
IODINE CLOCK A Study of Reaction Rates. In this lab you will be studying the Law of Mass Action. Please review that law in your text in the chapter on Chemical Kinetics. Basically, the law states that
ANALYSIS OF VITAMIN C
Purpose To learn how to analyze food for vitamin C content and to examine various sources for vitamin C content. Caution Handle the glassware with caution to prevent breakage. When using a burner in the
Colorimetric Determination of Iron in Vitamin Tablets
Cautions: 6 M hydrochloric acid is corrosive. Purpose: To colorimetrically determine the mass of iron present in commercial vitamin tablets using a prepared calibration curve. Introduction: Iron is considered
OXIDATION-REDUCTION TITRATIONS-Permanganometry
Experiment No. Date OXIDATION-REDUCTION TITRATIONS-Permanganometry INTRODUCTION Potassium permanganate, KMnO 4, is probably the most widely used of all volumetric oxidizing agents. It is a powerful oxidant
Recovery of Elemental Copper from Copper (II) Nitrate
Recovery of Elemental Copper from Copper (II) Nitrate Objectives: Challenge: Students should be able to - recognize evidence(s) of a chemical change - convert word equations into formula equations - perform
Chemistry 111 Laboratory Experiment 8: Stoichiometry in Solution Standardization of Sodium Hydroxide
Chemistry 111 Laboratory Experiment 8: Stoichiometry in Solution Standardization of Sodium Hydroxide Opening Comments This is a skill-building experiment, in which you will have to work carefully and use
Determining the Identity of an Unknown Weak Acid
Purpose The purpose of this experiment is to observe and measure a weak acid neutralization and determine the identity of an unknown acid by titration. Introduction The purpose of this exercise is to identify
Precipitation Titration: Determination of Chloride by the Mohr Method by Dr. Deniz Korkmaz
Precipitation Titration: Determination of Chloride by the Mohr Method by Dr. Deniz Korkmaz Introduction Titration is a process by which the concentration of an unknown substance in solution is determined
ph: Measurement and Uses
ph: Measurement and Uses One of the most important properties of aqueous solutions is the concentration of hydrogen ion. The concentration of H + (or H 3 O + ) affects the solubility of inorganic and organic
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Chemistry 5.310 Laboratory Chemistry THE POTENTIOMETRIC TITRATION OF AN ACID MIXTURE 1
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Chemistry 5.310 Laboratory Chemistry EXPERIMENT #5 THE POTENTIOMETRIC TITRATION OF AN ACID MIXTURE 1 I. PURPOSE OF THE EXPERIMENT In this experiment
15. Acid-Base Titration. Discover the concentration of an unknown acid solution using acid-base titration.
S HIFT INTO NEUTRAL 15. Acid-Base Titration Shift into Neutral Student Instruction Sheet Challenge Discover the concentration of an unknown acid solution using acid-base titration. Equipment and Materials
To see how this data can be used, follow the titration of hydrofluoric acid against sodium hydroxide below. HF (aq) + NaOH (aq) H2O (l) + NaF (aq)
Weak Acid Titration v120413 You are encouraged to carefully read the following sections in Tro (2 nd ed.) to prepare for this experiment: Sec 4.8, pp 158-159 (Acid/Base Titrations), Sec 16.4, pp 729-43
Lab #10 How much Acetic Acid (%) is in Vinegar?
Lab #10 How much Acetic Acid (%) is in Vinegar? SAMPLE CALCULATIONS NEED TO BE DONE BEFORE LAB MEETS!!!! Purpose: You will determine the amount of acetic acid in white vinegar (sold in grocery stores)
EXPERIMENT 7. Identifying a Substance by Acid-Base Titration
EXPERIMENT 7 Identifying a Substance by Acid-Base Titration SAFETY WARNING In this experiment you will be working with NaOH pellets and using 0.25 M NaOH as a titrant. Sodium hydroxide is extremely basic,
Experiment 9: Acids and Bases Adapted from: Chemistry, Experimental Foundations, 4th Ed. Laboratory Manual, by Merrill, Parry & Bassow.
Chem 121 Lab Clark College Experiment 9: Acids and Bases Adapted from: Chemistry, Experimental Foundations, 4th Ed. Laboratory Manual, by Merrill, Parry & Bassow. Content Goals: Increase understanding
Stoichiometry Limiting Reagent Laboratory. Chemistry 118 Laboratory University of Massachusetts, Boston
Chemistry 118 Laboratory University of Massachusetts, Boston STOICHIOMETRY - LIMITING REAGENT -----------------------------------------------------------------------------------------------------------------------------
Chemistry 112 Laboratory Experiment 6: The Reaction of Aluminum and Zinc with Hydrochloric Acid
Chemistry 112 Laboratory Experiment 6: The Reaction of Aluminum and Zinc with Hydrochloric Acid Introduction Many metals react with acids to form hydrogen gas. In this experiment, you will use the reactions
Determination of a Chemical Formula
1 Determination of a Chemical Formula Introduction Molar Ratios Elements combine in fixed ratios to form compounds. For example, consider the compound TiCl 4 (titanium chloride). Each molecule of TiCl
Solubility Product Constants
Solubility Product Constants PURPOSE To measure the solubility product constant (K sp ) of copper (II) iodate, Cu(IO 3 ) 2. GOALS 1 To measure the molar solubility of a sparingly soluble salt in water.
CHM 130LL: ph, Buffers, and Indicators
CHM 130LL: ph, Buffers, and Indicators Many substances can be classified as acidic or basic. Acidic substances contain hydrogen ions, H +, while basic substances contain hydroxide ions, OH. The relative
Determination of Aspirin using Back Titration
Determination of Aspirin using Back Titration This experiment is designed to illustrate techniques used in a typical indirect or back titration. You will use the NaH you standardized last week to back
Chem 1B Saddleback College Dr. White 1. Experiment 8 Titration Curve for a Monoprotic Acid
Chem 1B Saddleback College Dr. White 1 Experiment 8 Titration Curve for a Monoprotic Acid Objectives To learn the difference between titration curves involving a strong acid with a strong base and a weak
4.0 EXPERIMENT ON DETERMINATION OF CHLORIDES
4.0 EXPERIMENT ON DETERMINATION OF CHLORIDES Sl. No. Contents Preamble 4.1 Aim 4.2 Introduction 4.2.1 Environmental Significance 4.3 Principle 4.4 Materials Required 4.4.1 Apparatus Required 4.4.2 Chemicals
Acid-Base Titrations. Setup for a Typical Titration. Titration 1
Titration 1 Acid-Base Titrations Molarities of acidic and basic solutions can be used to convert back and forth between moles of solutes and volumes of their solutions, but how are the molarities of these
Extraction: Separation of Acidic Substances
Extraction: Separation of Acidic Substances Chemists frequently find it necessary to separate a mixture of compounds by moving a component from one solution or mixture to another. The process most often
ANALYSIS OF FOOD AND NATURAL PRODUCTS LABORATORY EXERCISE
ANALYSIS OF FOOD AND NATURAL PRODUCTS LABORATORY EXERCISE Determination of total nitrogen in food and crude protein calculation (Kjeldahl method) Responsible person: Assoc.Prof. Ing.Kateřina Riddellová,
Synthesis of Aspirin and Oil of Wintergreen
Austin Peay State University Department of hemistry hem 1121 autions Purpose Introduction Acetic Anhydride corrosive and a lachrymator all transfers should be done in the vented fume hood Methanol, Ethanol
Analyzing the Acid in Vinegar
Analyzing the Acid in Vinegar Purpose: This experiment will analyze the percentage of acetic acid in store bought vinegar using titration. Introduction: Vinegar can be found in almost any home. It can
EXPERIMENT 5. Molecular Absorption Spectroscopy: Determination of Iron With 1,10-Phenanthroline
EXPERIMENT 5 Molecular Absorption Spectroscopy: Determination of Iron With 1,10-Phenanthroline UNKNOWN Submit a clean, labeled 100-mL volumetric flask to the instructor so that your unknown iron solution
XI. Methods of Analysis DETERMINATION OF POTASSIUM CARBONATE CALCULATIONS REAGENTS PROCEDURE
XI. NOTE: An automatic titrator may be utilized for ease of analysis, especially if this test is performed often. Contact Technical Service for further information concerning automatic titration. Methods
Calibration of Glassware
Calibration of Glassware Introduction Glassware is commonly calibrated using a liquid of known, specific density, and an analytical balance. The procedure is to determine the mass of liquid the glassware
GA/7 Potentiometric Titration
Rev. 7/99 7-1 INTRODUCTION GA/7 Potentiometric Titration The potentiometric titration is a useful means of characterizing an acid. The ph of a solution is measured as a function of the amount of titrant
Determination of Sodium Hypochlorite Levels in Bleach
Determination of Sodium Hypochlorite Levels in Bleach Household bleach is a solution of sodium hypochlorite (NaOCl) and water. It is widely used as a disinfectant and in the bleaching of textiles and paper
Topic 4 National Chemistry Summary Notes. Formulae, Equations, Balancing Equations and The Mole
Topic 4 National Chemistry Summary Notes Formulae, Equations, Balancing Equations and The Mole LI 1 The chemical formula of a covalent molecular compound tells us the number of atoms of each element present
ph units constitute a scale which allows scientists to determine the acid or base content of a substance or solution. The ph 0
ACID-BASE TITRATION LAB PH 2.PALM INTRODUCTION Acids and bases represent a major class of chemical substances. We encounter them every day as we eat, clean our homes and ourselves, and perform many other
Experiment 3 Limiting Reactants
3-1 Experiment 3 Limiting Reactants Introduction: Most chemical reactions require two or more reactants. Typically, one of the reactants is used up before the other, at which time the reaction stops. The
Vitamin C Titration to Survive a High Seas Journey ND Lights
Vitamin C Titration to Survive a High Seas Journey ND Lights Summary: In this experiment, students determine the amount of vitamin C in everyday fruits in order to decide which fruit to take with them
TITRATION OF AN ACID; USING A ph METER. The ph meter is an instrument that measures the ph of a solution and affords a
62 Experiment #5. Titration of an Acid; Using a ph Meter TITRATION OF AN ACID; USING A ph METER Introduction The ph meter is an instrument that measures the ph of a solution and affords a direct method
Acid Base Titration: ph Titration Curve
Acid Base Titration: ph Titration Curve OVERVIEW In this experiment, you will perform a ph-monitored titration of acetic acid and of an unknown acid. From the ph titration of the acetic acid, you will
Experiment 17: Potentiometric Titration
1 Experiment 17: Potentiometric Titration Objective: In this experiment, you will use a ph meter to follow the course of acid-base titrations. From the resulting titration curves, you will determine the
Experiment 6 Coffee-cup Calorimetry
6-1 Experiment 6 Coffee-cup Calorimetry Introduction: Chemical reactions involve the release or consumption of energy, usually in the form of heat. Heat is measured in the energy units, Joules (J), defined
Phenolphthalein-NaOH Kinetics
Phenolphthalein-NaOH Kinetics Phenolphthalein is one of the most common acid-base indicators used to determine the end point in acid-base titrations. It is also the active ingredient in some laxatives.
TITRATION CURVES, INDICATORS, AND ACID DISSOCIATION CONSTANTS
TITRATION CURVES, INDICATORS, AND ACID DISSOCIATION CONSTANTS Adapted from "Chemistry with Computers" Vernier Software, Portland OR, 1997 INTRODUCTION Titration is the volumetric measurement of a solution
Experiment 16-Acids, Bases and ph
Definitions acid-an ionic compound that releases or reacts with water to form hydrogen ion (H + ) in aqueous solution. They taste sour and turn litmus red. Acids react with certain metals such as zinc,
HOW TO MAKE STANDARD SOLUTIONS FOR CHEMISTRY
HOW TO MAKE STANDARD SOLUTIONS FOR CHEMISTRY Phillip Bigelow Chemists make two common types of "standard solutions": Molar solutions Normal solutions Both of these solutions are concentrations (or strengths
BLOWING UP BALLOONS, chemically
BLOWING UP BALLOONS, chemically PRE LAB DISCUSSION: Today we will be using a closed system. A closed system does not permit matter to enter or exit the apparatus. Lavoisier's classic 12-day experiment,
The Molar Mass of a Gas
The Molar Mass of a Gas Goals The purpose of this experiment is to determine the number of grams per mole of a gas by measuring the pressure, volume, temperature, and mass of a sample. Terms to Know Molar
Preparation of frequently used solutions
Preparation of frequently used solutions Content 1. Diluting Concentrated Acids (Last Login: 08/08/2009) 2. Indicators (Last Login: 27/07/2009) 3. Standard Buffer Solutions (Last Login: 27/07/2009) 4.
Where the exp subscripts refer to the experimental temperature and pressure acquired in the laboratory.
Molar Volume of Carbon Dioxide Reading assignment: Julia Burdge, Chemistry 3rd edition, Chapter 10. Goals To determine the molar volume of carbon dioxide gas and the amount of sodium carbonate in a sample.
Practical Lesson No 4 TITRATIONS
Practical Lesson No 4 TITRATIONS Reagents: 1. NaOH standard solution 0.1 mol/l 2. H 2 SO 4 solution of unknown concentration 3. Phenolphthalein 4. Na 2 S 2 O 3 standard solution 0.1 mol/l 5. Starch solution
TITRIMETRIC ANALYSIS OF CHLORIDE
TITRIMETRIC ANALYSIS OF CHLORIDE Introduction The purpose of this experiment is to compare two titrimetric methods for the analysis of chloride in a water-soluble solid. The two methods are: a weight titration
SOLID STATE CHEMISTRY - SURFACE ADSORPTION
SOLID STATE CHEMISTRY - SURFACE ADSORPTION BACKGROUND The adsorption of molecules on the surfaces of solids is a very interesting and useful phenomenon. Surface adsorption is at the heart of such things
Colorimetric Determination of Iron in Vitamin Tablets
Colorimetric Determination of Iron in Vitamin Tablets Big Picture Conceptual Approach Vitamin Tablet How much Fe? ph = 3.5 Vitamin Tablet How much Fe? Too difficult to eyeball so will have the colorimeter
Continuous process of sodium bicarbonate production by Solvay method
Continuous process of sodium bicarbonate production by Solvay method Manual to experiment nr 10 Instructor: Dr Tomasz S. Pawłowski 1 Goal of the experiment The goal of the experiment is introduction of
NO TARN 15. 5) Can be used on Silver AND Gold. Protects gold from blackening during shipping due to reaction with box chemicals.
Description is an after-treatment process which effectively protects Silver from oxidation and tarnishing. Used as directed, it forms a thin, invisible film on the surface which blocks exposure to the
Net ionic equation: 2I (aq) + 2H (aq) + H O (aq) I (s) + 2H O(l)
Experiment 5 Goals To determine the differential rate law for the reaction between iodide and hydrogen peroxide in an acidic environment. To determine the activation energy and pre-exponential factor for
Positive Test for Vitamin C. When a liquid containing Vitamin C is added to Indophenol Solution, the colour changes from Blue to Clear.
Sc ienc e 9-Biology Ex perim ent 6-4 Test ing for Vit am in C Name Due Date 10 Show Me Hand In Correct and Hand In Again By Purpose: To test some foods for the presence Vitamin C Materials: Small dropper
Chapter 16: Tests for ions and gases
The position of hydrogen in the reactivity series Hydrogen, although not a metal, is included in the reactivity series because it, like metals, can be displaced from aqueous solution, only this time the
hij Teacher Resource Bank GCE Chemistry PSA10: A2 Inorganic Chemistry Carry out a redox titration
hij Teacher Resource Bank GCE Chemistry : A2 Inorganic Chemistry Copyright 2009 AQA and its licensors. All rights reserved. The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee
Molar Mass and the Ideal Gas Law Prelab
Molar Mass and the Ideal Gas Law Prelab Name Total /10 SHOW ALL WORK NO WORK = NO CREDIT 1. What is the purpose of this experiment? 2. Determine the mass (in grams) of magnesium metal required to produce
