Soft-Switching in DC-DC Converters: Principles, Practical Topologies, Design Techniques, Latest Developments



Similar documents
Chapter 4. LLC Resonant Converter

4. ACTIVE-CLAMP BOOST AS AN ISOLATED PFC FRONT-END CONVERTER

Chapter 20 Quasi-Resonant Converters

Chapter 19 Resonant Conversion

Application Note AN-1070

IRF150 [REF:MIL-PRF-19500/543] 100V, N-CHANNEL. Absolute Maximum Ratings

Design Considerations for an LLC Resonant Converter

I. INTRODUCTION II. MOSFET FAILURE MODES IN ZVS OPERATION

Novel Loaded-Resonant Converter & Application of DC-to-DC Energy Conversions systems

High Performance ZVS Buck Regulator Removes Barriers To Increased Power Throughput In Wide Input Range Point-Of-Load Applications

Fundamentals of Power Electronics. Robert W. Erickson University of Colorado, Boulder

V DS 100 V R DS(ON) 10V 72.5 m: Q g typ. 15 nc Q sw typ. 8.3 nc R G(int) typ. 2.2 Ω T J max 175 C

STW20NM50 N-CHANNEL Tjmax Ω - 20ATO-247 MDmesh MOSFET

Two-Switch Forward Converter: Operation, FOM, and MOSFET Selection Guide

V DSS I D. W/ C V GS Gate-to-Source Voltage ±30 E AS (Thermally limited) mj T J Operating Junction and -55 to + 175

AUTOMOTIVE MOSFET. C Soldering Temperature, for 10 seconds 300 (1.6mm from case )

C Soldering Temperature, for 10 seconds 300 (1.6mm from case )

200V, N-CHANNEL. Absolute Maximum Ratings. Features: 1 PD

C Soldering Temperature, for 10 seconds 300 (1.6mm from case )

IRF740 N-CHANNEL 400V Ω - 10A TO-220 PowerMESH II MOSFET

Power MOSFET. IRF510PbF SiHF510-E3 IRF510 SiHF510. PARAMETER SYMBOL LIMIT UNIT Drain-Source Voltage V DS 100 V Gate-Source Voltage V GS ± 20

Design and Simulation of Soft Switched Converter Fed DC Servo Drive

Features. Description. Table 1. Device summary. Order code Marking Package Packing. STP110N8F6 110N8F6 TO-220 Tube

Power MOSFET FEATURES. IRF610PbF SiHF610-E3 IRF610 SiHF610. PARAMETER SYMBOL LIMIT UNIT Drain-Source Voltage V DS 200 V Gate-Source Voltage V GS ± 20

UNISONIC TECHNOLOGIES CO., LTD 50N06 Power MOSFET

Power MOSFET FEATURES. IRF740PbF SiHF740-E3 IRF740 SiHF740. PARAMETER SYMBOL LIMIT UNIT Drain-Source Voltage V DS 400 V Gate-Source Voltage V GS ± 20

IRF5305PbF. HEXFET Power MOSFET V DSS = -55V. R DS(on) = 0.06Ω I D = -31A

V DSS R DS(on) max Qg. 30V 3.2mΩ 36nC

Power supplies. EE328 Power Electronics Assoc. Prof. Dr. Mutlu BOZTEPE Ege University, Dept. of E&E

The Flyback Converter

Power MOSFET FEATURES. IRFZ44PbF SiHFZ44-E3 IRFZ44 SiHFZ44 T C = 25 C

Power MOSFET FEATURES. IRL540PbF SiHL540-E3 IRL540 SiHL540

W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery e 38. V/ns T J. mj I AR

Keywords: input noise, output noise, step down converters, buck converters, MAX1653EVKit

STGW40NC60V N-CHANNEL 50A - 600V - TO-247 Very Fast PowerMESH IGBT

Analysis and Design of Improved Isolated Full-Bridge Bi-Directional DC-DC Converter

Designers Series XII. Switching Power Magazine. Copyright 2005

IRLR8743PbF IRLU8743PbF HEXFET Power MOSFET

W/ C V GS Gate-to-Source Voltage ± 16 dv/dt Peak Diode Recovery e 21

Chapter 2 Application Requirements

2. AN IMPROVED ZVS FULL-BRIDGE DC/DC CONVERTER

DRIVE CIRCUITS FOR POWER MOSFETs AND IGBTs

IRLR8729PbF IRLU8729PbF

STP62NS04Z N-CHANNEL CLAMPED 12.5mΩ - 62A TO-220 FULLY PROTECTED MESH OVERLAY MOSFET

Design of an Auxiliary Power Distribution Network for an Electric Vehicle

RoHS Compliant Containing no Lead, no Bromide and no Halogen. IRF9310PbF SO8 Tube/Bulk 95 IRF9310TRPbF SO8 Tape and Reel 4000

Application Note AN- 1095

W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery f 5.0. V/ns T J. mj I AR. Thermal Resistance Symbol Parameter Typ. Max.

TOPOLOGIES FOR SWITCHED MODE POWER SUPPLIES

STW34NB20 N-CHANNEL 200V Ω - 34A TO-247 PowerMESH MOSFET

A Zero-Voltage Switching Two-Inductor Boost Converter With an Auxiliary Transformer

The leakage inductance of the power transformer

O p t i m u m M O S F E T S e l e c t i o n f o r S y n c h r o n o u s R e c t i f i c a t i o n

Power MOSFET FEATURES. IRF540PbF SiHF540-E3 IRF540 SiHF540. PARAMETER SYMBOL LIMIT UNIT Drain-Source Voltage V DS 100 V Gate-Source Voltage V GS ± 20

STN3NF06L. N-channel 60 V, 0.07 Ω, 4 A, SOT-223 STripFET II Power MOSFET. Features. Application. Description

Philosophy of Topology and Components Selection for Cost and Performance in Automotive Converters.

Power MOSFET FEATURES. IRF9640PbF SiHF9640-E3 IRF9640 SiHF9640

Soft-Switching performance of Dual Active Bridge DC-DC Converter

STP80NF55-08 STB80NF55-08 STB80NF N-CHANNEL 55V Ω - 80A D2PAK/I2PAK/TO-220 STripFET II POWER MOSFET

DE N06A RF Power MOSFET

IR1168S DUAL SMART RECTIFIER DRIVER IC

Power MOSFET FEATURES. IRF520PbF SiHF520-E3 IRF520 SiHF520. PARAMETER SYMBOL LIMIT UNIT Drain-Source Voltage V DS 100 V Gate-Source Voltage V GS ± 20

OptiMOS 3 Power-Transistor

IRL3803 PD D. HEXFET Power MOSFET V DSS = 30V. R DS(on) = 0.006Ω I D = 140A. Absolute Maximum Ratings. Thermal Resistance

SMPS MOSFET. V DSS Rds(on) max I D

STP6NK60Z - STP6NK60ZFP STB6NK60Z - STB6NK60Z-1 N-CHANNEL 600V - 1Ω - 6A TO-220/TO-220FP/D 2 PAK/I 2 PAK Zener-Protected SuperMESH Power MOSFET

N-channel enhancement mode TrenchMOS transistor

Design and Construction of Variable DC Source for Laboratory Using Solar Energy

AC/DC Power Supply Reference Design. Advanced SMPS Applications using the dspic DSC SMPS Family

Power MOSFET. IRF9520PbF SiHF9520-E3 IRF9520 SiHF9520. PARAMETER SYMBOL LIMIT UNIT Drain-Source Voltage V DS V Gate-Source Voltage V GS ± 20

IRFP460LC PD HEXFET Power MOSFET V DSS = 500V. R DS(on) = 0.27Ω I D = 20A

Lower Conduction Losses Low Thermal Resistance to PCB ( 0.5 C/W)

91 P C = 25 C Power Dissipation 330 P C = 100 C Power Dissipation Linear Derating Factor

Inrush Current. Although the concepts stated are universal, this application note was written specifically for Interpoint products.

Design and Applications of HCPL-3020 and HCPL-0302 Gate Drive Optocouplers

IRFR3707Z IRFU3707Z HEXFET Power MOSFET

T.FRANCIS, D.NARASIMHARAO

Power MOSFET FEATURES. IRF740PbF SiHF740-E3 IRF740 SiHF740. PARAMETER SYMBOL LIMIT UNIT Drain-Source Voltage V DS 400 V Gate-Source Voltage V GS ± 20

ULRASONIC GENERATOR POWER CIRCUITRY. Will it fit on PC board

SMPS MOSFET. V DSS R DS (on) max I D

STP10NK60Z/FP, STB10NK60Z/-1 STW10NK60Z N-CHANNEL 600V-0.65Ω-10A TO-220/FP/D 2 PAK/I 2 PAK/TO-247 Zener-Protected SuperMESH Power MOSFET

N-Channel 20-V (D-S) 175 C MOSFET

A I DM. -55 to T STG. Storage Temperature Range C Soldering Temperature, for 10 seconds 300 (1.6mm from case) Mounting torque, 6-32 or M3 screw

MOSFET TECHNOLOGY ADVANCES DC-DC CONVERTER EFFICIENCY FOR PROCESSOR POWER

STP60NF06FP. N-channel 60V Ω - 30A TO-220FP STripFET II Power MOSFET. General features. Description. Internal schematic diagram.

IR2110(-1-2)(S)PbF/IR2113(-1-2)(S)PbF HIGH AND LOW SIDE DRIVER Product Summary

AUIRLR2905 AUIRLU2905

Chapter 35 Alternating Current Circuits

IR2110(S)/IR2113(S) & (PbF)

Features. Symbol JEDEC TO-220AB

STP60NF06. N-channel 60V Ω - 60A TO-220 STripFET II Power MOSFET. General features. Description. Internal schematic diagram.

Hybrid Power System with A Two-Input Power Converter

IRLR8256PbF IRLU8256PbF HEXFET Power MOSFET

Symbol Parameter Value Unit V DS Drain-source Voltage (V GS =0) 50 V V DGR Drain- gate Voltage (R GS =20kΩ) 50 V

Understanding Diode Reverse Recovery and its Effect on Switching Losses

OptiMOS 3 Power-Transistor

International Journal of Science and Research (IJSR) ISSN (Online): Index Copernicus Value (2013): 6.14 Impact Factor (2014): 5.

A Double Grounded Transformerless Photovoltaic Array String Inverter with Film Capacitors and Silicon. Carbide Transistors. Lloyd C.

5W LED Lump Module Design with FT831B

Transcription:

Soft-Switching in D-D onverters: Principles, Practical Topologies, Design Techniques, Latest Developments Raja Ayyanar Arizona State University Ned Mohan University of Minnesota Eric Persson International Rectifier Some of the slides in this presentation are used for the course EE5741 Advanced Power Electronics given by Prof Robbins and Prof Mohan at the University of Minnesota 22, N. Mohan, R. Ayyanar, E. Persson APE 22 1

Objectives What is soft-switching? Basic principles oncentration on a few popular topologies Design techniques omputer simulations New developments 2

What is Soft-Switching Switching transitions occur under favorable conditions device voltage or current is zero Reduced switching losses, switch stress, possibly low EMI, easier thermal management A must for very high frequency operation, (also medium frequency at high power levels) Usually involves compromises in conduction loss, switch rating, passive components etc. 4

Relationship Between Efficiency and Power Density 5 45 Power Rating 4 35 3 25 2 15 1 5 Ploss = 2W Ploss = 1W.8.82.84.86.88.9.92.94.96 8. 84. 88. 92. 96. Efficiency η = P out Pout P loss η Pout = P 1 η loss 5

Hard-Switching i i T L i L v T - V d - v diode i I L o v gate v T i diode i T v diode P loss P f t t sw s c( on) c( off ) 6

MOSFET haracteristics Output characteristics ross-sectional view of an n-channel MOSFET source gate n gs p p n gd Transfer characteristics ds n drain-body depletion layer n drain 7

MOSFET haracteristics D f I o V in gd i D = ( gs) f V R G V GG gs MOSFET model valid in active and cutoff regions Variation of capacitances with Vds 8

Simulation of Hard Switching onverters L2 4nH D2 1A I3 8 R3 1m 5V V1 R2 25. M1 IRF15 Ideal diode IRF15 2 v DS 1 v GS i D gate input -1 s.5us 1.us 1.5us 2.us 2.5us 3.us 3.5us 4.us V(M1:d)/4 ID(M1)*2 V(R2:2) V(V3:) Time 9

Simulation of Hard Switching onverters Diode reverse recovery 55 4 v ds PARAMETERS: R_LOAD = 1 fs = 1k MUR22R 5A D5 I1 2 v gs 1 V1 MUR22R I o i ds -1 3.us 3.4us 3.8us 31.2us 31.6us 32.us 32.4us 32.8us 33.2us 33.6us 34.us -I(R3) V(M1:1)/2 V(M1:2) I(I1) Time 38.5 38.5 V1 = V2 = 15 TD = 1u TR = 1n TF = 1n PW = 2u PER = {1/fs} R2 1 V4 M1 MTB2N2E v ds v ds MTB2N2E 2. I o i ds v gs 2. v gs ids Io 3.9154us 3.95us 31.us 31.5us 31.1us 31.1299us -I(R3) V(M1:1)/3 V(M1:2) I(I1) Time 32.95us 33.us 33.5us 33.1us 33.15us 33.2us 33.25us 33.3us 33.34us -I(R3) V(M1:1)/3 V(M1:2) I(I1) Time 1

Problems of Hard-Switching Switching losses Device stress, thermal management EMI due to high di/dt and dv/dt Energy loss in stray L and Possible Solutions (combination) Snubbers to reduce di/dt and dv/dt usually no change in losses (unless loss recovery) ircuit layout to reduce stray inductances Gate drive circuit layout turn on / off speeds Soft switching to achieve ZVS and/or ZS 11

Snubbers Passive components (R, L, ) and a diode to shape switching trajectories Turn-on snubber (seldom used) V d L s i T v - T R s I o At turn-on Vd it ()= t L t s low di/dt lower turn-on losses in the device low reverse recovery current v T i T t t Price to be paid at turn-off 1/2 LI 2 energy dissipated during off interval off interval > 2 to 3 times L S /R S time constant switch voltage rating increases by R S I O 12

Turn-off Snubbers R S V d i T v T - D S i S S I o At turn-off while builds up i = I i T o S ( i flows through D ) S v T S switch turn-off loss decreases lower dv/dt i T I o S3 S = S1 S2 > > V d S S S 3 2 1 v T Issues at turn-on 1/2 V 2 energy dissipated in R S and switch switch current rating increases by V d / R S ON interval > 2 to 3 times R S S time constant 13

Soft-Switching ZVS (Zero Voltage Switching) ZS (Zero urrent Switching) Advantages - Lower losses (may be!) - Low EMI (may be!) - Allows high frequency operation 14

ZVS (Zero Voltage Switching) Turn ON Turn OFF Switch voltage brought to zero before gate voltage is applied Ideal, zero-loss transition Low-loss transition Parallel capacitor as a loss-less snubber Preferred scheme for very high frequency applications using MOSFETs 15

ZS (Zero urrent Switching) Turn OFF Switch current brought to zero before gate voltage is removed Ideal, zero-loss transition Turn ON Low-loss transition Series inductor as a loss-less snubber Energy in junction capacitance is lost Best suited for converters with IGBTs due to tail current at turn-off 16

ZVS and Hard-Switched Waveforms Zero-voltage switched Hard-switched vdrainsource vgatesource 12V vdrainsource vgatesource V V 12V 12V 17

An Example: Zero Voltage Transition (ZVT) Synchronous Buck onverter v ( ) At t =,T v - is turned off ( ) = = V d T i i L v v = V - d V d T A D D - i - i L L V o 18

Zero Voltage Transition (ZVT) V d Since v v = V - d s dv dv - = s dt dt i i = T T A s D D - s - i i - i L L V o Also, i - i = i - L i = -i = v = v - = V - d il 2 V d At the end of this charge/discharge interval, positive i L is carried by D Subsequently, T is turned on; i L must reverse direction 19

Zero Voltage Transition ( t) va ( ) a T s i V d V o V d T A D D i - - s i L L V o t " t t t 1 t t 1 2 3 i L t t t onducting Devices T None D T None D T None 2

Simulation of a ZVT Buck onverter PARAMETERS: R7 V7 25 M1 IRF15 L1 PulseWidth = 4.5us TDLY1 = 5.5us TDLY2 =.5us Period = 1us 21V V1 TD = {TDLY1} 2uH I = 2A R8 V8 25 M2 IRF15 1uF I = 1V 2 R6 1. TD = {TDLY2} ZVT_buck.opj 2 1 v DS gate input v GS i L i D -1-2 9us 1us 11us 12us 13us 14us 15us 16us 17us V(M2:d)/2 ID(M2)*2 V(M2:g) I(L1)*2 V(V8:) Time 21

lassification of Soft-Switching Schemes Load Resonant onverters onverters with Resonant Switches (Quasiresonant, Multi-resonant) Resonant Transition onverters ZVT and ZT 22

Phase Shift ontrolled Full-Bridge onverter (ZVT) Makes use of switch capacitances and transformer leakage inductance and magnetizing current T A T B Vd T A A T B B D a D a a D b b D b Io Poles A & B switched at nearly 5% duty-cycle Output voltage regulation is achieved by phase modulating the two pole outputs 47

Switching waveforms v A V d 2 ficticiousvin V d 2 T A T A A D A D A D B T B i AB v B T B AB D B L lt i L v B D a v AB D a i AB a D b b D b I o t In pole A T T A tot A A tot A v AB = v AB = V d -V d In pole B T tot v = V B B B B AB T tot v -V = AB d d 48

Transitions - Pole B T B to T B v AB T to T - B B V d T B T A i L T B D a A B a b I o D b i AB t v AB = V d AB v = -V d T to T - B B i L stays at I o L i stays at -I o 49

Transitions - Pole A V d T A T A A B T B i L D a a b D b I o v AB i AB T to T - A A t T tot v = A A AB -V d All four diodes conduct Leakage inductance resonates with switch capacitance Determination of T del critical for ZVS design Load dependent ZVS 5

Methods to increase ZVS range Use of external series inductor L o V in A i AB L B series v rect V o v AB i AB Disadvantages Loss of volt-sec higher turns-ratio v rect left-leg higher conduction loss increased VA ratings Load dependent ZVS 51

Use of magnetizing current V in A i load i mag i mag B Disadvantages higher conduction loss due to v AB i mag peak circulating current current through right-leg MOSFETs peak magnetizing current independent of V in 2 left leg 52

Factors Affecting ZVS ZVS Load Range apacitance across MOSFETs internal and external Leakage inductance Delay time Magnetizing current Design of other parameters like L o, o, transformer etc identical to hard switched PWM 53

Designing for ZVS MOSFET voltage during critical turn-on transition L vds = Vin Imag _ pk Irefl sin t 2 ( ) eq ( ω ) ds v ds ω = 1 2π Leq ds onditions for ZVS π 2 L Lk 2 ds t Leq 1. ( I I ) V 2 mag _ pk refl in,max ds π 2. T = L. 2 2 delay eq ds 54

A Possible Design Approach Using MathAD Sweep for all practical values of ds - based on limiting voltage rise during turn-off T - as a percentage of switching period delay Designing for ZVS alculate required I and L for each set mag,pk alculate switch peak current and RMS current lk Turn-off loss onduction loss alculate total losses. Iterate for different ZVS ranges 55

Designing for ZVS Total Losses (W) j i j ds i T del Total_loss 56