Understanding the Alternator



Similar documents
The Charging System. Section 5. Charging System. Charging System. The charging system has two essential functions:

Understanding Generator Ripple Waveforms

Motor Fundamentals. DC Motor

DIRECT CURRENT GENERATORS

DC GENERATOR THEORY. LIST the three conditions necessary to induce a voltage into a conductor.

Principles of Adjustable Frequency Drives

Single-Phase AC Synchronous Generator

Unit 33 Three-Phase Motors

SECTION 4 ELECTRIC MOTORS UNIT 17: TYPES OF ELECTRIC MOTORS

Equipment: Power Supply, DAI, Wound rotor induction motor (8231), Electrodynamometer (8960), timing belt.

Lab 8: DC generators: shunt, series, and compounded.

4 DEDICATED SINGLE PHASE LIMA MAC GENERATOR LIGHT TOWER DUTY MODELS 250MSL1278 AND 250MSL1299 SERVICE PROCEDURE ELECTRICAL COMPONENT TESTING

4 LEAD DEDICATED SINGLE PHASE LIMA MAC GENERATOR MODELS 250MSL1185 AND 250MSL1152

ANADOLU UNIVERSITY DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

Replace That Bad Diode

Welcome to the Modern Age...Alternators

2. A conductor of length 2m moves at 4m/s at 30 to a uniform magnetic field of 0.1T. Which one of the following gives the e.m.f. generated?

UNIT 3 AUTOMOBILE ELECTRICAL SYSTEMS

Principles and Working of DC and AC machines

AC generator theory. Resources and methods for learning about these subjects (list a few here, in preparation for your research):

Chen. Vibration Motor. Application note

How to modify a car starter for forward/reverse operation

Preview of Period 16: Motors and Generators

ST Style Generator. Owners/Operators Manual

DC Motor control Reversing

Induction Motor Theory

Inductance. Motors. Generators

Power Plant Electrical Distribution Systems

Chapter 22: Electric motors and electromagnetic induction

Welcome to Linear Controls Quarterly Training

SHIP SERVICE GENERATORS (AC)

KTM AC to DC Stator Conversion Instructions (Floating the ground)

Rutland 913 Windcharger Fault Finding Guide

ELECTRODYNAMICS 05 AUGUST 2014

Application Information Fully Integrated Hall Effect Motor Driver for Brushless DC Vibration Motor Applications

WHITE PAPER. DC Motors Explained. DC Motors Explained: White Paper, Title Page

8 Speed control of Induction Machines

Honda's Dual-Mode Charging System

Permanent Magnetic Generator Construction Manual

AND8008/D. Solid State Control Solutions for Three Phase 1 HP Motor APPLICATION NOTE

AC Motor Speed. n s = synchronous speed (in RPM), f = frequency (in Hz), and p = the number of poles

ALTERNATOR & REGULATOR - HITACHI

Permanent Magnet Motor Kit, Magnetic Reed Type. (SKY-ReedMotorKit) Instructions

Line Reactors and AC Drives

Electric Coolant Pumps. Always at the Correct Temperature

Lab 3 Rectifier Circuits

Selecting and Implementing H-Bridges in DC Motor Control. Daniel Phan A

Diode Applications. As we have already seen the diode can act as a switch Forward biased or reverse biased - On or Off.

Rotating Machinery Diagnostics & Instrumentation Solutions for Maintenance That Matters

Application Information

Rotary Phase Converters

Basics of Electricity

Motors and Generators

Equipment: Power Supply, DAI, Universal motor (8254), Electrodynamometer (8960), timing belt.

Drive circuit basics + V. τ e. Industrial Circuits Application Note. Winding resistance and inductance

Power Supplies. 1.0 Power Supply Basics. Module

AMZ-FX Guitar effects. (2007) Mosfet Body Diodes. Accessed 22/12/09.

WIND TURBINE TECHNOLOGY

ECEN 1400, Introduction to Analog and Digital Electronics

The DC Motor/Generator Commutation Mystery. Commutation and Brushes. DC Machine Basics

WWW. AUTOSHOP101.COM

THE LUCAS C40 DYNAMO & ITS ARMATURE.

Magneto Timing. The selected wire(s) from the magneto(s) distributor must be connected to this cylinder. And the crankshaft/magneto must be spinning.

KINETIC ENERGY RECOVERY SYSTEM BY MEANS OF FLYWHEEL ENERGY STORAGE

Generator Stator Protection, under/over voltage, under /over frequency and unbalanced loading. Ramandeep Kaur Aujla S.NO

SYNCHRONOUS MACHINE TESTING WITH MOTOR CIRCUIT ANALYSIS INSTRUMENTATION

EET272 Worksheet Week 9

What Is Regeneration?

The full wave rectifier consists of two diodes and a resister as shown in Figure

AC Induction Motor Slip What It Is And How To Minimize It

Type SA-1 Generator Differential Relay

Specifying a Variable Frequency Drive s

COMPUTER AIDED ELECTRICAL DRAWING (CAED) 10EE65

Prof. Krishna Vasudevan, Prof. G. Sridhara Rao, Prof. P. Sasidhara Rao. x x. x x. Figure 10: Cross sectional view

FREQUENCY CONTROLLED AC MOTOR DRIVE

PENNTEX FOUR-STEP CHARGING SYSTEM TEST AND GENERAL INFORMATION FOR ANY PENNTEX SYSTEM EXCEPT 2009-UP FORDS WITH A PX-7000 VOLTAGE REGULATOR

8 coil stator 11 coil stator

*ADVANCED ELECTRIC GENERATOR & CONTROL FOR HIGH SPEED MICRO/MINI TURBINE BASED POWER SYSTEMS

SYNCHRONOUS MACHINES

DC generator theory. Resources and methods for learning about these subjects (list a few here, in preparation for your research):

How to Repair & Rebuild your Alternator

MGA Alternator Conversion

CHAPTER 2B: DIODE AND APPLICATIONS. D.Wilcher

C ole s quality Open Frame Instrument Rotary Switch provides low

Introduction. Upon completion of Basics of AC Motors you should be able to:

Product Guide AC Voltage Control Devices. Guide Guide. Popular Variable Transformers and AC Power Supplies.

3.0 CHARACTERISTICS. AR Auxiliary Relay High Speed, High Threshold C

Properties of electrical signals

GLOLAB Two Wire Stepper Motor Positioner

Wound Rotor Induction Motors 4-12 poles, up to 8000 kw, HP

FUEL-16, Troubleshooting Fuel Supply Problems

Lab 14: 3-phase alternator.

Introduction to Electricity & Magnetism. Dr Lisa Jardine-Wright Cavendish Laboratory

Building the HVPS High Voltage Power Supply

Selecting IHLP Composite Inductors for Non-Isolated Converters Utilizing Vishay s Application Sheet

Synchronous motor. Type. Non-excited motors

Charging and Ignition Systems Ed Abdo

Diode Applications. by Kenneth A. Kuhn Sept. 1, This note illustrates some common applications of diodes.

Tuning Up DC Motors and Generators for Commutation and Performance

CONSTRUCTING A VARIABLE POWER SUPPLY UNIT

Transcription:

http://www.autoshop101.com THIS AUTOMOTIVE SERIES ON ALTERNATORS HAS BEEN DEVELOPED BY KEVIN R. SULLIVAN PROFESSOR OF AUTOMOTIVE TECHNOLOGY AT SKYLINE COLLEGE SAN BRUNO, CALIFORNIA ALL RIGHTS RESERVED

The Charging System The charging system has three major components. The Battery, Alternator, and the Regulator. This alternator works together with the battery to supply power when the vehicle is running. The output of an alternator is direct current, however AC voltage is actually created and then converted to DC as voltage leaves the alternator on its way to the battery and the electrical loads.

Charging System Circuit Four wires connect the alternator to the rest of the charging system. B is the alternator output wire that supplies current to the battery. IG is the ignition input that turns on the alternator/regulator assembly. S is used by the regulator to monitor charging voltage at the battery. L is the wire the regulator uses to ground the charge warning lamp.

Alternator Terminal Identification S Terminal Senses Battery Voltage F Terminal Regulator Bypass Full Field Testing IG Terminal Ignition Switch Signal Turns Regulator ON L Terminal Grounds Warning Lamp B Terminal Alternator Output Terminal to Battery

Drive Frame Cover Drive Pulley Circulation Vent Mounting Ear Alternator Assembly Identification Label End Frame Cover Regulator, Diode, & Brush Cover Alternator B+ Output Terminal

Alternator Overview The alternator contains: A rotating field winding called the rotor. A stationary induction winding called the stator. A diode assembly called the rectifier bridge. A control device called the voltage regulator. Two internal fans to promote air circulation.

Alternator Design Most regulators are on the inside the alternator. Older models have externally mounted regulators. Unlike other manufacturers, this model can be easily serviced from the rear on the unit. The rear cover can be removed to expose internal parts. However, today s practice is to correctly diagnose the problem and replace the alternator as a unit, should one of it s internal components fail.

Drive Pulley Alternator drive pulleys either bolt on or are pressed on the rotor shaft. Both V and Multi-grove types are used. Note this alternator does not have an external fan as part of the pulley assembly. While many manufacturers do use a external fan for cooling. This alternator has two internal fans to draw air in for cooling.

Inside the Alternator Regulator Brushes Slip Rings (part of the Rotor Assembly) Removal of the rear cover reveals: The Regulator controls the alternator output. The Brushes conduct current to the rotor field winding. The Rectifier Bridge converts AC voltage to DC voltage. Diode Rectifier Bridge

Brushes Two stationary carbon brushes ride on two rotating slip rings. Bushes are either soldered or bolted Two slip rings are located on one end of the rotor assembly. Each end of the rotor field winding is attached to a slip ring. Thereby, allowing current to flow through the field winding.

Electronic IC Regulator The regulator is the brain of the charging system. It monitors both battery and stator voltages and depending on the measured voltages, the regulator will adjust the amount of rotor field current to control alternator output. Regulators can be mounted both internal or external. Current technology uses an internal regulator.

Diode Rectifier The Diode Rectifier Bridge is responsible for for the conversion or rectification of AC voltage to DC voltage. Six or eight diodes are used to rectify the AC stator voltage to DC voltage. Half of these diodes are use on the positive side and the other half are on the negative side. Further details about the rectifier bridge will be explained later.

Inside the Alternator Rotor Winding Assembly Stator Winding Separating the case reveals: The rotor winding assembly rotates inside the stator winding. The rotor generates a magnetic field. The stator winding develops voltage and current begins to flow from the induced magnetic field of the rotor.

Rotor Assembly Internal Cooling Fan Finger Poles Bearing Slip Rings Rotor Field Winding Internal Cooling Fan Rotor Shaft

Rotor Assembly A basic rotor consists of a iron core, coil winding, two slip rings, and two claw-shaped finger pole pieces. Some models include support bearings and one or two internal cooling fans. The rotor is driven or rotated inside the alternator by an engine (alternator) drive belt.

Rotor Assembly The rotor contains the field winding wound over an iron core which is part of the shaft. Surrounding the field coil are two claw-type finger poles. Each end of the rotor field winding is attached to a slip ring. Stationary brushes connect the alternator to the rotor. The rotor assembly is supported by bearings. One on the shaft the other in the drive frame.

Alternating Magnetic Field North Field South Field North Field The rotor field winding creates the magnetic field that induces voltage into the stator. The magnetic field is saturates the iron finger poles. One finger pole become a north pole and the other a south pole. The rotor spins creating an alternating magnetic field, North, South, North, South, etc.

Stator Lead Ends Laminated Iron Frame Stator Winding Neutral Junction Three Phase Windings

Rotor / Stator Relationship As the rotor assembly rotates within the stator winding. The alternating magnetic field from the spinning rotor induces an alternating voltage into the stator winding. The strength of the magnetic field and the speed of the rotor affect the amount of voltage induced into the stator.

Stator Windings Stator Lead Ends Laminated Iron Frame Three Windings The stator is made with three sets of windings. Each winding is placed is a different position compared with the others. A laminated iron frame concentrates the magnetic field. Stator lead ends that output to the diode rectifier bridge. Neutral Junction in the Wye design can be identified by the 6 strands of wire

3 Phase Windings The stator winding has three sets of windings. Each is formed into a number of evenly spaced coils around the stator core. The result is three overlapping single phase AC sine wave current signatures, A, B, C. Adding these waves together make up the total AC output of the stator. This is called three phase current. Three phase current provides a more even current output.

Stator Design Two designs of stator winding are used. Delta and Wye. Delta wound stators can be identified by having only three stator leads, and each lead will have the same number of wires attached. Wye style has four stator leads. One of the leads is called the Neutral Junction. The Neutral Junction is common to all the other leads.

Wye Design Wye wound stators have three windings with a common neutral junction. They can be identified because they have 4 stator lead ends. Wye wound stators are used in alternators that require high voltage output a low alternator speed. Two windings are in series at any one time during charge output.

Delta Design Delta wound stators can be identified because they have only three stator lead ends. Delta stators allow for higher current flow being delivered at low RPM. The windings are in parallel rather than series as like the Wye design.

B Terminal P Terminal Stator Taps Attaches to Stator Windings Diode Rectifier Bridge Assembly Negative Diodes Ground Points Positive Diodes

Rectifier Operation The Diode Rectifier Bridge is responsible for for the conversion or rectification the AC voltage into DC voltage. Two diodes are connected to each stator lead. One positive the other negative. Because a single diode will only block half the the AC voltage. Six or eight diodes are used to rectify the AC stator voltage to DC voltage. Diodes used in this configuration will redirect both the positive and negative polarity signals of the AC voltage to produce DC voltage. This process is called Full - Wave Rectification.

Diodes Diodes Diodes are used as one-way electrical check valves. Passing current in only one direction, never in reverse. Diodes are mounted in a heat sink to dissipate the heat generated by the diodes. Diodes redirect the AC voltage into DC voltage so the battery receives the correct polarity.

Rectifier Operation In red you can see B+ current pass through to the rectifier as it goes to the battery. In green you can see the return path. Now, in red B+ current passes through to the rectifier however, this time current has the opposite polarity. In green you can see the new return path. Even though it enters the rectifier at a different location, current goes to the battery in the same direction.

Heat Sink Regulator Ground P Terminal Senses Neutral Junction voltage of Stator Electronic Regulator S Terminal Senses Battery Voltage F Terminal Test Pad Full Field Test Point L Terminal Warning Lamp IG Terminal Ignition Switch Signal Turns Regulator ON B Terminal Connects to Alternator Output Terminal F Terminal Connects Regulator to Rotor Winding

Voltage Regulation The regulator will attempt to maintain a pre-determined charging system voltage level. When charging system voltage falls below this point, the regulator will increase the field current, thus strengthening the magnetic field, which results in an increase of alternator output. When charging system voltage raises above this point, the regulator will decrease field current, thus weakening the magnetic field, and results in a decrease of alternator output.

B+ Regulator Types REGULATOR REGULATOR ALTERNATOR Field Coil ALTERNATOR Field Coil B+ Any one of two regulator designs can be used. The Grounded Field type. The regulator controls the amount of B+ going to the field winding in the rotor. The Grounded Regulator type. The regulator controls the amount battery ground (negative) going to the field winding in the rotor.

Working Alternator Regulator Slip Rings (part of the Rotor Assembly) The regulator monitors battery voltage. The regulator controls current flow to the rotor assembly. The rotor produces a magnetic field. Voltage is induced into the stator. The rectifier bridge converts AC stator voltage to DC output for use by the vehicle. Diode Rectifier Bridge Contains the Rotor & Stator