IOMASA DTU Status October 2003



Similar documents
Temporal variation in snow cover over sea ice in Antarctica using AMSR-E data product

Daily High-resolution Blended Analyses for Sea Surface Temperature

Estimating Firn Emissivity, from 1994 to1998, at the Ski Hi Automatic Weather Station on the West Antarctic Ice Sheet Using Passive Microwave Data

Summary Report on National and Regional Projects set-up in Russian Federation to integrate different Ground-based Observing Systems

Satellite Altimetry Missions

Huai-Min Zhang & NOAAGlobalTemp Team

Radiometer Physics GmbH Discrimination of cloud and rain liquid water path by groundbased polarized microwave radiometry

A Microwave Retrieval Algorithm of Above-Cloud Electric Fields

Diurnal Cycle: Cloud Base Height clear sky

IMPACTS OF IN SITU AND ADDITIONAL SATELLITE DATA ON THE ACCURACY OF A SEA-SURFACE TEMPERATURE ANALYSIS FOR CLIMATE

TECHNICAL REPORTS. Authors: Tatsuhiro Noguchi* and Takaaki Ishikawa*

Slide 1. Slide 2. Slide 3

Antarctic summer sea ice concentration and extent: comparison of ODEN 2006 ship observations, satellite passive microwave and NIC sea ice charts

AMSRIce03 Sea Ice Thickness Data

Application of Numerical Weather Prediction Models for Drought Monitoring. Gregor Gregorič Jožef Roškar Environmental Agency of Slovenia

HFIP Web Support and Display and Diagnostic System Development

Joint Polar Satellite System (JPSS)

16 th IOCCG Committee annual meeting. Plymouth, UK February mission: Present status and near future

Validation of SEVIRI cloud-top height retrievals from A-Train data

Development of an Integrated Data Product for Hawaii Climate

Satellite Products and Dissemination: Visualization and Data Access

Clear Sky Radiance (CSR) Product from MTSAT-1R. UESAWA Daisaku* Abstract

Precipitation Remote Sensing

The impact of window size on AMV

Overview of the IR channels and their applications

Blackbody radiation. Main Laws. Brightness temperature. 1. Concepts of a blackbody and thermodynamical equilibrium.

Monitoring of Arctic Conditions from a Virtual Constellation of Synthetic Aperture Radar Satellites

Enhanced Sea Ice Concentrations from Passive Microwave Data Josefino C. Comiso NASA Goddard Space Flight Center

Weather Radar Basics

SAFNWC/MSG Cloud type/height. Application for fog/low cloud situations

Intercomparison of passive microwave sea ice concentration retrievals over the high-concentration Arctic sea ice

Satellite SST Product Development Proposal

Near Real Time Blended Surface Winds

Studying cloud properties from space using sounder data: A preparatory study for INSAT-3D

Ocean Level-3 Standard Mapped Image Products June 4, 2010

Group Session 1-3 Rain and Cloud Observations

RPG MWR PRO TN Page 1 / 12 physics.de Radiometer Physics GmbH

Combining Satellite High Frequency Microwave Radiometer & Surface Cloud Radar Data for Determination of Large Scale 3 D Cloud IWC 서은경

Project Title: Quantifying Uncertainties of High-Resolution WRF Modeling on Downslope Wind Forecasts in the Las Vegas Valley

NCDC s SATELLITE DATA, PRODUCTS, and SERVICES

Radar Interferometric and Polarimetric Possibilities for Determining Sea Ice Thickness

Obtaining and Processing MODIS Data

STAR Algorithm and Data Products (ADP) Beta Review. Suomi NPP Surface Reflectance IP ARP Product

5200 Auth Road, Camp Springs, MD USA 2 QSS Group Inc, Lanham, MD, USA

IRS Level 2 Processing Concept Status

Global Sea Ice Concentration Reprocessing. Product User Manual

Real-time Ocean Forecasting Needs at NCEP National Weather Service

Present Status of Coastal Environmental Monitoring in Korean Waters. Using Remote Sensing Data

How To Find Natural Oil Seepage In The Dreki Area Using An Envisat Image

Marcus A. Watkins Director of the Joint Agency Satellite Division, Science Mission Directorate, NASA HQ, Washington DC

Current status and Future Prospects of Indian Satellite

INTELLIGENT INTERACTIVE SYNTHESIZER SURFACE MOUNT MODEL: MFSH

ADM-Aeolus pre-launch campaigns with an airborne instrument demonstrator

Satellite Derived Dynamic Ocean Currents in the Arctic. Jens Olaf Pepke Pedersen Polar DTU / DTU Space

Monsoon Variability and Extreme Weather Events

The NASA NEESPI Data Portal to Support Studies of Climate and Environmental Changes in Non-boreal Europe

Spreadsheet Program for EPA Method 202 Condensible Particulate Matter Emission Rate and Concentration Calculations

Synthetic Sensing: Proximity / Distance Sensors

All-sky assimilation of microwave imager observations sensitive to water vapour, cloud and rain

A remote sensing instrument collects information about an object or phenomenon within the

Marine route optimization. Jens Olaf Pepke Pedersen Polar DTU / DTU Space

Assimilation of cloudy infrared satellite observations: The Met Office perspective

COASTAL WIND ANALYSIS BASED ON ACTIVE RADAR IN QINGDAO FOR OLYMPIC SAILING EVENT

SVMon Sound Velocity Monitor Manual

Surface-Based Remote Sensing of the Aerosol Indirect Effect at Southern Great Plains

Введение в спутниковую радиолокацию: Радиолокаторы с синтезированной апертурой (РСА) Introduction to satellite radars: Synthetic Aperture Radars (SAR)

Very High Resolution Arctic System Reanalysis for

MSG-SEVIRI cloud physical properties for model evaluations

How To Use A Karlsruhe Doppler Lidar

WSR - Weather Surveillance Radar

Long-term Observations of the Convective Boundary Layer (CBL) and Shallow cumulus Clouds using Cloud Radar at the SGP ARM Climate Research Facility

POLAR ICE Integrated Arctic and Antarctic Sea Ice monitoring Services

Mapping of Antarctic sea ice in the depletion phase: an indicator of climatic change?

AltiKa Radiometer performance assessment

The Moon. Nicola Loaring, SAAO

A system of direct radiation forecasting based on numerical weather predictions, satellite image and machine learning.

REGIONAL CLIMATE AND DOWNSCALING

Transcription:

IOMASA DTU Status October 2003 Leif Toudal Pedersen Dorthe Hofman-Bang Roberto Saldo LTP - 04/11/2003-1

DTU IOMASA Web site http://www.seaice.dk/iomasa LTP - 04/11/2003-2

OI-SAF products in browser LTP - 04/11/2003-3

OI-SAF products in browser LTP - 04/11/2003-4

OI-SAF products in browser LTP - 04/11/2003-5

AMSR-E data processing at DTU Ice products 89 GHz polarization difference Bootstrap algorithm ice conc. Combined alg. ~5 Km resolution. Advanced statistical retrieval SST, WS, WV, CLW, C, F,T ice LTP - 04/11/2003-6

NASAs AMSR-E on AQUA Precision Quantifying Bit Number 12-bit 10-bit Center Frequency (GHz) 6.925 10.65 18.7 23.8 36.5 89.0 Bandwidth (MHz) 350 100 200 400 1000 3000 Sensitivity (K) 0.3 0.6 1.1 Mean Spatial Resolution (km) IFOV (km) 1K 56 38 21 24 12 5.4 74 x 43 51 x 30 27 x 16 31 x 18 14 x 8 6 x 4 Sampling Interval (km) 10 x 10 5 x 5 Integration Time (msec) 2.6 1.3 Main Beam Efficiency (%) 95.3 95.0 96.3 96.4 95.3 96.0 Beamwidth (degrees) 2.2 1.4 0.8 0.9 0.4 0.18 LTP - 04/11/2003-7

Operational microwave radiometer systems 1978-200x LTP - 04/11/2003-8

AMSR-E ice concentrations LTP - 04/11/2003-9

AMSR-E ice concentrations (resolution enhanced) LTP - 04/11/2003-10

AMSR 89 GHz 3 Km Polarization Difference LTP - 04/11/2003-11

Estimation theory - 1 T A ( f, θ, p ) = F ( S S T, W S, W V ( z ), C L W ( z ), T a i r ( z ), T i c e, C, e t ( f )... ) ( 7. 1 ) T A = F ( p ) ( 7. 2 ) p = ( S S T, W S, W V, C L W, T, C, F ) ( 7. 3 ) T A = M p ( 7. 4 ) M i j = δ T a p i δ p j ( 7. 5 ) LTP - 04/11/2003-12

Partial derivatives Atmosphere Ocean surface LTP - 04/11/2003-13

Estimation theory - 2 p ˆ = ( M t M ) 1 M t T a p ( 7. 6 ) T A = M p + e ( 7. 7 ) p ˆ = ( M t S - e 1 M ) - 1 M t S - e 1 T A ( 7. 8 ) S ˆ = ( M t S - 1 e M ) - 1 ( 7. 9 ) LTP - 04/11/2003-14

Estimation theory - 3 S ˆ = ( S - p 1 + S - D 1 ) - 1 ( 7. 10 ) S ˆ = ( S - p 1 + M t S - e 1 M ) - 1 ( 7. 11 ) p ˆ = ( S - p 1 + S - D 1 ) - 1 ( S - p 1 p 0 + S - D 1 p 1 ) ( 7. 12 ) p ˆ = S ˆ ( S - 1 p p 0 + M t S - 1 e T A ) ( 7. 1 3 ) LTP - 04/11/2003-15

September 26, 2003, ~04:30 UTC Water vapour Clouds (CLW) Wind Sea surface temperature (Ice surface temperature) (Ice (C,F)) LTP - 04/11/2003-16

September 26, 2003, ~04:30 UTC Water vapour Cloud liquid Wind SST LTP - 04/11/2003-17

Comparison of AMSR and IOSAF SST 2003-10-27 AMSR SST IO-SAF SST LTP - 04/11/2003-18

SST comparison DTU vs. Wentz 2003-10-27 03:28 LTP - 04/11/2003-19

Wind estimate 03:28, 2003-10-27 AMSR wind estimate and NCEP wind forecast 06:00 St. Dev. Wind Wind Estimate LTP - 04/11/2003-20

AMSR-E wind retrieval DTU vs F. Wentz DTU vs Wentz AMSR wind estimate 03:28 and NCEP wind forecast for 06:00 LTP - 04/11/2003-21

AMSR Water Vapour retrieval DTU WV St.Dev. WV DTU vs Wentz Watervapourcomparison LTP - 04/11/2003-22

Cloud Liquid Water retrieval Avhrr ch4 02:12 Amsr clw 03:28 Amsr Std clw 03:28 LTP - 04/11/2003-23

Ice concentration retrieval Statistical retrieval Bootstrap alg. LTP - 04/11/2003-24

Ice concentration retrieval Ice conc. St. Dev. LTP - 04/11/2003-25

Multi-year ice fraction MY-ice FY F St. Dev. LTP - 04/11/2003-26

Algorithm performance LTP - 04/11/2003-27

Sensitivity analysis Parameter default min max σ SST ( C) -1.75-1.75 2.25 2.6 WS (m/s) 8 5 15 5.0 Integrated water vapour (cm) Surface air temperature ( C) Integrated liquid water (cm) 0.4 0.2 1.0 0.55-5 -35-5 8 0.005 0 0.01 0.007 Rain/snow mm/hr 0 0 0 Ice temperature ( C) -2-14 -2 Ice concentration 0 to 1 MY ice fraction 0 to 1 LTP - 04/11/2003-28

Sensitivity analysis water case No Algorithm SST WS WV T CLW Total 1 Simple 6.6 GHz H 0.2 1.2 0.2 0.2 0.3 1.3 3 Simple 18 H+V 1.3 6.4 4.6-1.7 2.1 8.4 4 Simple 21 H+V 0.6 5.1 14.7-1.1 3.1 15.9 5 Simple 37 H+V 0.4 8.5 7.2-3.7 9.6 15.1 7 Cavalieri et al. 0.1 1.6 2.7-0.2-0.3 3.2 12 Comiso Polarization 13 Comiso Frequency 0.4 8.1 6.8-3.5 9.1 14.4 0.1 0.7 2.7 0.1-2.6 3.8 LTP - 04/11/2003-29

Sensitivity analysis FY case No Algorithm SST WS WV T CLW Total 1 Simple 6.6 GHz H 0.0 0.1 0.1 1.7 0.1 1.7 3 Simple 18 H+V 0.1 0.7 1.6-5.1 0.7 5.4 4 Simple 21 H+V 0.1 0.6 3.5-1.8 0.7 4.0 5 Simple 37 H+V 0.0 0.9 2.6-3.3 3.4 5.5 7 Cavalieri et al. 0.1 0.4 0.7-1.2-1.4 2.0 12 Comiso Polarization 13 Comiso Frequency 0.0 0.9 2.5-3.2 3.2 5.3 0.0 0.1 0.2 1.7-1.5 2.3 LTP - 04/11/2003-30