Radar Interferometric and Polarimetric Possibilities for Determining Sea Ice Thickness
|
|
|
- Rachel Perkins
- 10 years ago
- Views:
Transcription
1 Radar Interferometric and Polarimetric Possibilities for Determining Sea Ice Thickness by Scott Hensley, Ben Holt, Sermsak Jaruwatanadilok, Jeff Steward, Shadi Oveisgharan Delwyn Moller, Jim Reis, Andy Mahoney, Khalid A. Soofi January 28, 2015 PolInSAR 2015 Frascati, Italy Copyright 2015 Jet Propulsion Laboratory, California Institute of Technology, Government Sponsorship Acknowledged
2
3 Overview Motivation Interferometric Mapping Ka-band Studies Sensitivity Studies X/P-Band GeoSAR Interferometry
4
5 Motivation Sea ice thickness is a primary indicator of climate change in the polar oceans, as the thickness is a time-integrated result of both thermodynamic and dynamic processes. The large-scale ocean and atmospheric forcing acts on the fine-scale (a few to 10s of meters) opening and closing of the sea ice cover along fractures. The mean thickness and variance of sea thickness at km scales (50 cm uncertainty) are derived from recent spaceborne observations from the ICESat lidar and in the Arctic from sporadic upward looking sonar measurements. However, accurate measurements of sea ice thickness at the fine-scales at which the forcing is occurring are virtually non-existent. Moreover, fine spatial scale measurements are needed to support oil exploration and extraction in Artic regions.
6 Sea Ice Measurement Methods In this talk we examine two potential radar interferometric means of obtaining sea ice thickness. One method uses high frequency Ka-band (8.5 mm wavelength) to infer sea ice thickness by measuring elevations to the surface of the ice and to the ocean surface in nearby open leads. Data from the NASA GLISTIN radar is used to illustrate this methodology. No clouds Possible use on SWOT mission Alternatively, we consider the use of dual frequency X-band and P-band (3 cm and 85 cm wavelengths) to exploit the differential penetration of longer versus shorter wavelengths to estimate sea ice thickness. This technique is illustrated with data collected by the Furgo Earthdata GeoSAR system.
7 Current Methods for Measuring Sea Ice Thickness Current methods of measuring sea ice thickness at fine spatial scales involve the use of electromagnetic induction (EM) or using ground based penetrating radars, sonar measurements or in situ obtained ice cores. The EM method provides mean thickness and variance and has well-known deficiencies with thicker, ridged ice. The penetrating radar method is designed to detect the top and bottom ice surfaces simultaneously and is able to achieve the high accuracy and spatial resolution that is desired but has not been tested on aircraft and ultimately lacks the capability to map large regions due to its narrow altimetric-like nadir swath. In situ ice cores although very accurate can only be made for very constrained spatial extents. Submarine based sonar measurement are temporally sporadic, although extend further back in time than satellite altimetry-freeboard based measurements. EM Induction Sonar Measurements Ice Cores
8
9 Electromagnetic Versus Interferometric Penetration Electromagnetic Penetration Interferometric Penetration Electromagnetic penetration is a measure of how deep radar waves penetrate into a volume. Penetration depends on the effective dielectric constant and the wavelength and is independent of baseline. Interferometric penetration is a measure of the elevation bias from the top of the scattering media as measured by an interferometer. Penetration depends on the wavelength, the scattering as function of height in the volume and the baseline length.
10 Simple 3-Layer Model A simple model for the sea ice scattering is a exponential attenuating volume with surface scattering at the air/ice interface and at the ice/water interface that can be used to assess basic sensitivities. µ s = Surface to Ice Volume Scattering Ratio µ i = Water to Ice Volume Scattering Ratio η = Attenuation in Ice (2-Way) The volumetric correlation, γ v, using the formula in the adjacent panel for the 3-layer volume gives The argument of the volumetric correlation provides a measure of the interferometric penetration, h p.
11
12 GLISTIN System The Glacier and Ice Surface Topography Interferometer (GLISTIN not GLISTEN ) was first proposed as a spaceborne digital beamforming Ka-band space-borne mission concept. GLISTIN is a Ka-band single pass interferometer (25 cm baseline length) flown on the NASA Gulfstream III aircraft designed to measure glacier and ice topography. Ka-band (25 GHz or 8.5 mm wavelength) was chosen to minimize penetration. NASA s the Earth Science Technology Office (ESTO) in 2004 initially funded for technology development of a slotted waveguide antenna beamformer along with mission studies. Later an Airborne demonstration for phenomenology and measurement concept funded in 2007 under NASA International Polar Year activities with performance upgrades to the system made in GLISTIN has flown a campaign to Greenland May 2009 and did a validation (land-ice) and proof-of-concept (sea-ice) 2-day campaign to Alaska April, 2013.
13 GLISTIN Ka-band System Ka-band antennas installed on the NASA GIII configured for single-pass interferometry
14 GLISTIN Sea Ice Collection Proof of concept to see if measuring freeboard height is possible - Key is to determine if heights of open leads can be measured - Collected data at near-nadir incidence angles - Pertinent for the SWOT mission Underflew Cryosat II pass. Overflight occurred midway into first outbound leg Full swath overlap on reverse paths
15 GLISTIN Ka-band Sea Ice Thickness Radar Backscatter
16
17 Submarine Data of Sea Ice Bottom Required as input to the scattering model are the sea ice roughness and correlation length for the bottom and top of the sea ice. Many papers describe the top of the sea ice, however little or no data are available on the bottom roughness of the sea ice. We used submarine based ice topography measurements to bound the roughness and estimate the correlation length. Ice draft measurements gridded in 2 cm resolution cells. Courtesy of M. Doble A 5x5 pixel box centered on each pixel was used to estimate the local mean and local standard deviation. RMS height is close to measurement precision so this assessment only places un upper bound on surface roughness.
18 Sea Ice Bottom Roughness and Correlation
19 Scattering Model We have developed a scattering model of radar interferometric observations of sea ice in order to assess to ability to measure sea ice thickness under various sea conditions. We analyzed submarine based sonar draft measurements to obtain sea ice bottom characteristics used in our scattering models.
20 Sensitivity Analysis Using sea ice roughness obtained from the submarine data for the bottom layer, sea ice dielectric profiles which determine the level of attenuation of microwaves in sea ice we estimated the amount of penetration at X and P-band for a range of values about these nominal values. Above show the ratio of top/bottom scattering power.
21
22 GeoSAR Imaging Geometry GeoSAR is a dual frequency X-band and P-band radar interferometer that is flown a Gulfstream II which is owned and operated by Furgo Earthdata International. The system exploits the different penetration levels of P-band and X-band in scattering volumes such as vegetation and sea ice. The system operates with a wide bandwidth of 160 MHz which provides sub meter resolution.
23 GeoSAR System
24 GeoSAR Data Collections GeoSAR has made several campaigns dedicated to studying the ability of dual frequency radar interferometric measurements to measure sea ice thickness. On April 10, 2012 the GeoSAR radar collected a series of flight lines over first year and multi-year ice in a region just north of Barrow Alaska. Several radar corner reflectors were deployed in the area for calibration. GeoSAR flight lines were arranged to overlap a helicopter EM survey of sea ice thickness. In addition to radar measurements the GeoSAR platform has a lidar that measures elevation to the top of the sea ice. Then in April 2014 another collection of sea ice was made by GeoSAR, this time in the Canadian archipelago on a potentially more amenable type and thickness of sea ice to demonstrate this radar concept. Sea ice within the Canadian islands becomes largely stationary, and maintaining the same location for many months makes it thus a more accessible site for in situ measurements and flight planning. These flights were obtained over ice that was at least a few years old, of considerable thickness, and with minimum salinity, which optimizes radar penetration.
25 Barrow, Alaska Collection
26 Canadian Archipelago
27 Ice Island - Iceberg
28 Profiles Through Ice Island
29
30 Conclusions Both low and high frequency radar observations may be useful for sea ice thickness estimates. Coherent interferometric/polarimetric scattering from sea ice particularly at low frequencies with realistic sea ice input parameters are needed. NEXT STEPS: Improved model to understand how penetration depends on ice type and improved algorithms for estimating sea ice thickness.
Satellite Altimetry Missions
Satellite Altimetry Missions SINGAPORE SPACE SYMPOSIUM 30 TH SEPTEMBER 2015 AUTHORS: LUCA SIMONINI/ ERICK LANSARD/ JOSE M GONZALEZ www.thalesgroup.com Table of Content General Principles and Applications
Remote Sensing an Introduction
Remote Sensing an Introduction Seminar: Space is the Place Referenten: Anica Huck & Michael Schlund Remote Sensing means the observation of, or gathering information about, a target by a device separated
Passive Remote Sensing of Clouds from Airborne Platforms
Passive Remote Sensing of Clouds from Airborne Platforms Why airborne measurements? My instrument: the Solar Spectral Flux Radiometer (SSFR) Some spectrometry/radiometry basics How can we infer cloud properties
Two primary advantages of radars: all-weather and day /night imaging
Lecture 0 Principles of active remote sensing: Radars. Objectives: 1. Radar basics. Main types of radars.. Basic antenna parameters. Required reading: G: 8.1, p.401-40 dditional/advanced reading: Online
A remote sensing instrument collects information about an object or phenomenon within the
Satellite Remote Sensing GE 4150- Natural Hazards Some slides taken from Ann Maclean: Introduction to Digital Image Processing Remote Sensing the art, science, and technology of obtaining reliable information
Active and Passive Microwave Remote Sensing
Active and Passive Microwave Remote Sensing Passive remote sensing system record EMR that was reflected (e.g., blue, green, red, and near IR) or emitted (e.g., thermal IR) from the surface of the Earth.
LiDAR for vegetation applications
LiDAR for vegetation applications UoL MSc Remote Sensing Dr Lewis [email protected] Introduction Introduction to LiDAR RS for vegetation Review instruments and observational concepts Discuss applications
Radar images Università di Pavia Fabio Dell Acqua Gruppo di Telerilevamento
Radar images Radar images radar image DNs linked to backscattered field Backscattered field depends on wave-target interaction, with different factors relevant to it: within-pixel coherent combination
Monitoring top soil moisture through remote sensing to aid hydrologic modelling
Monitoring top soil moisture through remote sensing to aid hydrologic modelling N. Verhoest 1, H. Lievens 1, L. Hoffmann 2, P. Matgen 2, M. Montanari 2, M. Vanclooster 3, S. Lambot 3, J. Minet 3, B. De
Monitoring of Arctic Conditions from a Virtual Constellation of Synthetic Aperture Radar Satellites
DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Monitoring of Arctic Conditions from a Virtual Constellation of Synthetic Aperture Radar Satellites Hans C. Graber RSMAS
AMSRIce03 Sea Ice Thickness Data
Notice to Data Users: The documentation for this data set was provided solely by the Principal Investigator(s) and was not further developed, thoroughly reviewed, or edited by NSIDC. Thus, support for
The most widely used active remote sensing systems include:
Active and Passive Remote Sensing Passive remote sensing systems record EMR that is reflected (e.g., blue, green, red, and near-infrared light) or emitted (e.g., thermal infrared energy) from the surface
Future needs of remote sensing science in Antarctica and the Southern Ocean: A report to support the Horizon Scan activity of COMNAP and SCAR
Future needs of remote sensing science in Antarctica and the Southern Ocean: A report to support the Horizon Scan activity of COMNAP and SCAR Thomas Wagner ([email protected]) Charles Webb NASA Cryospheric
CASE STUDY LANDSLIDE MONITORING
Introduction Monitoring of terrain movements (unstable slopes, landslides, glaciers, ) is an increasingly important task for today s geotechnical people asked to prevent or forecast natural disaster that
Monitoring a Changing Environment with Synthetic Aperture Radar. Alaska Satellite Facility National Park Service Don Atwood
Monitoring a Changing Environment with Synthetic Aperture Radar Don Atwood Alaska Satellite Facility 1 Entering the SAR Age 2 SAR Satellites RADARSAT-1 Launched 1995 by CSA 5.6 cm (C-Band) HH Polarization
How To Monitor Sea Level With Satellite Radar
Satellite Altimetry Wolfgang Bosch Deutsches Geodätisches Forschungsinstitut (DGFI), München email: [email protected] Objectives You shall recognize satellite altimetry as an operational remote sensing
16 th IOCCG Committee annual meeting. Plymouth, UK 15 17 February 2011. mission: Present status and near future
16 th IOCCG Committee annual meeting Plymouth, UK 15 17 February 2011 The Meteor 3M Mt satellite mission: Present status and near future plans MISSION AIMS Satellites of the series METEOR M M are purposed
Estimating Firn Emissivity, from 1994 to1998, at the Ski Hi Automatic Weather Station on the West Antarctic Ice Sheet Using Passive Microwave Data
Estimating Firn Emissivity, from 1994 to1998, at the Ski Hi Automatic Weather Station on the West Antarctic Ice Sheet Using Passive Microwave Data Mentor: Dr. Malcolm LeCompte Elizabeth City State University
Lidar Remote Sensing for Forestry Applications
Lidar Remote Sensing for Forestry Applications Ralph O. Dubayah* and Jason B. Drake** Department of Geography, University of Maryland, College Park, MD 0 *[email protected] **[email protected] 1
Passive remote sensing systems record electromagnetic energy that was reflected (e.g., blue, green, red, and near-infrared light) or emitted (e.g.
CHAPTER 9: Active and Passive Microwave RS REFERENCE: Remote Sensing of the Environment John R. Jensen (2007) Second Edition Pearson Prentice Hall Passive Remote Sensing Passive remote sensing systems
Monitoring Soil Moisture from Space. Dr. Heather McNairn Science and Technology Branch Agriculture and Agri-Food Canada [email protected].
Monitoring Soil Moisture from Space Dr. Heather McNairn Science and Technology Branch Agriculture and Agri-Food Canada [email protected] What is Remote Sensing? Scientists turn the raw data collected
Exploitation of historical satellite SAR archives for mapping and monitoring landslides at regional and local scale
Exploitation of historical satellite SAR archives for mapping and monitoring landslides at regional and local scale (A. Ferretti (TRE), A. Tamburini (TRE), M. Bianchi (TRE), M. Broccolato (Regione Valle
High Resolution RF Analysis: The Benefits of Lidar Terrain & Clutter Datasets
0 High Resolution RF Analysis: The Benefits of Lidar Terrain & Clutter Datasets January 15, 2014 Martin Rais 1 High Resolution Terrain & Clutter Datasets: Why Lidar? There are myriad methods, techniques
Radar interferometric techniques and data validation Terrafirma Essen, March 2011. Page 1
Radar interferometric techniques and data validation Terrafirma Essen, March 2011 Page 1 Agenda Introduction to InSAR technology Different radarinterferometric techniques Validation of InSAR technology
Soil degradation monitoring by active and passive remote-sensing means: examples with two degradation processes
Soil degradation monitoring by active and passive remote-sensing means: examples with two degradation processes Naftaly Goldshleger, *Eyal Ben-Dor,* *Ido Livne,* U. Basson***, and R.Ben-Binyamin*Vladimir
Digital Remote Sensing Data Processing Digital Remote Sensing Data Processing and Analysis: An Introduction and Analysis: An Introduction
Digital Remote Sensing Data Processing Digital Remote Sensing Data Processing and Analysis: An Introduction and Analysis: An Introduction Content Remote sensing data Spatial, spectral, radiometric and
An Airborne A-Band Spectrometer for Remote Sensing Of Aerosol and Cloud Optical Properties
An Airborne A-Band Spectrometer for Remote Sensing Of Aerosol and Cloud Optical Properties Michael Pitts, Chris Hostetler, Lamont Poole, Carl Holden, and Didier Rault NASA Langley Research Center, MS 435,
Remote sensing is the collection of data without directly measuring the object it relies on the
Chapter 8 Remote Sensing Chapter Overview Remote sensing is the collection of data without directly measuring the object it relies on the reflectance of natural or emitted electromagnetic radiation (EMR).
Sentinel-1 Mission Overview
Sentinel-1 Mission Overview Pierre Potin Sentinel-1 Mission Manager, ESA Advanced Course on Radar Polarimetry ESRIN, Frascati, 19 January 2011 Global Monitoring for Environment and Security GMES is established
ENVIRONMENTAL MONITORING Vol. I - Remote Sensing (Satellite) System Technologies - Michael A. Okoye and Greg T. Koeln
REMOTE SENSING (SATELLITE) SYSTEM TECHNOLOGIES Michael A. Okoye and Greg T. Earth Satellite Corporation, Rockville Maryland, USA Keywords: active microwave, advantages of satellite remote sensing, atmospheric
Interferometric Synthetic Aperture Radar (SAR) Missions Employing Formation Flying
INVITED PAPER Interferometric Synthetic Aperture Radar (SAR) Missions Employing Formation Flying A German Earth satellite system is designed to produce data on forest structure, biomass, tectonic shifts
TerraSAR-X Applications Guide
TerraSAR-X Applications Guide Extract: Maritime Monitoring: Oil Spill Detection April 2015 Airbus Defence and Space Geo-Intelligence Programme Line Maritime Monitoring: Oil Spill Detection Issue As the
TerraSAR-X Interferometry. Michael Eineder, Nico Adam Remote Sensing Technology Institute
TerraSAR-X Interferometry Michael Eineder, Nico Adam Remote Sensing Technology Institute TerraSAR-X Contribution to Commissioning Phase: verify phase and geometric stability of instrument and SAR processor
Passive Microwave Remote Sensing for Sea Ice Thickness Retrieval Using Neural Network and Genetic Algorithm
Progress In Electromagnetics Research Symposium, Beijing, China, March 23 27, 2009 229 Passive Microwave Remote Sensing for Sea Ice Thickness Retrieval Using Neural Network and Genetic Algorithm H. J.
2.3 Spatial Resolution, Pixel Size, and Scale
Section 2.3 Spatial Resolution, Pixel Size, and Scale Page 39 2.3 Spatial Resolution, Pixel Size, and Scale For some remote sensing instruments, the distance between the target being imaged and the platform,
The European Space Agency s Synthetic Aperture Radar Programme From Experiment to Service Provision
The European Space Agency s Synthetic Aperture Radar Programme From Experiment to Service Provision Evert Attema ESA, Directorate of Earth Observation Programme! The idea of an independent European space
Radiometer Physics GmbH Discrimination of cloud and rain liquid water path by groundbased polarized microwave radiometry
Radiometer Physics GmbH Discrimination of cloud and rain liquid water path by groundbased polarized microwave radiometry Harald Czekala RPG Radiometer Physics GmbH AOGS Meeting, Singapore, July 6, 2004
The process components and related data characteristics addressed in this document are:
TM Tech Notes Certainty 3D November 1, 2012 To: General Release From: Ted Knaak Certainty 3D, LLC Re: Structural Wall Monitoring (#1017) rev: A Introduction TopoDOT offers several tools designed specifically
NASA Earth System Science: Structure and data centers
SUPPLEMENT MATERIALS NASA Earth System Science: Structure and data centers NASA http://nasa.gov/ NASA Mission Directorates Aeronautics Research Exploration Systems Science http://nasascience.nasa.gov/
Synthetic Aperture Radar: Principles and Applications of AI in Automatic Target Recognition
Synthetic Aperture Radar: Principles and Applications of AI in Automatic Target Recognition Paulo Marques 1 Instituto Superior de Engenharia de Lisboa / Instituto de Telecomunicações R. Conselheiro Emídio
Long-term Observations of the Convective Boundary Layer (CBL) and Shallow cumulus Clouds using Cloud Radar at the SGP ARM Climate Research Facility
Long-term Observations of the Convective Boundary Layer (CBL) and Shallow cumulus Clouds using Cloud Radar at the SGP ARM Climate Research Facility Arunchandra S. Chandra Pavlos Kollias Department of Atmospheric
ADM-Aeolus pre-launch campaigns with an airborne instrument demonstrator
ADM-Aeolus pre-launch campaigns with an airborne instrument demonstrator Oliver Reitebuch Institut für Physik der Atmosphäre Background The ADM-Aeolus instrument ALADIN uses several novel techniques, like
Hyperspectral Satellite Imaging Planning a Mission
Hyperspectral Satellite Imaging Planning a Mission Victor Gardner University of Maryland 2007 AIAA Region 1 Mid-Atlantic Student Conference National Institute of Aerospace, Langley, VA Outline Objective
Combining Satellite High Frequency Microwave Radiometer & Surface Cloud Radar Data for Determination of Large Scale 3 D Cloud IWC 서은경
11/21/2008 제9회 기상레이더 워크숍 Combining Satellite High Frequency Microwave Radiometer & Surface Cloud Radar Data for Determination of Large Scale 3 D Cloud IWC 서은경 공주대학교 지구과학교육과 Objective: To retrieve large
German Aerospace Center A member of the Helmholtz Association. Microwaves and Radar Institute. Digital- & Offsetdruck Wolfertstetter KG, Gilching
Institute s Brochure Microwaves and Radar Institute Overview of Projects and Research Activities 1 German Aerospace Center A member of the Helmholtz Association Microwaves and Radar Institute Director
Automated Spacecraft Scheduling The ASTER Example
Automated Spacecraft Scheduling The ASTER Example Ron Cohen [email protected] Ground System Architectures Workshop 2002 Jet Propulsion Laboratory The Concept Scheduling by software instead of
102 26-m Antenna Subnet Telecommunications Interfaces
DSMS Telecommunications Link Design Handbook 26-m Antenna Subnet Telecommunications Interfaces Effective November 30, 2000 Document Owner: Approved by: Released by: [Signature on file in TMOD Library]
SARAL ACCESS TO OFF-LINE DATA
SARAL AltiKa introduction Plot of the SARAL/AltiKa ground track over Africa (Credits: Google). S ARAL/AltiKa is a new mission in cooperation between CNES and ISRO (Indian Space Research Organization),
Information Contents of High Resolution Satellite Images
Information Contents of High Resolution Satellite Images H. Topan, G. Büyüksalih Zonguldak Karelmas University K. Jacobsen University of Hannover, Germany Keywords: satellite images, mapping, resolution,
Using LIDAR to monitor beach changes: Goochs Beach, Kennebunk, Maine
Geologic Site of the Month February, 2010 Using LIDAR to monitor beach changes: Goochs Beach, Kennebunk, Maine 43 o 20 51.31 N, 70 o 28 54.18 W Text by Peter Slovinsky, Department of Agriculture, Conservation
Groundwater exploration WATEX applications with Ground Penetrating Radars. Dr.Saud Amer USGS Dr.Alain Gachet Radar Technologies France
Groundwater exploration WATEX applications with Ground Penetrating Radars Dr.Saud Amer USGS Dr.Alain Gachet Radar Technologies France GPR is a technology that allows rapid and non destructive collection
How To Write A Call To Action For Terrasar-X
Doc.: TX-PGS-PL-4127 TerraSAR-X Announcement of Opportunity: Utilization of the TerraSAR-X Archive 1 Page: 2 of 11 TABLE OF CONTENTS TERRASAR-X... 1 ANNOUNCEMENT OF OPPORTUNITY: UTILIZATION OF THE TERRASAR-X
Technical note on MISR Cloud-Top-Height Optical-depth (CTH-OD) joint histogram product
Technical note on MISR Cloud-Top-Height Optical-depth (CTH-OD) joint histogram product 1. Intend of this document and POC 1.a) General purpose The MISR CTH-OD product contains 2D histograms (joint distributions)
GPS Precise Point Positioning as a Method to Evaluate Global TanDEM-X Digital Elevation Model
GPS Precise Point Positioning as a Method to Evaluate Global TanDEM-X Digital Elevation Model 7 th FIG Regional Conference TS 1C Advances in GNSS Positioning and Applications I Volker Schwieger 1, Jürgen
Radar Measurement of Rain Storage in a Deciduous Tree
39 Chapter 3 Radar Measurement of Rain Storage in a Deciduous Tree Joost de Jong, Henk de Groot, Wim Klaassen, and Piet Kuiper Abstract. The potential of radar to estimate the amount of rain, stored in
Overview. What is EMR? Electromagnetic Radiation (EMR) LA502 Special Studies Remote Sensing
LA502 Special Studies Remote Sensing Electromagnetic Radiation (EMR) Dr. Ragab Khalil Department of Landscape Architecture Faculty of Environmental Design King AbdulAziz University Room 103 Overview What
National Snow and Ice Data Center
National Snow and Ice Data Center This data set (NSIDC-0484), part of the NASA Making Earth System Data Records for Use in Research Environments (MEaSUREs) Program, provides the first comprehensive, high-resolution,
INVESTIGA I+D+i 2013/2014
INVESTIGA I+D+i 2013/2014 SPECIFIC GUIDELINES ON AEROSPACE OBSERVATION OF EARTH Text by D. Eduardo de Miguel October, 2013 Introducction Earth observation is the use of remote sensing techniques to better
RECOMMENDATION ITU-R P.1546-1. Method for point-to-area predictions for terrestrial services in the frequency range 30 MHz to 3 000 MHz
Rec. ITU-R P.546- RECOMMENDATION ITU-R P.546- Method for point-to-area predictions for terrestrial services in the frequency range 30 MHz to 3 000 MHz (200-2003) The ITU Radiocommunication Assembly, considering
Remote Sensing of Clouds from Polarization
Remote Sensing of Clouds from Polarization What polarization can tell us about clouds... and what not? J. Riedi Laboratoire d'optique Atmosphérique University of Science and Technology Lille / CNRS FRANCE
Satellites for Terrain Motion Mapping Terrafirma User Workshop Mining. Nico Adam
Satellites for Terrain Motion Mapping Terrafirma User Workshop Mining Nico Adam Outline SAR / InSAR observation characteristic Sensors TSX, TDX ERS-1, ERS-2 Processing techniques D-InSAR PSI SBAS Acquisition
POTENTIALS OF HIGH RESOLUTION TERRASAR-X IMAGES IN INSAR PROCESSING
POTENTIALS OF HIGH RESOLUTION TERRASAR-X IMAGES IN INSAR PROCESSING FOR EARTH DEFORMATION AND ENVIRONMENTAL STUDIES Magdalena Niemiec 1 Abstract Accurate determination of topography and surface deformation
Thickness estimation of road pavement layers using Ground Penetrating Radar
Dr. Eng. Audrey Van der Wielen Environment Concrete Roads Geotechnics & Surface Characteristics Division Belgian Road Research Centre (BRRC) [email protected] Thickness estimation of road pavement
CHAPTER 6 INSTRUMENTATION AND MEASUREMENTS 6.1 MEASUREMENTS
CHAPTER 6 INSTRUMENTATION AND MEASUREMENTS 6.1 MEASUREMENTS Atmospheric electricity is a field that is very easy to get into because it does not require a large capital investment for measuring equipment.
A Microwave Retrieval Algorithm of Above-Cloud Electric Fields
A Microwave Retrieval Algorithm of Above-Cloud Electric Fields Michael J. Peterson The University of Utah Chuntao Liu Texas A & M University Corpus Christi Douglas Mach Global Hydrology and Climate Center
Cloud Computing @ JPL Science Data Systems
Cloud Computing @ JPL Science Data Systems Emily Law, GSAW 2011 Outline Science Data Systems (SDS) Space & Earth SDSs SDS Common Architecture Components Key Components using Cloud Computing Use Case 1:
The relationships between Argo Steric Height and AVISO Sea Surface Height
The relationships between Argo Steric Height and AVISO Sea Surface Height Phil Sutton 1 Dean Roemmich 2 1 National Institute of Water and Atmospheric Research, New Zealand 2 Scripps Institution of Oceanography,
Since launch in April of 2006, CloudSat has provided
A Multipurpose Radar Simulation Package: QuickBeam BY J. M. HAYNES, R. T. MARCHAND, Z. LUO, A. BODAS-SALCEDO, AND G. L. STEPHENS Since launch in April of 2006, CloudSat has provided the first near-global
Clouds and the Energy Cycle
August 1999 NF-207 The Earth Science Enterprise Series These articles discuss Earth's many dynamic processes and their interactions Clouds and the Energy Cycle he study of clouds, where they occur, and
1. The Slotted Line. ECE 584 Microwave Engineering Laboratory Experiments. Introduction:
ECE 584 Microwave Engineering Laboratory Experiments 1. The Slotted Line Introduction: In this experiment we will use a waveguide slotted line to study the basic behavior of standing waves and to measure
Evaluations of the CALIPSO Cloud Optical Depth Algorithm Through Comparisons with a GOES Derived Cloud Analysis
Generated using V3.0 of the official AMS LATEX template Evaluations of the CALIPSO Cloud Optical Depth Algorithm Through Comparisons with a GOES Derived Cloud Analysis Katie Carbonari, Heather Kiley, and
ABSTRACT INTRODUCTION
Observing Fog And Low Cloud With A Combination Of 78GHz Cloud Radar And Laser Met Office: Darren Lyth 1, John Nash. Rutherford Appleton Laboratory: M.Oldfield ABSTRACT Results from two demonstration tests
Bi-Directional DGPS for Range Safety Applications
Bi-Directional DGPS for Range Safety Applications Ranjeet Shetty 234-A, Avionics Engineering Center, Russ College of Engineering and Technology, Ohio University Advisor: Dr. Chris Bartone Outline Background
IMPACTS OF IN SITU AND ADDITIONAL SATELLITE DATA ON THE ACCURACY OF A SEA-SURFACE TEMPERATURE ANALYSIS FOR CLIMATE
INTERNATIONAL JOURNAL OF CLIMATOLOGY Int. J. Climatol. 25: 857 864 (25) Published online in Wiley InterScience (www.interscience.wiley.com). DOI:.2/joc.68 IMPACTS OF IN SITU AND ADDITIONAL SATELLITE DATA
Laser Ranging to Nano-Satellites
13-0222 Laser Ranging to Nano-Satellites G. Kirchner (1), Ludwig Grunwaldt (2), Reinhard Neubert (2), Franz Koidl (1), Merlin Barschke (3), Zizung Yoon (3), Hauke Fiedler (4), Christine Hollenstein (5)
Towards assimilating IASI satellite observations over cold surfaces - the cloud detection aspect
Towards assimilating IASI satellite observations over cold surfaces - the cloud detection aspect Tuuli Perttula, FMI + Thanks to: Nadia Fourrié, Lydie Lavanant, Florence Rabier and Vincent Guidard, Météo
Space Environment and Satellite Systems: Removing Clutter from Ground-to-Satellite Signals. Sigrid Close
Space Environment and Satellite Systems: Removing Clutter from Ground-to-Satellite Signals Sigrid Close Background Overview RF propagation through ionosphere can be problematic Goals Traditionally too
Air Coverage Test with SCANTER 4002 at Horns Rev Wind Farm I and II
Air Coverage Test with SCANTER 4002 at Horns Rev Wind Farm I and II Abstract The challenges of aircraft detection in the area of wind farms are addressed. Detection and tracking capabilities of the SCANTER
Very High Resolution Arctic System Reanalysis for 2000-2011
Very High Resolution Arctic System Reanalysis for 2000-2011 David H. Bromwich, Lesheng Bai,, Keith Hines, and Sheng-Hung Wang Polar Meteorology Group, Byrd Polar Research Center The Ohio State University
Mapping Earth from Space Remote sensing and satellite images. Remote sensing developments from war
Mapping Earth from Space Remote sensing and satellite images Geomatics includes all the following spatial technologies: a. Cartography "The art, science and technology of making maps" b. Geographic Information
Co-simulation of Microwave Networks. Sanghoon Shin, Ph.D. RS Microwave
Co-simulation of Microwave Networks Sanghoon Shin, Ph.D. RS Microwave Outline Brief review of EM solvers 2D and 3D EM simulators Technical Tips for EM solvers Co-simulated Examples of RF filters and Diplexer
RS platforms. Fabio Dell Acqua - Gruppo di Telerilevamento
RS platforms Platform vs. instrument Sensor Platform Instrument The remote sensor can be ideally represented as an instrument carried by a platform Platforms Remote Sensing: Ground-based air-borne space-borne
Cloud detection and clearing for the MOPITT instrument
Cloud detection and clearing for the MOPITT instrument Juying Warner, John Gille, David P. Edwards and Paul Bailey National Center for Atmospheric Research, Boulder, Colorado ABSTRACT The Measurement Of
Cloud Thickness Estimation from GOES-8 Satellite Data Over the ARM-SGP Site
Cloud Thickness Estimation from GOES-8 Satellite Data Over the ARM-SGP Site V. Chakrapani, D. R. Doelling, and A. D. Rapp Analytical Services and Materials, Inc. Hampton, Virginia P. Minnis National Aeronautics
Data Management for the North American Carbon Program
Image courtesy of NASA/GSFC Data Management for the North American Carbon Program Bob Cook, Eric Sundquist, Tom Boden,, and Peter Thornton RS in NACP Workshop Missoula, MT August 20, 2004 NACP Data and
Presented by Stella Melo Environment Canada, Science and Technology, Cloud Physics and Severe Weather Research Section
Validation/Verification of the microphysical and dynamic characteristics of Arctic Cloud systems: what infrastructure is required to meet the challenge? Presented by Stella Melo Environment Canada, Science
VIIRS-CrIS mapping. NWP SAF AAPP VIIRS-CrIS Mapping
NWP SAF AAPP VIIRS-CrIS Mapping This documentation was developed within the context of the EUMETSAT Satellite Application Facility on Numerical Weather Prediction (NWP SAF), under the Cooperation Agreement
TerraSAR X and TanDEM X satellite missions update & other activities Dana Floricioiu German Aerospace Center (DLR), Remote Sensing Technology
TerraSAR X and TanDEM X satellite missions update & other activities Dana Floricioiu German Aerospace Center (DLR), Remote Sensing Technology Institute, Oberpfaffenhofen, Germany PSTG 2 12 14 June 2012
Joint Polar Satellite System (JPSS)
Joint Polar Satellite System (JPSS) John Furgerson, User Liaison Joint Polar Satellite System National Environmental Satellite, Data, and Information Service National Oceanic and Atmospheric Administration
Data Management Framework for the North American Carbon Program
Data Management Framework for the North American Carbon Program Bob Cook, Peter Thornton, and the Steering Committee Image courtesy of NASA/GSFC NACP Data Management Planning Workshop New Orleans, LA January
