Similar documents
Factoring. Factoring Polynomial Equations. Special Factoring Patterns. Factoring. Special Factoring Patterns. Special Factoring Patterns

TechnischeUniversitatChemnitz-Zwickau

Lecture 4: Partitioned Matrices and Determinants

Linear Threshold Units

Lecture 2 Matrix Operations

1 Introduction to Matrices

Iterative Solvers for Linear Systems

Derivative Approximation by Finite Differences

Solutions to TOPICS IN ALGEBRA I.N. HERSTEIN. Part II: Group Theory

1.5. Factorisation. Introduction. Prerequisites. Learning Outcomes. Learning Style

AP Calculus BC Exam. The Calculus BC Exam. At a Glance. Section I. SECTION I: Multiple-Choice Questions. Instructions. About Guessing.

Solutions to Homework 6

On Cyclotomic Polynomials with1 Coefficients

SF2940: Probability theory Lecture 8: Multivariate Normal Distribution

Question 1a of 14 ( 2 Identifying the roots of a polynomial and their importance )

How To Pay For An Ambulance Ride

SF2940: Probability theory Lecture 8: Multivariate Normal Distribution

Stability criteria for large-scale time-delay systems: the LMI approach and the Genetic Algorithms

Using a Balanced Scorecard to Tie the Results Act to Your Day-to-Day Operational Priorities

What time is it right now? (They will have to enter the time) What is the subject code? (they will have to enter this in)

Scalar Valued Functions of Several Variables; the Gradient Vector

Notes on the SHARP EL-738 calculator

The Inversion Transformation

Find all of the real numbers x that satisfy the algebraic equation:

Systems of Linear Equations

Matrix Algebra. Some Basic Matrix Laws. Before reading the text or the following notes glance at the following list of basic matrix algebra laws.

Mechanical Vibrations Overview of Experimental Modal Analysis Peter Avitabile Mechanical Engineering Department University of Massachusetts Lowell

The Structure of Galois Algebras

T ( a i x i ) = a i T (x i ).

Sections 2.11 and 5.8

A Nice Theorem on Mixtilinear Incircles

DATING YOUR GUILD

UNIVERSITY OF ILUNOхS LIBRARY AT URBANA-CHAMPA1GN AGR1CULT-"'J?'-

Chapter. CPT only copyright 2009 American Medical Association. All rights reserved. 9Ambulance

Qualitative vs Quantitative research & Multilevel methods

Currency Options (2): Hedging and Valuation

INTERACTIVE MAP EGYPT

MyOWNMcMaster Degree Pathway: Diploma in Business Administration & Bachelor of Arts in History

Requirements The MyOWNMcMaster degree pathway has three parts: diploma, elective and undergraduate courses.

Chapter 7. Matrices. Definition. An m n matrix is an array of numbers set out in m rows and n columns. Examples. (

SEATTLE CENTRAL COMMUNITY COLLEGE DIVISION OF SCIENCE AND MATHEMATICS. Oxidation-Reduction

The MyOWNMcMaster degree pathway has three parts: diploma, elective and undergraduate courses.

First mean return time in decoherent quantum walks

SOLVING LINEAR SYSTEMS

Math 312 Homework 1 Solutions

A linear algebraic method for pricing temporary life annuities

Cryptosystem. Diploma Thesis. Mol Petros. July 17, Supervisor: Stathis Zachos


N 1. (q k+1 q k ) 2 + α 3. k=0

FINITE ELEMENT : MATRIX FORMULATION. Georges Cailletaud Ecole des Mines de Paris, Centre des Matériaux UMR CNRS 7633

Nice Cubic Polynomials, Pythagorean Triples, and the Law of Cosines

Mathematics 205 HWK 6 Solutions Section 13.3 p627. Note: Remember that boldface is being used here, rather than overhead arrows, to indicate vectors.

1 Lecture: Integration of rational functions by decomposition

Algebra (Expansion and Factorisation)

vector calculus 2 Learning outcomes

LIST OF RANK AND FILE CLASSES IN BU 9 As of December 1, 2011

MAT188H1S Lec0101 Burbulla

SCALE Driver. Rth. Rth


A SIMPLE PROCEDURE FOR EXTRACTING QUADRATICS FROM A GIVEN ALGEBRAIC POLYNOMIAL.

Lagrangian representation of microphysics in numerical models. Formulation and application to cloud geo-engineering problem

i=(1,0), j=(0,1) in R 2 i=(1,0,0), j=(0,1,0), k=(0,0,1) in R 3 e 1 =(1,0,..,0), e 2 =(0,1,,0),,e n =(0,0,,1) in R n.

Inner Product Spaces and Orthogonality

Lecture Notes 10

Manpower Codes Lookup

PERFECT SQUARES AND FACTORING EXAMPLES

Background: State Estimation

Limits and Continuity

Polynomials. Key Terms. quadratic equation parabola conjugates trinomial. polynomial coefficient degree monomial binomial GCF

Basics of binary quadratic forms and Gauss composition

PRODUCTION PLANNING AND SCHEDULING Part 1

Samknows Broadband Report

British Columbia Institute of Technology Calculus for Business and Economics Lecture Notes

Numerical Methods for Solving Systems of Nonlinear Equations

Pair-copula constructions of multiple dependence

Factoring Methods. Example 1: 2x * x + 2 * 1 2(x + 1)

GCE Mathematics (6360) Further Pure unit 4 (MFP4) Textbook

LECTURE 4. Last time: Lecture outline

Dr.Web anti-viruses Visual standards

December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B. KITCHENS

1. Introduction to multivariate data

Chapter 13: Basic ring theory

How To Understand The Theory Of Algebraic Functions

CM2202: Scientific Computing and Multimedia Applications General Maths: 2. Algebra - Factorisation

Portfolio Distribution Modelling and Computation. Harry Zheng Department of Mathematics Imperial College

Matrix Differentiation

Summary: Transformations. Lecture 14 Parameter Estimation Readings T&V Sec Parameter Estimation: Fitting Geometric Models

College of the Holy Cross, Spring 2009 Math 373, Partial Differential Equations Midterm 1 Practice Questions

BOOLEAN CONSENSUS FOR SOCIETIES OF ROBOTS

Regression Analysis. Regression Analysis MIT 18.S096. Dr. Kempthorne. Fall 2013

Bias in the Estimation of Mean Reversion in Continuous-Time Lévy Processes

Transcription:

Chapter1 QuantumMechanicsinHilbert Spaces 1.1 Theessentialresultsinquantummechanicsaregiventhroughpurelyalgebraicrelations. TheAbstractHilbertSpace Specicresultscanbederived,e.g.,forvectors2`2andmatricesbeinglinearmaps; generalityandthenconsideraspecicrepresentationofthebasisvectorsofthehilbert however,thoseresultsareessentiallyindependentofthespecicrepresentationofthe operators.forthespecicresultsonlyalgebraicrelationsbetweenoperatorsandabstract propertiesofthehilbertspaceenter.thispointofviewallowstoconsiderproblemsinfull forwhichadditionandmultiplicationwithcomplexnumbersisdened I.TheabstractHilbertspace`2isgivenbyasetofelementsH=(j spaceandtheoperators(e.g.,matrices,dierentialoperators). j i+j'i=j +'i2h i;j'i;ji;), aj i=ja (1.1) togetherwithascalarproduct (1.2) Withrespectto(1.1)and(1.2),Hisalinearvectorspace,i.e., h'j i2c: (1.3) j i+j'i=j'i+j 2 i

(j i+j'i)+jxi=j j j i+j? i+j0i=j i=0 i+(j'i+jxi) i Thelasttworelationsstatetheexistenceofa0-vectorandtheexistenceofanegative vectorwithrespecttoj i. (1.4) a(bj 1j i)=(ab)j i=j i a(j (a+b)j i+j'i)=aj i=aj i+aj'i i+bj i i II.Withrespecttothescalarproduct,Hisaunitaryvectorspace (1.5) and h j i0 (1.6) h j i=0)j j'i i=0 (1.7) h'j h'ja 1+ 2i=h'j i=ah'j 1i+h'j i Becauseof(1.6)aNormcanbedened 2i (1.8) wherethespeciccharacteristicsofthenormdependonthevectorspace. k k=qh j i; (1.9) Onehas k'+ jh'j ijk'kk kk'k+k k and k (1.10) ha'j i=ah'j 3 i: (1.11)

Furtherpostulatesare: III.Hiscomplete. IV.Hisseparable. previousvectorj vectorj countable.letfj AHilbertspacebeingseparablemeansthatthereexistsasetofvectorsdenseinHand fj'1i;j'niginwhichtheoriginalsequenceiscontained.thesetoffj'nigisvia kifromthissequence,whichcanberepresentedaslinearcombinationofthe 1i;;j kigbeasequenceofvectorsinh.ifwetakeoutevery constructiondenseinh.onecanassumethatfj'nigisasetoforthogonalvectors(if not,usee.g.,gram-schmidtorthogonalization). k?1i,thenweobtainasetoflinearindependentvectors Iffj'nigisdenseinH,wecanexpandeveryarbitraryvectoraccordingtothisbasis h'mj'ni=mn: (1.12) andthus j i=1xn=1j'nian (1.13) fromwhichfollowthateachvectorcanberepresentedas h'mj i=1xn=1h'mj'nian=1xn=1mnan=am (1.14) Therelation(1.15)isonlyvalidiffj'nigisacompleteset,andwehavethecompleteness j i=1xn=1j'nih'nj i: Writingthecompletenessrelationas k k2=1xn=1jh'nj ij2: (1.16) allowstorepresenth j i=h j1j i=1xn=1h j'nih'nj i (1.17) 1=1Xn=1j'nih'nj; 4 (1.18)

scalarproduct whichiscalledthespectralrepresentationofthe1-operator.therepresentationofthe throughthecomponentsh'nj hxj iandh'njxiofthevectorsj i=1xn=1hxj'nih'nj i iandjxiwithrespectto (1.19) theorthonormalsystemfj'nigobtainedin(1.19)through"insertion"ofthe1-operator ofvectorsinorthonormalbasissystemsinaveryeconomicalway. asgivenin(1.18).thechosenbra-(h'j)andket-(j'i)notationallowstherepresentation 1.2 Arelation LinearOperatorsinH iscalledlinearoperatorinhifaj i=ja i=j 0i (1.20) assumethatda(therangeofa)isdenseinh. IngeneralAdoesnothavetobedenedonallvectors2H.Inthefollowingwewill A(aj i+bj'i)=aaj i+baj i: (1.21) 1.2.1 AdjointoperatorAy: DAisdenseinH;Ayisuniquelydened. Ay,ingeneraldierentfromA,iscalledthetoAadjointoperatorif(1.22)isfullled.If h'jaj i=hay'j i If 1.2.2 Hermitianoperators h'jaj i=ha'j 5 i (1.23)

Comparing(1.22)and(1.23)showsthatforahermitianoperatorAthereexistsalways thenaiscalledhermitian. anadjointoperatorwith atleastontherangedaofa.itcouldbethataydenedvia(1.22)existsonalarger rangedayda.ifthisisnotthecase,i.e.,day=da,thenaiscalledself-adjoint.it Ay=A (1.24) itisself-adjoint.sinceeigenvectors(oreigenfunctions)characterizequantummechanical shouldbementionedthatahermitianoperatoronlyhasacompletesetofeigenvectorsif systems,therequirementthatoperatorsareself-adjoint(notonlyhermitian),iftheyare supportedtocharacterizephysicalobservables,isquiterelevant. Foraself-adjointoperatorweobviouslyhave PropertiesofHermitianOperators:TheexpectationvalueofanobservableAinthe (Ay)y=A: (1.25) statej i(withk k=1)isgivenby Inorderfor(1.26)tobereal,onehastorequireAtobehermitian: hai =h h jaj j i i=h jaj i: (1.26) fromwhichfollowsthatforhermitianoperatorathequantityh h jaj i=ha j i=h ja i If jaj iisreal. thenj operatorsarereal. aiiscalledeigenvectortoawitheigenvaluea.theeigenvaluesofhermitian Aj ai=aj (1.27) orthogonal,i.e., Eigenvectorsj ai;j a0iofhermitianoperatorsatodierenteigenvaluesa6=a0are fora06=a. h a0j ai=0 (1.28) 6

Proof:From follows Aj ai=aj ai (1.29) and h a0jaj ai=ah a0j ai (1.30) andthus ha a0j ai=a0h a0j ai=ah a0j ai (1.31) Sinceaccordingtotheassumptiona06=a,i.e.,(a0?a)6=0,followsthath (a0?a)h a0j ai=0: a0j ai=0. (1.32) Self-adjointoperatorshaveaspecialroleinquantummechanics,sincetheyarerelatedto 1.2.3 Isometricandunitaryoperators physicalobservables.formanytheoreticalconsiderationsoneneedsinadditionso-called isometricoperators,whicharedenedas Becauseof h'j i=h'j i: (1.33) theyobviouslyfulllh'jyj i=h'j i=h'j1j i; (1.34) forinnitedimensionalvectorspacesthisisingeneralnotthecase.ifanoperatoru Innitedimensionalvectorspaces,therelation(1.35)wouldimplyy=1.However, y=1: fullls itiscalledunitary.anotherdenitionforanoperatortobeunitarycanbewrittenas UyU=UUy=1 (1.36) Uy=U?1: 7 (1.37)

1.3 Ifonehas MatrixRepresentationofLinearOperators usestherepresentationofthe1-operator(1.18)andmultipliesfromtheleftwithh'mj, oneobtains Aj i=j 0i (1.38) Hereh'nj iarethefouriercomponentsoftheexpansion(1.15)ofj Xnh'mjAj'nih'nj i=h'mj 0i: iwithrespectto (1.39) acompleteorthonormalsystemfj'nig.ifonedenes then(1.39)canbewrittenash'mjaj'ni=amn XnAmnan=a0m (1.40) abstracthilbertspaceassignseachvectoracolumnvectoroffouriercoecients: whichistheformofalinearmaprepresentedbymatrices.introducingabasisinthe (1.41) j i?! 0 B@ h'1j. h'nj ica 1 0 B@ a a2. 1 1 CA (1.42) andanoperatorcorrespondstothematrixrepresentationofalinearmap Hereallrulesderivedfromlinearalgebracanbeapplied. A?![h'mjAj'ni]=[Amn]: (1.43) Theeigenvectorsj'niofaself-adjointoperatorA 1.4 "A"-Representation Aj'ni=anj'ni 8 (1.44)

fordistincteigenvaluesandoingeneralnotformacompleteorthonormalsystem.ifthey doformacompleteorthonormalsystemfj vectorsforrepresentingotheroperators. Inthisparticularcaseonecanassigntoanarbitrarymap nig,thenonecanusethosevectorsasbasis therepresentation Xnh'mjBj'nih'nj Bj i=jb i=j 0i (1.45) i=h'mjb i=h'mj 0i: tation: Itiscalled"A"-Representation.Specically,theoperatorAisdiagonalinthisrepresen- (1.46) Thismeans:Alinearoperatorisdiagonalinitsownrepresentation.Ifoneusesthe eigenvectorsofthehamiltonianh,thenthisrepresentationiscalledh-orenergyrepresentation. Amn=h'mjAj'ni=mnan: (1.47) 1.5 Physicalobservablesareassignedtoself-adjointoperators,i.e.,onehasforpositionxand QuantumMechanicsinAbstractHilbertSpaces momentump x(t)?!x(t) p(t)?!p(t) whichobeythecommutationrelation (1.48) Allobservablesdependingonpandxcorrespondtoself-adjointoperators [P;X]=hi1: (1.49) e.g.,thehamiltonianoftheharmonicoscillatorisgivenas H=P2 A=A(P;X); (1.50) 2m+m2!2X2: 9 (1.51)

AquantummechanicalstateischaracterizedbyaHilbertspacevectorj tationvaluesofoperatorsinsuchastatearegivenas(providedk hai =h jaj i: k=1) i.theexpec- ThetimedependenceofanoperatorAisgiventhroughtheHamiltonianH(p;x)via (1.52) A=ih[H;A]: _ (1.53) Themeanvalue(expectationvalue)ofanobservableinagivenstatej 1.6 Root-Mean-SquareDeviation hai =h jaj i iisdenedas (withk themeanvalue(a?h k=1).theroot-meansquaredeviationfromthisexpectationvalueisgivenby jaj i2),i.e.,throughthenon-negativeexpression (1.54) (1.55)follows Itssquareroot(A) (A)2 iscalledroot-mean-squaredeviationorstandarddeviation.from =h j(a?h jaj i)2j i0: (1.55) andthus (A)2 =h ja2j i?2h jah jaj ij i+h jaj i2 (A)2 (1.56) Withthisdenition,oneprovesanessentialtheoreminquantummechanics =h ja2j i?h jaj i2: (1.57) zeroifj totheeigenvalue. Theroot-mean-squaredeviationofanobservableAinthestatej iiseigenvectorofa.theexpectationvalueinthisstatecorresponds iisexactly Letj aibeeigenvector,i.e., then Aj ai=aj ai; (1.58) h ajaj ai=a; 10 (1.59)

andthuswith(1.58):(a)2 Proofofinversedirection:Iftheroot-mean-squaredeviationofAiszeroforastatej a=h aj(a?a)2j ai=0: (1.60) then 0=(A)2 j(a?h jaj i)2j i i, =h(a?h =k(a?h jaj i) i) j(a?h k2 jaj i) i andthus (A?h jaj i)j i=0: (1.62) (1.61) Thismeansthatj valueofainthestatej Ifonepreparesanensembleofstatesexperimentallyinsuchawaythattheexpectation iiseigenvectorofawitheigenvalueh i. jaj i,i.e.,tothemean valueofastateisgivenwithzerodeviation(i.e.,sharp),whichmeansthatthisensemble BoundStates:Inquantummechanicsboundstateshavediscretevalues.Ifwedene Aj hasthesamevaluean,thentheensembleischaracterizedbytheeigenvectorj ni=anj ni. nivia boundstatej then,accordingtotheabovetheorem,onehas nivia Hj (H) ni=enj n=0; ni; (1.63) i.e.,boundstatesareobtainedbysolvingtheeigenvalueequationforthehamiltonianh. (1.64) LetAandBbehermitianoperators.WithSchwartz'inequalityfollows 1.7 UncertaintyPrinciple jh j(a?a)(b?b)j ij=jh(a?a) k(a?a) =A B kk(b?b) j(b?b) ik 11 (1.65)

HereAh jimh jaj j(a?a)(b?b)j i.theleft-handsideof(1.65)canbeestimatedfrombelowvia Onealsohas ijjh j(a?a)(b?b)j ij: (1.66) jimh j(a?a)(b?b)j j(a?a)(b?b)j ij j(a?a)(b?b)?(b?b)(a?a)j i?h(a?a)(b?b) ijj ij From(1.65),(1.66)and(1.67)followsthat =12jh jab?baj ij (1.67) Thus,ifAandBdonotcommute,theuncertaintyrelationgivesanestimateforthe 12jh root-mean-squaredeviationofaandb.thisisonlytrueifj j[a;b]j ij(a) (B): iisnotaneigenstateof (1.68) AorB.Ifj Becauseof(1.49)onehasforXandPoperators vanish,andtheequationwouldbemeaningless. iwouldbeaneigenstateofeitheroperator,thenbothsidesof(1.68)would h2=12h jhi1j ij= (P) 12jh (X) j[p;x]j ; ij i.e,independentof theproductofthedeviationsislimitedfrombelowas (1.69) AnimmediateconsequenceofthisrelationisthatneitherXnorPvanish.Thus, h2(p) accordingtothetheorem,noeigenvectorsexistforeitherpnorx. (X): (1.70) normalizeable.thismeanstheyarenotvectorsinahilbertspace. Remark:ItispossibletointroduceeigenvectorstoPandX;however,thosearenot 12

Chapter2 SymmetriesI 2.1 Accordingto(1.53)thetimedependenceofanoperatorAisgiventhroughtheHamiltonianH(P;X)via TheobservableAiscalledconstantofmotionofthesystem,if (i)aiscompatiblewithh,i.e. A=@A _ @t=ih[h;a] (2.1) ConstantsofMotion (ii) [H;A]=0 @A @t=0 (2.3) (2.2) Condition(ii)statesthatAdoesnothaveanyexplicittimedependence.(Moreontime dependencelater.) Ingeneral,symmetriesorinvariancepropertiesleadtoconservationlaws.Therearetwo distinctkindsofsymmetries: onlyslightlyfromunity Letaninnitesimalunitarytransformationdependonarealparameter"andvary discretesymmetriesandcontinuoussymmetries. ^U"(^G)=1+i"^G; 13 (2.4)

where^giscalledthegeneratoroftheinnitesimaltransformation. ^U"isunitaryonlyif"isrealand^GHermitian ^U"^Uy"=(1+i"^G)(1?i"^G)y onlyif =1+i"(^G^Gy)+O("2) ^G=^Gy: (2.6) (2.5) Applyonstatevector TransformationoftheoperatorA: ^U"j i=(1+i"^g)j i=j i+i"^g)j i=j i+j i (2.7) ThenA0=Aonlyif[^G;A]=0. A0=^U"A^Uy"=(1+i"(^G)A((1+i"(^G)y 'A+i"[^G;A] (2.8) Finiteunitarytransformationscanbebuiltfrominnitesimaltransformationsby successiveapplication Theoperator^Uisunitaryifisrealand^GHermitian.Then ^U(^G)=lim N!1NYk=1(1+iN^G)=lim N!1(1+i^G)N=ei^G: (2.9) ForthetransformationofanoperatorAoneobtains ei^gy=e?i^g=ei^g?1: ei^gae?i^g=a+i[^g;a]+(i)2 (2.10) onlyif[^g;a]=0. 2![^G;[^G;A]]+ (2.11) Considerthefollowingexamples: 1.TimeTranslation 14

Set ^G1hH andapplythistoastate ^Ut=1+ihtH "=t 1+ihtHj (2.12) onehas wheretheexplicitformoftheschrodingerequation,hj (t)i=j(t)i?t@@tj (t)ij (t)i=ih@@tj (t?t)i; (t)iwasused.thus (2.13) wherehisthegeneratoroftimetranslations. ^Utj (t)i=1+ihthj(t)i=j(t?t)i; (2.14) Considerforsimplicationone-dimensionalspacetranslationsinx-direction.Then 2.SpaceTranslation Applicationonastatevectoryields^U"=1+ih"^Px ^G1h^Px 1+ih"^Pxj (2.15) (x)i=j j (x)i+ih"^pxj (x+"i; (x)i+"@ @xj(x)i (x)i wherethecoordinatespacerepresentation^px=?ih@ gets @xwasused.fortheoperatorxone (2.16) X0=^U"(^Px)X^U?1 "(^Px)=1+ih"^PxX1?ih"^Px X+ih"[^Px;X] Fornitetranslationsonehas =X+": (2.17) ^Ua(P) (r)=eihap 15(r)= (r+a); (2.18)

transformationexp(i^g).thenthehamiltoniantransformsas whereexp(ihap)isthegeneratorofnitetranslations. Ingeneral,symmetriesandconservationlawsarecloselyrelated.Considertheunitary H0=ei^GHe?i^G=H+i[^G;H]+(i)2 doesnotexplicitydependonthetime,i.e.^gisaconstantofmotion.thatis Onlyif[^G;H]=0followsH0=H.Wehaveshownbefore,thatif[^G;H]=0,then^G 2![^G;[^G;H]]+ (2.19) ddt^g=1 ih[[^g;h]+@^g @t=0: (2.20) Therstexampleofadiscretesymmetryisinversion. 2.2 Inversion Denition:Inversionisdenedastransformation whichmeansforcartesiancoordinates ~x!~x0=?~x; (2.21) intoleft-handedonesandviceversa. Thegeometricalinterpretationisthatinversionturnsright-handedcoordinatesystems (x;y;z)!(x0;y0;z0)=(?x;?y;?z) (2.22) Studyingthesymmetrypropertiesofasystemunderinversionmeansconsideringthe behaviorofthehamiltonianunderthetransformation ConsiderthekineticenergyoperatorP2 2m=?h2 H(~X;~P2)!H(?~X0;~P2)H0(~X0;~P2): 2m,whichisgivenas (2.23) 2mr2=?h 2m(@2 @x2+@2 @y2+@2 writesthehamiltonianas Obviously,thekineticenergyoperatorisinvariantif(x;y;z)!(?x;?y;?z).Ifone @z2): (2.24) H(~X;~P2)=P2 162m+V(~X) (2.25)

oneonlyneedstoconsiderthetransformationpropertiesofv(~x).anycentralpotential V(~X)V(jj~Xjj)isinvariantunderinversion.Apotentialoftheform where~aisanarbitraryvectorisinvariantunderinversionprovidedv1=v2.ifhis invariantunderinversion,i.e.h(~x;~p2)=h(?~x;~p2); V(~X)V1(j~x+~aj)+V2(j~x?~aj); (2.26) howdowavefunctionsh~xji(~x)behave? (2.27) Deneanoperator(parityoperator)Psuchthat Applying~x!?~x0gives P(~x)=0(~x)=(?~x): (~x)=(~x0)=0(~x0): (2.28) Combining(2.28)and(2.29)gives (~x)=0(~x0)=p(~x0)=p(?~x)=p2(~x): (2.30) (2.29) Since(2.30)holdsforanyji,theoperatorPhastofulll Thus LetbetheeigenvalueoftheoperatorP,thenP2musthavetheeigenvalue2=1. P2=1: (2.31) fromwhichfollows P(~x)=(?~x); P(~x)=(~x) (?~x)=(~x); (2.33) (2.32) >FromP2=1follows i.e.parityeigenstateswitheigenvalue+1(?1)areeven(odd)functionsof~x. Thespecicchoiceof(~x)H(~x) P(~x)=PH(~x;::) (~x)gives (~x)=h(?~x;::) P?1=P (?~x) (2.34) =PH(~x;::)P?1P 17(~x)=PH(~x;::)P?1 (?~x): (2.35)

Since (~x)isarbitrary,onehastheoperatorequation whichleadsto PH(~x;::)P?1=H(?~x;::); [P;H(~x;::)]=0 (2.37) (2.36) Thus,iftheHamiltonianisinvariantunderinversion,itcommuteswiththeparityoperator,andparityisaconstantofmotion. Considerboundstateswithdiscreteeigenvaluesasgivenin(1.64):IfHisinvariantunder inversiononeobtainsfromh(~x;::) H(~x;::) n(~x)=en n(?~x)=en n(~x)whenapplyingp ifh(~x;::)isinvariantunderinversion. Twodierentcasesarise: n(?~x): (2.38) Then constantfactor~: (a)theeigenvalueenisnon-degenerate. (~x)and(?~x)areessentiallythesamefunction,andcandieratmostbya Applying~x!?~xgives (~x)=~ (?~x)=~ (?~x)=~2 (~x): (~x): (2.39) theparityoperatorp,andthus Thus,~2=1and~1,whichshowsthat~isthepreviouslyintroducedeigenvalueof (2.40) oddfunctionsof~x,havingeithereven(=+1)orodd(=?1)parity. Thismeansthattheeigenfunctionstoanon-degenerateeigenvalueEareeitherevenor (?~x)=(~x): (2.41) (b)theeigenvalueenisdegenerate. If(2.38)togetherwith(1.64)holds,thenanylinearcombination isalsoeigenfunctionofh(~x;::)tothesameeigenvalueen.onecanusethisfreedomto chooselinearcombinationswhichareevenoroddparitystates,i.e. a (~x)+b(?~x) (2.42) (~x) (?~x) (2.43) 18

2.3 TheHamiltonianoftheclassicalharmonicoscillatorisaquadraticfunctionofposition Ladder-OperatorsandtheU(1)Symmetry andmomenta.inthesimplestcase(providesm=!1),itreads whichcanbedecomposedas Hclass=12(p2+x2); (2.44) where Hclass=12(x?ip)(X+ip)=aa; a:=1p2(x+ip): (2.46) (2.45) InthequantummechanicsonedenesacorrespondingoperatorA A:=1 DuetotheoperatorcharacterofA,thefactorizationoftheHamiltonianisslightlymore p2(x+ip): (2.47) complicated,andoneobtainsanadditiveterm12; Thesamefactorizationcanbeappliedtothedierentialequationfortheharmonicoscillator wherethedierentialoperatorcanbedecomposedas d2x(t) H=12(P2+Q2)=AyA+121: (2.48) d2 dt2 +!2x(t)=0; (2.49) dt2+!2= ddt?i!! ddt+i!!: Thusoneobtainssolutionsto(2.49)ifonesolvesoneofthefollowingrst-orderdierential (2.50) equations: ddt?i!!x(t)=0 or ddt+i!!x(t)=0: (2.51) 19

Thesolutionsofthoseare Finally,thereisaspecicsymmetrypropertyin(2.44)ifoneconsidersthatinthe(x;p) x(t)=x0ei!t and x(t)=x0e?i!t: (2.52) changeifonecarriesoutarotationinthephasespacegivenby phasespacehclassdescribesthe"length"ofavectorinthatspace.thus,hclassdoesnot x0=xcos+psin ThisrotationleavesHclassinvariant,i.e.,Hclass(x0;p0)=Hclass(x;p).Forthequantities p0=?xsin+pcos: (2.53) afrom(2.45),thecorrespondingsymmetrytransformationisgivenby Theanalogoussymmetrycarriesoverintoquantummechanics,sinceN=AyAisinvariant a0=eia and a0=e?ia: (2.54) under Accordingtothegeneralsymmetryprincipleinquantummechanics,thissymmetryoperationmustbegeneratedbyaunitaryoperator.Thus,aunitaryoperatorU()must exist,whichcarriedaintoa0,a0=u()yau(): U()canbeexpressedasexponentialofaHamiltonianoperator (2.56) A0=eiA and Ay=e?iAy: (2.55) andonehastriviallyfor=0 U()=eiX() (2.57) Importantisthatthetransformationintroducedin(2.56)formsagroup,i.e.,carrying U(0)=1 and X(0)=0: (2.58) outtransformationsofthiskindgivesanotheroneofthesamekind, Especially,theinverseelementexists: U()U()=U(+): (2.59) U(?)=U?1(): 20 (2.60)

Thegeometricinterpretationofthisgroupisobviousifoneconsidersthe(x;p)formofthe d=1;u(1). thecomplexformof(2.55),theunderlyinggroupistheunitarygroupwithdimension transformationinphasespace.theoperatoru()describesarotationinthe(x;p)plane andthegroupiscalledo(2)orthogonalgroupintwodimensions.ifoneconsiders Oneobtainsimportantinsightintothequantumtheoryifoneexplicitlyconstructsthe valuesoftheparameter,i.e.,so-calledinnitesimaltransformations. Becauseof(2.58),onecanexpand operatoru().thisprocedurefollowsthegeneralrulethatoneconsidersrstsmall Applyingtheseto(2.56)gives X()=Y+ and ()=1+iY+ (2.61) Thus A0=(1?iY)A(1+iY)A+i(AY?YA): (2.62) Thismeansthattheinnitesimaltransformationisdeterminedbythecommutator[A;Y]. Thus,Yiscalledtheinnitesimalgeneratorofthegroup(hereU(1)).Uptonowwe A0=A+i[A;Y]+::: (2.63) havenotusedanyspecicpropertiesofthegroupu(1).thiscomesintoplaywhenwe expand(2.55)inpowersofa0=eiaa+ia+::: Comparing(2.64)with(2.63)leadsto[A;Y]=A (2.64) whichisanequationfory,whichcanbesolvedbyusing (2.65) Thesolutionis(uptoanadditivec-number) [N;A]=?A: (2.66) Thus,thenumberoperatorNistheinnitesimalgeneratorofthegroupU(1). Y=N: (2.67) 21

Thus,onehasalinearapproximationX()N.Becauseof(2.59)X()depends linearlyon,sothatx()=?nisexact.therefore, isanexactrepresentation. U()=e?iN (2.68) Theresultsderivedfortheharmonicoscillatorhavenumerousapplicationsinmodern physics,sincetransformationsoftheform(2.56)andoperatorswiththepropertiesof charge,baryonnumber,strangeness,etc.inallcases,thequantitiesare"quantized," Nappearinmanyareasoftheoreticalphysics.Examplesareparticlenumber,electric understandingquantumnumbers. i.e.,havediscretevalues,whichare,ingeneral,integers.thus,wehaveaparadigmfor 22