TechnischeUniversitatChemnitz-Zwickau
|
|
|
- Julius Fletcher
- 10 years ago
- Views:
Transcription
1 TechnischeUniversitatChemnitz-Zwickau DFG-Forschergruppe\SPC"FakultatfurMathematik DomainDecompositionand PreconditioningOperators MultilevelTechniquesfor SergejV.Nepomnyaschikh SiberianBranchofRussianAcademyofSciences ComputingCenter Novosibirsk,63090 SPC9530 Preprint-ReihederChemnitzerDFG-Forschergruppe \ScienticParallelComputing" November1995
2 1Introduction Inrecentyears,domaindecompositionmethodshavebeenusedextensivelytoeciently 5,15,17].Butdirectrealizationofmultileveltechniquesonaparallelcomputersystem havedevelopedintoaneectivetoolfortheconstructionandanalysisoffastsolvers[2, fortheglobalproblemintheoriginaldomaininvolvesdicultcommunicationproblems. solveboundaryvalueproblemsforpartialdierentialequationsincomplex{formdomains [4,13,16].Ontheotherhand,multileveltechniquesonhierarchicaldatastructuresalso Ithispaper,wepresentandanalyzeacombinationofthesetwoapproaches:domain preconditioningoperators. decompositionandmultileveldecompositiononhierarchicalstructurestodesignoptimal LetR2beapolygon.Inthedomainweconsidertheboundaryvalueproblem 8><>:?2X where @N=2X @N+(x)u=0; x2?1: x2?0 (1.1) of?0: Weintroducethebilinearforma(u;v)andthelinearfunctionall(v): nitenumberofcurvilinearsegments,?=?0[?1;?0=?0:here?0denotestheclosure istheconormalderivative,ndenotestheoutwardnormalto?,and?0isaunionofa ByH1(;?0)wedenotethesubspaceoftheSobolevspaceH1() a(u;v)=z2x H1(;?0)=nv2H1()jv(x)=0;x2?0o: (1.1)aresuchthatthebilinearforma(u;v)issymmetric,elliptic,andcontinuouson Letussupposethattheoperatorcoecientsandtheright-handsideoftheproblem H1(;?0)H1(;?0),i.eȧ(u;v)=a(v;u)8u;v2H1(;?0) andthelinearfunctionall(v)iscontinuousonh1(;?0): tionproblem[1]u2h1(;?0):a(u;v)=l(v)8v2h1(;?0): Thegeneralizedsolutionu2H1(;?0)of(1.1)is,bydenition,asolutiontotheprojec- 0kuk2H1()a(u;u)1kuk2H1()8u2H1(;?0) jl(u)jkukh1()8u2h1(;?0): 1 (1.2)
3 Weknowthatundertheseassumptionsfora(u;v)andl(v)thereexistsauniquesolution of(1.2). whereiarepolygonswithdiametersontheorderofh.letusconsideracoarsegrid triangulationof Letbeaunionofnnonoverlappingsubdomainsi, =n[i=1i;i\j=;;i6=j; andwerenehi;0severaltimes.thisresultsinasequenceofnestedtriangulations h0=n[i=1hi;0;hi;0=m(0) diam((0) hi;0;hi;1;:::;hi;j i;l)=0(h) i[l=1(0) i;l; suchthat wherethetriangles(k+1) subtrianglesbyconnectingthemidpointsoftheedges. IntroducethespacesWi;0Wi;1:::Wi;J=Hh(i); i;laregeneratedbysubdividingtriangles(k) hi;k=m(k) i[l=1(k) i;l;k=0;1;:::;j; Vi;0Vi;1:::Vi;J=Hh(?i); i;lintofourcongruent onthetrianglesinhi;k.thespacevi;kisthespaceoftraceson?ioffunctionsfromwi;k: HerethespaceWi;kconsistsofreal-valuedfunctionswhicharecontinuousonandlinear (1.3) whichisanapproximationoftheproblem(1.2). WedenethespaceHh()ofrealcontinuousfunctionswhicharelinearoneachtriangle ofhandvanishat?0: triangulationh.then(1.4)isequivalenttothesystemofmeshequations RNwhosecomponentsarevaluesofthefunctionuhatthecorrespondingnodesofthe Letusconsidertheprojectionproblem Eachfunctionuh2Hh()isputincorrespondencewitharealcolumnvectoru2 uh2hh():a(uh;vh)=l(vh)8vh2hh() Au=f; (1.4) (Au;v)=a(uh;vh)8uh;vh2Hh(); (f;v)=l(vh)8vh2hh(); 2 (1.5)
4 whereuhandvharetherespectiveinterpolationsofvectorsuandv;(f;v)istheeuclidean scalarproductinrn: Thegoalofthisworkistoconstructasymmetricpositivedenitepreconditioning operatorbfor(1.5)soastosatisfytheinequalities c1(bu;u)(au;u)c2(bu;u) (1.6) wherethepositiveconstantsc1andc2areindependentofhandh,themultiplicationof avectorbyb?1shouldbeeasytoimplement. UsingacombinationofAdditiveSchwarzandFictitiousSpaceMethods,optimalpreconditioningoperatorshavebeenconstructedin[11,12,13]forthecaseofarbitrary (unstructured)grids.however,thatconstructioninvolvesexplicitextensionoperators whoseimplementationforthreedimensionalproblemsisoptimalfromthearithmeticcost andtheconditionnumberpointsofviewbutdicultforpracticerealization.themain goalofthisworkistoconstruct,usingthehierarchicalstructure(1.3),arobustoptimal preconditioningoperator.oneofthecrucialpointsin[11,12,13]andthispaperisusingof non{exactsolversinsubdomainsandexplicitextensionoperators.itmeans,toconstruct optimalpreconditioningoperators,wecandesignnormpreservingoperatorsoffunctions givenat?iintoiwiththeoptimalarithmeticcost(anumberofarithmeticoperations shouldbeproportionaltoanumberdegreesoffreedom)andthen,insteadofexactsolvers insubdomains,wecanuseanyspectrallyequivalentpreconditioningoperators.optimal extensionoperatorshavebeenpresentedin[8,9,11]forunstructuredgridsandrobust explicitextensionoperatorsonhierarchicaldatastructuresin[5,14]. Thepaperisorganizedasfollows.IntheSection2,usingAdditiveSchwarzMethod, wedescribegeneralconstructionofapreconditioningoperatorwithlocalmultilevelpreconditioningoperators.inthesection3,wepresentanoptimalmultilevelextensionof gridfunctionsfromboundariessubdomainsintoinsidesubdomains.inthesection4, weproposeanoptimalinterfacepreconditioningoperatorattheboundariesofthesubdomainswhichinvolvesamultileveldecompositionandcorrespondingexplicitextension operatorsatinterfaces. 2Domaindecomposition{additiveSchwarz-Method Todesignthepreconditioningoperatorforthesystem(1.5),weusetheadditiveSchwarz{ Method[7]andrealizethemainideaoftheconstructionofpreconditionersfrom[13]for thehierarchicalgrids.denotebyhh(i)thesubspaceofhh(i) Hh(i)=nuh2Hh(i)juh(x)=0;x2?io anddenethelocalpreconditioningoperatorsbisuchthat Bi:Hh(i)!Hh(i); c3kuhk2h1(i)(biu;u)c4kuhk2h1(i)8uh2hh(i); wherec3;c4areindependentofhandh.wehereafterusethesamedesignationforan operatoranditsmatrixrepresentation.forinstance,todenebi,wecanusetheso-called BPX{preconditioners[3].Todoit,denotebyff(k) lgnodalbasisfunctionsfromthek{th levelanddene B?1 iuh=jxk=0x f(k) l2hh(i)(uh;f(k) l)l2(i)f(k) l: (2.1) 3
5 suchthat Letusassumethatwecandenetheextensionoperatorsti uh(x)='h(x);x2?i; ti'h=uh; ti:vi;j?!wi;j withc5independentofhandh.herek'hkh1=2(?i)isthenorm[10]inthesobolevspace H1=2(?i)k'hk2H1=2(?i)=HZ?i('h(x))2dx+Z?iZ?i('h(x)?'h(y))2 kti'hkh1(i)c5k'hkh1=2(?i)8'h2vi;j; jx?yj2dxdy: (2.2) Then,wecandenetheextensionoperatort andforany'h2hh(s) wherehh(s)isthespaceoftracesoffunctionsfromhh()ats t:hh(s)!hh(); uh(x)='h(x);x2s; t'h=uh; S=n[i=1?i Here Theoperatortifrom(2.2)isconstructedintheSection3. Letsatisestothefollowinginequalities kt'hkh1()c5k'hkh1=2(s): c6k'hk2h1=2(s)(';')c7k'hk2h1=2(s)8'h2hh(s); k'hk2h1=2(s)=nxi=1k'hk2h1=2(?i): ditioningoperatorbasfollows wherec6;c7independentofhandh.then,accordingto[11],wecandenetheprecon- B?1=2640B?1 1...B?1 n375+t?1t: (2.3) Here0isthenull-matrixwhichcorrespondstonodesofthetriangulationhatSandBi isfrom(2.1). Thefollowingtheoremisvalid (2.4) independentofhandh. Theorem2.1IftheoperatorBisfrom(2.4),thentheconstantsc1;c2from(1.6)are 4
6 Themaingoalofthissectionistoconstructtherobustoperatortifrom(2.2).During thissection,weomitthesubscripti. 3Multilevelexplicitextensionoperators wefollowto[5,14].denoteby'(k) Todesigntheextensionoperatort:VJ!WJ; thel2-orthoprojectionfroml2(?)onto(k) itheone-dimensionalsubspacespannedbythisfunction'(k) ~Qk=Nk i;i=1;2;:::;nk,thenodalbasisofvkanddenoteby Xi=1Q(k) i:l2(?)!(k) i;k=0;1;:::;j?1: ianddenote i i:dene any'h2vjk'h0k2h1=2(?)+1hk'h1k2l2(?)+j'h1j2h1=2(?)c8k'hk2h1=2(?); Thefollowinglemmasarevalid[14]. Lemma3.1Thereexistsapositiveconstantc8,independentofhandH,suchthatfor Fork=Jwedene~QJastheL2-orthoprojectionfromL2(?)ontoVj. Lemma3.2Thereexistsapositiveconstantc9,independentofhandH,suchthat where Here j'hj2h1=2(?)=z?z?('h(x)?'h(y))2 'h0=~q0'h;'h1='h?'h0: jx?yj2dxdy: (3.1) Denotebyx(k) where'h0;'h1from(3.1). TheconstructionoftheoperatortisbasedonthedecompositionfromtheLemma3.2. k'h0k2+1hk~q0'h1k2l2(?)+jxk=12kk(~qk?~qk?1)'h1k2l2(?)c9k'hk2h1=2(?); thefollowingway.forany'h2vjset iareenumeratedrston?andtheninside)anddenetheextensionoperatortin i;i=1;2;:::;lk,thenodesofthetriangulationhk(weassumethatnodes Then hk=(~qk?~qk?1)'h;k=1;2;:::;j: h0=~q0'h; 'h= h0+ h1+:::+ hj: (3.2) 5
7 Denetheextensionuhk2Wkasfollows uh0(x(0) ; h0(x(0) i);x(0) Hereis,forinstance,themeanvalueofthefunction uhk(x(k) i)=8<: k=1;2;:::;j: 0; hk(x(k) i);x(k) i=2?; i2?; i62?; h0on? (3.3) =1N0N0 Xi=1 0;1;:::;J?1:Butinthiscasethecostofthedecomposition(3.2)isexpensive(especially Dene Remark3.1WecanusetheL2-orthoprojectionsformL2(?)ontoVkinsteadof~Qk;k= t'h=uhuh0+uh1+:::+uhj h0(x(0) i): Theorem3.1Thereexistsapositiveconstantc10,independentofhandH,suchthat forthreedimensionalproblems). (3.4) Heretheoperatortisfrom(3.2){(3.4). Remark3.2Itisobviousthat kt'hkh1()c10k'hkh1=2(?)8'h2vj: andthecostoftheactionoftandtisproportionaltothenumberofnodesofthegrid domain. Q(k) i'h=('h;'(k) 4Interfacepreconditioningoperators ('(k) i;'(k) i)l2(?)'(k) i [13].LetSbeaunionofKnonoverlappingedgesEiofthetriangulationh0 satises(2.3).todoit,weusetheideaofadditiveschwarzmethodatinterfacesfrom Inthissection,weconstructanoptimalinterfacepreconditionerinthespaceHh(S)which SplitHh(S)intoavectorsumofsubspaces S=K[ whereu0isthecoarsespacewhichconsistsofcontinuousfunctionslinearontheedges Hh(S)=U0+U1+:::+UK; j=1ej;ej\ei=;;i6=j: Ej,j=1;2;:::;K,andUj,j=1;2;:::;K,correspondtoEjandaredenedbelow. 6 (4.1)
8 ForanyedgeEjwedenetheexplicitextensionoperatorj Denoteby Uj=f'h2Hh(S)j'h(x)=0;x62Ejg; ~U(k) aredierfromthefunctions'(k) asfollows.denoteby'(k) j=vkjej;k=0;1;:::;j: denoteby(k) j;i,i=1;2;:::;i(k) j:~u(j) j!hh(s) correspondingl2-orthoprojection.set j;itheone-dimensionalsubspacespannedbythisfunction'(k) ifromthesection3onlyattheendpointsofej)and j;i:l2(ej)!(k) j,thenodalbasisof~u(k) j(thefunctions'(k) j;i:denej;i extensionoperatorjaccordingto(3.2){(3.4).forany'h2~u(j) anddene~q(k) JastheL2-orthoprojectionfromL2(Ej)onto~U(J) ~Q(k) j=i(k) jxi=1q(k) j;i;k=0;1;:::;j?1; j:nowwecandenethe and hk=(~q(k) h0=~q(0) j'h; j?~q(k?1) j)'h;k=1;2;:::;j jset uhk=8><>: 0; hk(x(k) i);x(k) i2ej i62ej;k=0;1;:::;j (4.3) (4.2) theorem. Dene ThenfromtheTheorem3.1and[13]forthedecomposition(4.1)wehavethefollowing j'h=uh0+uh1+:::+uhj: Theorem4.1Thereexistsapositiveconstantc11;dependentofhandH,suchthatfor anyfunction'h2hh(s)thereexist'hj2uj,j=0;1;:::;k,suchthat Uj=Uj+j~Uj: Lettheoperator0generatesanequivalentnorminU0: k'h0k2h1=2(s)+k'h1k2h1=2(s)+:::+k'hkk2h1=2(s)c11k'hk2h1=2(s) c12k'hk2h1=2(s)(0';')c13k'hk2h1=2(s)8'h2u0; 'h0+'h1+:::+'hk='h; 7 (4.4)
9 DenotebyjandejtheBPX-likepreconditionersinthespacesUjand~Uj,respectively wherec12;c13independentofhandh.denelocalpreconditionersforuj,j=1;2;:::;k. Then,denetheinterfacepreconditioningoperatorinthefollowingway?1 i'h=jxk=0x supp'(k) j;iej('h;'(k) j;i\ej6=;('h;'(k) j;i)l2(ej)'(k) j;i8'h2uj;?1=+0+kxj=1(?1 j+je?1 jj): j;i8'h2~uj: operator?1 Here+0isapseudo-inverseof0from(4.4),jisfrom(4.2),(4.3),andweextendthe independentofhandh. Theorem4.2Iftheoperatorisfrom(4.5)thentheconstantsc6;c7form(2.3)are jbyzerooutsideej.thefollowingtheoremisvalid. (4.5) dimensionalproblems. Remark4.2Usingcombinationofpresentedtechniqueandtechniquefrom[10],eective Remark4.1Themethodsuggestedinthispapercanbegeneralizedevidentlyforthree TheauthorwishtoacknowledgetheDFG{Forschergruppe\SPC"ChemnitzandtheISF forsupportingthisresearchundergrantsla767/3andnpb000. preconditioningoperatorsforellipticproblemswithjumpcoecientscanbeconstructed. References Acknowledgment [1]J.-P.Aubin.Approximationofellipticboundary{valueproblems.Wiley{Interscience, [2]J.H.Bramble.MultigridMethods.ResearchNotesinMathematicsSeries.Pitman, NewYork,London,Sydney,Toronto,1972. [4]M.DryjaandO.B.Widlund.Multileveladditivemethodsforellipticniteelementproblems.InW.Hackbusch,editor,ParallelAlgorithmsforPartialDierential Comput.,55(191):1{22,1990. Boston-London-Melbourne,1993. [3]J.H.Bramble,J.E.Pasciak,andJ.Xu.Parallelmultilevelpreconditioners.Math. Equations,pages58{69,Braunschweig,1991.Vieweg{Verlag.Proc.oftheSixth [5]G.Haase,U.Langer,A.Meyer,andS.V.Nepomnyaschikh.Hierarchicalextension GAMM{Seminar,Kiel,January19{21,1990. andlocalmultigridmethodsindomaindecompositionpreconditioners.east{west J.Numer.Math.,2(3):173{193,1994.8
10 [7]A.M.MatsokinandS.V.Nepomnyaschikh.ASchwarzalternatingmethodina [6]W.Hackbusch.Multi{GridMethodsandApplications,volume4ofSpringerSeries [8]A.M.MatsokinandS.V.Nepomnyaschikh.Normsinthespaceoftracesofmesh incomputationalmathematics.springer{verlag,berlin,1985. subspace.sovietmathematics,29(10):78{84,1985. [10]S.V.Nepomnyaschikh.Domaindecompositionmethodsforellipticproblemswith [9]S.V.Nepomnyaschikh.DomaindecompositionandSchwarzmethodsinasubspacefor discontinuouscoecients.inr.glowinski,y.a.kuznetsov,g.a.meurant,and CenteroftheSiberianBranchoftheUSSRAcademyofSciences,Novosibirsk,1986. theapproximatesolutionofellipticboundaryvalueproblems.phdthesis,computing functions.sov.j.numer.anal.math.modelling,3:199{216,1988. [11]S.V.Nepomnyaschikh.Methodofsplittingintosubspacesforsolvingellipticboundaryvalueproblemsincomplex{formdomains.Sov.J.Numer.Anal.Math.Modelling, 6:151{168,1991. andtheirinversion.sov.j.numer.anal.math.modelling,6:1{25,1991. J.Periaux,editors,Domaindecompositionmethodsforpartialdierentialequations, pages242{251,philadelphia,1991.siam.proceedingsofthe4thinternationalsymposium,moscow,1990. [13]S.V.Nepomnyaschikh.DecompositionandFictitiousDomainsMethodsforElliptic [12]S.V.Nepomnyaschikh.Meshtheoremsontraces,normalizationoffunctiontraces [15]P.Oswald.MultilevelFiniteElementApproximation:TheoryandApplications. [14]S.V.Nepomnyaschikh.Optimalmultilevelextensionoperators.PreprintSPC953, BoundaryValueProblems.InT.F.Chan,D.E.Keyes,G.A.Meurant,T.S.Scroggs, TeubnerSkriptenzurNumerik.B.G.TeubnerStuttgart,1994. TechnischeUniversitatChemnitz{Zwickau,FakultatfurMathematik,1995. andr.g.voigt,editors,5thconferenceondomaindecompositionmethodsforpde, pages62{72,philadelphia,1992.siam. [16]P.LeTallec.DomainDecompositionMethodsinComputationalMechanics.ComputationalMechanicsAdvances(NorthHolland),1(2):121{220,Feb Review,34:581{613,1992. [17]J.Xu.Iterativemethodsbyspacedecompositionandsubspacecorrection.SIAM 9
11 OthertitlesintheSPCseries: 954M.Meyer.Grak-AusgabevomParallelrechnerfur3D-Gebiete.Januar T.Apel,G.Lube.AnisotropicmeshrenementinstabilizedGalerkinmethodsJanuar 952M.Meisel,A.Meyer.ImplementierungeinesparallelenvorkonditioniertenSchur-KomplementCG-VerfahrensindasProgrammpaketFEAP.Januar S.V.Nepomnyaschikh.Optimalmultilevelextensionoperators.January T.Apel,G.Haase,A.Meyer,M.Pester.Parallelsolutionofniteelementequation systems:ecientinter-processorcommunication.februar M.Bollhofer,C.He,V.Mehrmann.ModiedblockJacobipreconditionersfortheconjugategradientmethod.PartI:Thepositivedenitcase.January U.Groh.EintechnologischesKonzeptzurErzeugungadaptiverhierarchischerNetzefur FEM-Schemata.Mai G.Kunert.EinResiduenfehlerschatzerfuranisotropeTetraedernetzeundDreiecksnetze 959H.Matthes.ADDpreconditionerfortheclampedplateproblem.February P.Kunkel,V.Mehrmann,W.Rath,J.Weickert.GELDA:ASoftwarePackageforthe inderfinite-elemente-methode.marz1995 SolutionofGeneralLinearDierentialAlgebraicEquation.February A.Meyer,D.Michael.Someremarksonthesimulationofelasto-plasticproblemson 9511M.Bollhofer.AlgebraicDomainDecomposition.March B.Heinrich,S.Nicaise,B.Weber.Ellipticinterfaceproblemsinaxisymmetricdomains. 9512B.Nkemzi.PartielleFourierdekompositionfurdaslineareElastizitatsprobleminrotationssymmetrischenGebieten.Marz1995 parallelcomputers.march C.He,A.J.Laub,V.Mehrmann.Placingplentyofpolesisprettypreposterous.May 9516W.Rath.Canonicalformsforlineardescriptorsystemswithvariablecoecients.May 9515B.Heinrich,B.Lang,B.Weber.ParallelcomputationofFourier-nite-elementapproxi- PartI:Singularfunctionsofnon-tensorialtype.April J.J.Hench,C.He,V.Kucera,V.Mehrmann.DampeningcontrollersviaaRiccati mationsandsomeexperiments.may A.Vogel.SolversforLameequationswithPoissonrationear0.5.June M.Meisel,A.Meyer.Kommunikationstechnologienbeimparallelenvorkonditionierten 9520G.Haase,T.Hommel,A.MeyerandM.Pester.BibliothekenzurEntwicklungparalleler Algorithmen.Juni1995. Schur-KomplementCG-Verfahren.Juni1995 equationapproach.may1995
12 9524P.Benner,R.Byers.Newton'smethodwithexactlinesearchforsolvingthealgebraic 9522P.Benner,A.J.Laub,V.Mehrmann.AcollectionofbenchmarkexamplesforthenumericalsolutionofalgebraicRiccatiequationsI:Continuous-timecase.October P.Benner,A.J.Laub,V.Mehrmann.AcollectionofbenchmarkexamplesforthenumericalsolutionofalgebraicRiccatiequationsII:Discrete-timecase.toappear:December Riccatiequation.October C.Israel.NETGEN69-EinhierarchischerparallelerNetzgenerator.August M.Jung.Parallelizationofmulti-gridmethodsbasedondomaindecompositionideas. 9525P.Kunkel,V.Mehrmann.LocalandGlobalInvariantsofLinearDierential-Algebraic EquationsandtheirRelation.July G.Windisch.Exactdiscretizationsoftwo-pointboundaryvalueproblems.October S.V.Nepomnyaschikh.Domaindecompositionandmultileveltechniquesforpreconditioningoperators.November1995. November P.Benner,H.Fabender.ArestartedsymplecticLanczosmethodfortheHamiltonian eigenvalueproblem.october Th.Apel,F.Milde,M.The.SPC-PMPo3D Programmer'smanual.December V.Mehrmann,H.Xu.Ananalysisofthepoleplacementproblem.I.Thesingleinput 9533Th.Apel.SPC-PMPo3D User'smanual.December H.Matthes.Parallelpreconditionersforplateproblems.November S.A.Ivanov,V.G.Korneev.Onthepreconditioninginthedomaindecompositiontechniqueforthep-versionniteelementmethod.PartI.December1995. case.november S.A.Ivanov,V.G.Korneev.Onthepreconditioninginthedomaindecompositiontechniqueforthep-versionniteelementmethod.PartII.December1995. directorypub/local/mathematik/spc.(notethecapitallinlocal!) Somepaperscanbeaccessedviaanonymousftpfromserverftp.tu-chemnitz.de, Thecompletelistofcurrentandformerpreprintsisavailablevia
Schneps, Leila; Colmez, Coralie. Math on Trial : How Numbers Get Used and Abused in the Courtroom. New York, NY, USA: Basic Books, 2013. p i.
New York, NY, USA: Basic Books, 2013. p i. http://site.ebrary.com/lib/mcgill/doc?id=10665296&ppg=2 New York, NY, USA: Basic Books, 2013. p ii. http://site.ebrary.com/lib/mcgill/doc?id=10665296&ppg=3 New
SPLIT PLOT DESIGN 2 A 2 B 1 B 1 A 1 B 1 A 2 B 2 A 1 B 1 A 2 A 2 B 2 A 2 B 1 A 1 B. Mathematical Model - Split Plot
SPLIT PLOT DESIGN 2 Main Plot Treatments (1, 2) 2 Sub Plot Treatments (A, B) 4 Blocks Block 1 Block 2 Block 3 Block 4 2 A 2 B 1 B 1 A 1 B 1 A 2 B 2 A 1 B 1 A 2 A 2 B 2 A 2 B 1 A 1 B Mathematical Model
Ďě Ž ť č ď ť ď ú ď ť ě Ě ň Ě ě ú ň ž ú ú Ú ú ú Ě ň é é ž ú ž Ť Ť Ť ú ň Ď ú ň ď Ě ú É ž ř ú ě ň ý Ě ň ý ň ň Ť ř ď ř ň ú Ť ě ř ě ý Š Ú Ú ň ň ú Ó Ú ň Ň Ů ž ú ň Č ř ř ú É ě ň ú Ž ý ú ú Ú Ú ť ž ž ď ý ž ď ž
Torgerson s Classical MDS derivation: 1: Determining Coordinates from Euclidean Distances
Torgerson s Classical MDS derivation: 1: Determining Coordinates from Euclidean Distances It is possible to construct a matrix X of Cartesian coordinates of points in Euclidean space when we know the Euclidean
SOLVING LINEAR SYSTEMS
SOLVING LINEAR SYSTEMS Linear systems Ax = b occur widely in applied mathematics They occur as direct formulations of real world problems; but more often, they occur as a part of the numerical analysis
On the Algebraic Structures of Soft Sets in Logic
Applied Mathematical Sciences, Vol. 8, 2014, no. 38, 1873-1881 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2014.43127 On the Algebraic Structures of Soft Sets in Logic Burak Kurt Department
An Intersection Theorem for Systems of Sets
An Intersection Theorem for Systems of Sets A. V. Kostochka* Institute of Mathematics, Siberian Branch, Russian Academy of Sciences, Universitetski, pr. 4, 630090 Novosibirsk, Russia ABSTRACT Erdos and
Direct Methods for Solving Linear Systems. Matrix Factorization
Direct Methods for Solving Linear Systems Matrix Factorization Numerical Analysis (9th Edition) R L Burden & J D Faires Beamer Presentation Slides prepared by John Carroll Dublin City University c 2011
4. CLASSES OF RINGS 4.1. Classes of Rings class operator A-closed Example 1: product Example 2:
4. CLASSES OF RINGS 4.1. Classes of Rings Normally we associate, with any property, a set of objects that satisfy that property. But problems can arise when we allow sets to be elements of larger sets
Factorization Theorems
Chapter 7 Factorization Theorems This chapter highlights a few of the many factorization theorems for matrices While some factorization results are relatively direct, others are iterative While some factorization
KeyEscrowinMutuallyMistrustingDomains?
KeyEscrowinMutuallyMistrustingDomains? Abstract.Inthispaperwepresentakeyescrowsystemwhichmeets L.Chen,D.GollmannandC.J.Mitchell possiblerequirementsforinternationalkeyescrow,wheredierentdomainsmaynottrusteachother.inthissystemmultiplethirdparties,
TECHNIQUES OF. C.T. Pan 1. C.T. Pan
TECHNIQUES OF CIRCUIT ANALYSIS C.T. Pan 1 4.1 Introduction 4.2 The Node-Voltage Method ( Nodal Analysis ) 4.3 The Mesh-Current Method ( Mesh Analysis ) 4.4 Fundamental Loop Analysis 4.5 Fundamental Cutset
3. INNER PRODUCT SPACES
. INNER PRODUCT SPACES.. Definition So far we have studied abstract vector spaces. These are a generalisation of the geometric spaces R and R. But these have more structure than just that of a vector space.
Iterative Solvers for Linear Systems
9th SimLab Course on Parallel Numerical Simulation, 4.10 8.10.2010 Iterative Solvers for Linear Systems Bernhard Gatzhammer Chair of Scientific Computing in Computer Science Technische Universität München
OPTIMAL SELECTION BASED ON RELATIVE RANK* (the "Secretary Problem")
OPTIMAL SELECTION BASED ON RELATIVE RANK* (the "Secretary Problem") BY Y. S. CHOW, S. MORIGUTI, H. ROBBINS AND S. M. SAMUELS ABSTRACT n rankable persons appear sequentially in random order. At the ith
How To Prove The Dirichlet Unit Theorem
Chapter 6 The Dirichlet Unit Theorem As usual, we will be working in the ring B of algebraic integers of a number field L. Two factorizations of an element of B are regarded as essentially the same if
Solution of Linear Systems
Chapter 3 Solution of Linear Systems In this chapter we study algorithms for possibly the most commonly occurring problem in scientific computing, the solution of linear systems of equations. We start
Chapter1 QuantumMechanicsinHilbert Spaces 1.1 Theessentialresultsinquantummechanicsaregiventhroughpurelyalgebraicrelations. TheAbstractHilbertSpace Specicresultscanbederived,e.g.,forvectors2`2andmatricesbeinglinearmaps;
it is easy to see that α = a
21. Polynomial rings Let us now turn out attention to determining the prime elements of a polynomial ring, where the coefficient ring is a field. We already know that such a polynomial ring is a UF. Therefore
The Assignment Problem and the Hungarian Method
The Assignment Problem and the Hungarian Method 1 Example 1: You work as a sales manager for a toy manufacturer, and you currently have three salespeople on the road meeting buyers. Your salespeople are
= y y 0. = z z 0. (a) Find a parametric vector equation for L. (b) Find parametric (scalar) equations for L.
Math 21a Lines and lanes Spring, 2009 Lines in Space How can we express the equation(s) of a line through a point (x 0 ; y 0 ; z 0 ) and parallel to the vector u ha; b; ci? Many ways: as parametric (scalar)
Reference: Introduction to Partial Differential Equations by G. Folland, 1995, Chap. 3.
5 Potential Theory Reference: Introduction to Partial Differential Equations by G. Folland, 995, Chap. 3. 5. Problems of Interest. In what follows, we consider Ω an open, bounded subset of R n with C 2
LECTURE 4. Last time: Lecture outline
LECTURE 4 Last time: Types of convergence Weak Law of Large Numbers Strong Law of Large Numbers Asymptotic Equipartition Property Lecture outline Stochastic processes Markov chains Entropy rate Random
Tail inequalities for order statistics of log-concave vectors and applications
Tail inequalities for order statistics of log-concave vectors and applications Rafał Latała Based in part on a joint work with R.Adamczak, A.E.Litvak, A.Pajor and N.Tomczak-Jaegermann Banff, May 2011 Basic
Using a Balanced Scorecard to Tie the Results Act to Your Day-to-Day Operational Priorities
Using a Balanced Scorecard to Tie the Results Act to Your Day-to-Day Operational Priorities September 2004 Institute for the Study of Public Policy Implementation Overview Background Behind the Results
On Quantum Hamming Bound
On Quantum Hamming Bound Salah A. Aly Department of Computer Science, Texas A&M University, College Station, TX 77843-3112, USA Email: [email protected] We prove quantum Hamming bound for stabilizer codes
PROBLEM SET 6: POLYNOMIALS
PROBLEM SET 6: POLYNOMIALS 1. introduction In this problem set we will consider polynomials with coefficients in K, where K is the real numbers R, the complex numbers C, the rational numbers Q or any other
Solution to Homework 2
Solution to Homework 2 Olena Bormashenko September 23, 2011 Section 1.4: 1(a)(b)(i)(k), 4, 5, 14; Section 1.5: 1(a)(b)(c)(d)(e)(n), 2(a)(c), 13, 16, 17, 18, 27 Section 1.4 1. Compute the following, if
ARTICLE IN PRESS. International Journal of Lean Thinking Volume 1, Issue 1 (June 2010)
ART CLE N PRESS J L T k V m ( J 2 ) LT k jm: www k m/ j AF S M A Ow / M D mm F m C m M A A R C OGL U S ç ku D m E C m 4 2 3 K T k m @ m m ABSTRACT KEYWORDS F m m m m K m m m w w Ow/ m j m O m j m m m ARTCLE
Limits and Continuity
Math 20C Multivariable Calculus Lecture Limits and Continuity Slide Review of Limit. Side limits and squeeze theorem. Continuous functions of 2,3 variables. Review: Limits Slide 2 Definition Given a function
Some generalized fixed point results in a b-metric space and application to matrix equations
Pathak et al. Fixed Point Theory and Applications (2015) 2015:101 DOI 10.1186/s13663-015-0343-0 RESEARCH Open Access Some generalized fixed point results in a b-metric space and application to matrix equations
A Robust Optimization Approach to Supply Chain Management
A Robust Optimization Approach to Supply Chain Management Dimitris Bertsimas and Aurélie Thiele Massachusetts Institute of Technology, Cambridge MA 0139, [email protected], [email protected] Abstract. We
1 Determinants and the Solvability of Linear Systems
1 Determinants and the Solvability of Linear Systems In the last section we learned how to use Gaussian elimination to solve linear systems of n equations in n unknowns The section completely side-stepped
Let H and J be as in the above lemma. The result of the lemma shows that the integral
Let and be as in the above lemma. The result of the lemma shows that the integral ( f(x, y)dy) dx is well defined; we denote it by f(x, y)dydx. By symmetry, also the integral ( f(x, y)dx) dy is well defined;
15. Symmetric polynomials
15. Symmetric polynomials 15.1 The theorem 15.2 First examples 15.3 A variant: discriminants 1. The theorem Let S n be the group of permutations of {1,, n}, also called the symmetric group on n things.
Lecture Notes on The Mechanics of Elastic Solids
Lecture Notes on The Mechanics of Elastic Solids Volume 1: A Brief Review of Some Mathematical Preliminaries Version 1. Rohan Abeyaratne Quentin Berg Professor of Mechanics Department of Mechanical Engineering
Modern Algebra Lecture Notes: Rings and fields set 4 (Revision 2)
Modern Algebra Lecture Notes: Rings and fields set 4 (Revision 2) Kevin Broughan University of Waikato, Hamilton, New Zealand May 13, 2010 Remainder and Factor Theorem 15 Definition of factor If f (x)
CS473 - Algorithms I
CS473 - Algorithms I Lecture 4 The Divide-and-Conquer Design Paradigm View in slide-show mode 1 Reminder: Merge Sort Input array A sort this half sort this half Divide Conquer merge two sorted halves Combine
Approximability of Two-Machine No-Wait Flowshop Scheduling with Availability Constraints
Approximability of Two-Machine No-Wait Flowshop Scheduling with Availability Constraints T.C. Edwin Cheng 1, and Zhaohui Liu 1,2 1 Department of Management, The Hong Kong Polytechnic University Kowloon,
Scheduling a sequence of tasks with general completion costs
Scheduling a sequence of tasks with general completion costs Francis Sourd CNRS-LIP6 4, place Jussieu 75252 Paris Cedex 05, France [email protected] Abstract Scheduling a sequence of tasks in the acceptation
On the irreducibility of certain polynomials with coefficients as products of terms in an arithmetic progression
On the irreducibility of certain polynomials with coefficients as products of terms in an arithmetic progression Carrie E. Finch and N. Saradha Abstract We prove the irreducibility of ceratin polynomials
Abstract: We describe the beautiful LU factorization of a square matrix (or how to write Gaussian elimination in terms of matrix multiplication).
MAT 2 (Badger, Spring 202) LU Factorization Selected Notes September 2, 202 Abstract: We describe the beautiful LU factorization of a square matrix (or how to write Gaussian elimination in terms of matrix
Linear Threshold Units
Linear Threshold Units w x hx (... w n x n w We assume that each feature x j and each weight w j is a real number (we will relax this later) We will study three different algorithms for learning linear
Revista Matematica Iberoamericana Vol. 14, N. o 1, 1998 A proof of the smoothing properties of the positive part of Boltzmann's kernel Francois Bouchut and Laurent Desvillettes Abstract. We give two direct
SF2940: Probability theory Lecture 8: Multivariate Normal Distribution
SF2940: Probability theory Lecture 8: Multivariate Normal Distribution Timo Koski 24.09.2015 Timo Koski Matematisk statistik 24.09.2015 1 / 1 Learning outcomes Random vectors, mean vector, covariance matrix,
THE EXISTENCE OF CONVEX BODY WITH PRESCRIBED CURVATURE MEASURES. 1. Introduction
THE EXISTENCE OF CONVEX BODY WITH PRESCRIBED CURVATURE MEASURES PENGFEI GUAN, CHANGSHOU LIN, AND XI-NAN MA 1. Introduction Curvature measure and surface area measure are the basic notions in the classical
Figure2:Themixtureoffactoranalysisgenerativemodel. j;j z
TheEMAlgorithmforMixturesofFactorAnalyzers DepartmentofComputerScience ZoubinGhahramani GeoreyE.Hinton May21,1996(revisedFeb27,1997) TechnicalReportCRG-TR-96-1 Email:[email protected] Toronto,CanadaM5S1A4
9.2 Summation Notation
9. Summation Notation 66 9. Summation Notation In the previous section, we introduced sequences and now we shall present notation and theorems concerning the sum of terms of a sequence. We begin with a
Equilibrium computation: Part 1
Equilibrium computation: Part 1 Nicola Gatti 1 Troels Bjerre Sorensen 2 1 Politecnico di Milano, Italy 2 Duke University, USA Nicola Gatti and Troels Bjerre Sørensen ( Politecnico di Milano, Italy, Equilibrium
Control Systems with Actuator Saturation
Control Systems with Actuator Saturation Analysis and Design Tingshu Hu Zongli Lin With 67 Figures Birkhauser Boston Basel Berlin Preface xiii 1 Introduction 1 1.1 Linear Systems with Actuator Saturation
I. GROUPS: BASIC DEFINITIONS AND EXAMPLES
I GROUPS: BASIC DEFINITIONS AND EXAMPLES Definition 1: An operation on a set G is a function : G G G Definition 2: A group is a set G which is equipped with an operation and a special element e G, called
A linear algebraic method for pricing temporary life annuities
A linear algebraic method for pricing temporary life annuities P. Date (joint work with R. Mamon, L. Jalen and I.C. Wang) Department of Mathematical Sciences, Brunel University, London Outline Introduction
1 Review of Newton Polynomials
cs: introduction to numerical analysis 0/0/0 Lecture 8: Polynomial Interpolation: Using Newton Polynomials and Error Analysis Instructor: Professor Amos Ron Scribes: Giordano Fusco, Mark Cowlishaw, Nathanael
FUZZY CLUSTERING ANALYSIS OF DATA MINING: APPLICATION TO AN ACCIDENT MINING SYSTEM
International Journal of Innovative Computing, Information and Control ICIC International c 0 ISSN 34-48 Volume 8, Number 8, August 0 pp. 4 FUZZY CLUSTERING ANALYSIS OF DATA MINING: APPLICATION TO AN ACCIDENT
THE GENERALIZED RECURRENT WEYL SPACES HAVING A DECOMPOSABLE CURVATURE TENSOR
International Mathematical Forum, 1, 2006, no. 4, 165-174 THE GENERALIZED RECURRENT WEYL SPACES HAVING A DECOMPOSABLE CURVATURE TENSOR Hakan Demirbüker and Fatma Öztürk Faculty of Science and Letters Davutpaşa,
MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 2. x n. a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 a 31 a 32 a 3n b 3. a m1 a m2 a mn b m
MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS 1. SYSTEMS OF EQUATIONS AND MATRICES 1.1. Representation of a linear system. The general system of m equations in n unknowns can be written a 11 x 1 + a 12 x 2 +
VERTICES OF GIVEN DEGREE IN SERIES-PARALLEL GRAPHS
VERTICES OF GIVEN DEGREE IN SERIES-PARALLEL GRAPHS MICHAEL DRMOTA, OMER GIMENEZ, AND MARC NOY Abstract. We show that the number of vertices of a given degree k in several kinds of series-parallel labelled
AP Calculus BC Exam. The Calculus BC Exam. At a Glance. Section I. SECTION I: Multiple-Choice Questions. Instructions. About Guessing.
The Calculus BC Exam AP Calculus BC Exam SECTION I: Multiple-Choice Questions At a Glance Total Time 1 hour, 45 minutes Number of Questions 45 Percent of Total Grade 50% Writing Instrument Pencil required
NOV - 30211/II. 1. Let f(z) = sin z, z C. Then f(z) : 3. Let the sequence {a n } be given. (A) is bounded in the complex plane
Mathematical Sciences Paper II Time Allowed : 75 Minutes] [Maximum Marks : 100 Note : This Paper contains Fifty (50) multiple choice questions. Each question carries Two () marks. Attempt All questions.
TITLE 9. HEALTH SERVICES CHAPTER 1. DEPARTMENT OF HEALTH SERVICES ADMINISTRATION ARTICLE 4. CODES AND STANDARDS REFERENCED
TITLE 9. HEALTH SERVICES CHAPTER 1. DEPARTMENT OF HEALTH SERVICES ADMINISTRATION ARTICLE 4. CODES AND STANDARDS REFERENCED R9-1-412. Physical Plant Health and Safety Codes and Standards A. The following
LEARNING OBJECTIVES FOR THIS CHAPTER
CHAPTER 6 Woman teaching geometry, from a fourteenth-century edition of Euclid s geometry book. Inner Product Spaces In making the definition of a vector space, we generalized the linear structure (addition
LIBRARY OF THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY
LIBRARY OF THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY Not to be reproduced in whole or in part without author's permission Extensions of the Matrix Form of MASS. If'JST. TECH. Double Entry MOV 19 1964
UNIVERSITETET I OSLO
NIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Examination in: Trial exam Partial differential equations and Sobolev spaces I. Day of examination: November 18. 2009. Examination hours:
1 Completeness of a Set of Eigenfunctions. Lecturer: Naoki Saito Scribe: Alexander Sheynis/Allen Xue. May 3, 2007. 1.1 The Neumann Boundary Condition
MAT 280: Laplacian Eigenfunctions: Theory, Applications, and Computations Lecture 11: Laplacian Eigenvalue Problems for General Domains III. Completeness of a Set of Eigenfunctions and the Justification
LIST OF RANK AND FILE CLASSES IN BU 9 As of December 1, 2011
IB50 3812 AIR POLLUTION RESEARCH SPECIALIST $7,472.00 $9,082.00 E IB75 3887 AIR POLLUTION SPECIALIST A $4,204.00 $4,867.00 2 IB75 3887 AIR POLLUTION SPECIALIST B $5,034.00 $6,117.00 2 IB75 3887 AIR POLLUTION
MAT188H1S Lec0101 Burbulla
Winter 206 Linear Transformations A linear transformation T : R m R n is a function that takes vectors in R m to vectors in R n such that and T (u + v) T (u) + T (v) T (k v) k T (v), for all vectors u
Irreducibility criteria for compositions and multiplicative convolutions of polynomials with integer coefficients
DOI: 10.2478/auom-2014-0007 An. Şt. Univ. Ovidius Constanţa Vol. 221),2014, 73 84 Irreducibility criteria for compositions and multiplicative convolutions of polynomials with integer coefficients Anca
SF2940: Probability theory Lecture 8: Multivariate Normal Distribution
SF2940: Probability theory Lecture 8: Multivariate Normal Distribution Timo Koski 24.09.2014 Timo Koski () Mathematisk statistik 24.09.2014 1 / 75 Learning outcomes Random vectors, mean vector, covariance
Matrix-Chain Multiplication
Matrix-Chain Multiplication Let A be an n by m matrix, let B be an m by p matrix, then C = AB is an n by p matrix. C = AB can be computed in O(nmp) time, using traditional matrix multiplication. Suppose
Tutorial: Operations Research in Constraint Programming
Tutorial: Operations Research in Constraint Programming John Hooker Carnegie Mellon University May 2009 Revised June 2009 May 2009 Slide 1 Motivation Benders decomposition allows us to apply CP and OR
ON LIMIT LAWS FOR CENTRAL ORDER STATISTICS UNDER POWER NORMALIZATION. E. I. Pancheva, A. Gacovska-Barandovska
Pliska Stud. Math. Bulgar. 22 (2015), STUDIA MATHEMATICA BULGARICA ON LIMIT LAWS FOR CENTRAL ORDER STATISTICS UNDER POWER NORMALIZATION E. I. Pancheva, A. Gacovska-Barandovska Smirnov (1949) derived four
The Characteristic Polynomial
Physics 116A Winter 2011 The Characteristic Polynomial 1 Coefficients of the characteristic polynomial Consider the eigenvalue problem for an n n matrix A, A v = λ v, v 0 (1) The solution to this problem
Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm.
Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm. We begin by defining the ring of polynomials with coefficients in a ring R. After some preliminary results, we specialize
Module MA3411: Abstract Algebra Galois Theory Appendix Michaelmas Term 2013
Module MA3411: Abstract Algebra Galois Theory Appendix Michaelmas Term 2013 D. R. Wilkins Copyright c David R. Wilkins 1997 2013 Contents A Cyclotomic Polynomials 79 A.1 Minimum Polynomials of Roots of
Pain-Free Injections
T N S Bk P-F Ij I P Bk DV Dv Iv D D - I 8 8 9 1 D v C U C Y N D j I W U v v I k I W j k T k z D M I v 965 1 M Tk C P 1 2 v T I C G v j V T D v v A I W S DD G v v S D @ v DV M I USA! j DV - v - j I v v
The Australian Journal of Mathematical Analysis and Applications
The Australian Journal of Mathematical Analysis and Applications Volume 7, Issue, Article 11, pp. 1-14, 011 SOME HOMOGENEOUS CYCLIC INEQUALITIES OF THREE VARIABLES OF DEGREE THREE AND FOUR TETSUYA ANDO
The Matrix Elements of a 3 3 Orthogonal Matrix Revisited
Physics 116A Winter 2011 The Matrix Elements of a 3 3 Orthogonal Matrix Revisited 1. Introduction In a class handout entitled, Three-Dimensional Proper and Improper Rotation Matrices, I provided a derivation
Lecture 2 Matrix Operations
Lecture 2 Matrix Operations transpose, sum & difference, scalar multiplication matrix multiplication, matrix-vector product matrix inverse 2 1 Matrix transpose transpose of m n matrix A, denoted A T or
Econ 430 Lecture 9: Games on Networks
Alper Duman Izmir University Economics, May 10, 2013 Semi-Anonymous Graphical Games refer to games on networks in which agents observe what their neighbours do The number of agents taking a specific action
1 = (a 0 + b 0 α) 2 + + (a m 1 + b m 1 α) 2. for certain elements a 0,..., a m 1, b 0,..., b m 1 of F. Multiplying out, we obtain
Notes on real-closed fields These notes develop the algebraic background needed to understand the model theory of real-closed fields. To understand these notes, a standard graduate course in algebra is
WHAT DEGREE OF CONFLICT IN THE DOMAIN OF INDIVIDUAL PREFERENCES COULD RESOLVE THE PARADOX OF DEMOCRATIC MAJORITY DECISION?
WHAT DEGREE OF CONFLICT IN THE DOMAIN OF INDIVIDUAL PREFERENCES COULD RESOLVE THE PARADOX OF DEMOCRATIC MAJORITY DECISION? Ahmet KARA Fatih University Economics Department Hadimköy 34900, Büyüçkmece, İstanbul,
