The 11th International Symposium on Wireless Personal Multimedia Communiations (WPMC 8) Development of THz Transistors & (3-3 GHz) Sub-mm-Wave ICs Mark Rodwell University of California, Santa Barbara Coauthors E. Lobisser, M. Wistey, V. Jain, A. Baraskar, E. Lind, J. Koo, B. Thibeault, A.C. Gossard University of California, Santa Barbara E. Lind Lund University Z. Griffith, J. Haker, M. Urteaga, D. Mensa, Rihard Pierson, B. Brar Teledyne Sientifi Company X. M. Fang, D. Lubyshev, Y. Wu, J. M. Fastenau, W.K. Liu International Quantum Epitaxy, In. rodwell@ee.usb.edu 85-893-344, 85-893-575 fax
UCSB High-Frequeny Eletronis Group THz InP Bipolar Transistors. III-V CMOS for Si VLSI InGaAs-hannel MOSFETs for sub--nm saling Ultra high frequeny III-V ICs sub-mm-wave ICs 1-5 GHz digital logi 5- GHz Silion ICs 5- GHz Silion ICs mm-waves: MIMO links, arrays, sensor networks fiber optis
Multi-THz Transistors Are Coming InP Bipolars: 5 nm generation: 78 GHz f max, 4 GHz f τ, 5 V BV CEO 4 15 nm & 6 nm nodes ~THz devies db 3 U H 1 ma/μ μm 1 f = 78 GHz max f = 44 GHz τ 1 9 1 1 1 11 1 1 Hz 1 8 6 4 1 3 4 5 V e IBM IEDM '6: 65 nm SOI CMOS 45 GHz f max, ~1 V operation Intel June '7: 45 nm / high-k / metal gate prodution 65 nm: ~5 GHz f max ontinued rapid progress What appliations for III-V bipolars? What appliations for mm-wave CMOS?
THz InP vs. near-thz CMOS: different opportunities InP HBT: THz bandwidths, good breakdown, analog preision db 4 3 U H 1 1 f = 78 GHz max f = 44 GHz τ 1 9 1 1 1 11 1 1 Hz & I, I (A) b 1-1 -4 1-6 1-8 1-1 1-1 I I b 5575.5.5.75 1 V be (V) ma/μ μm 1 8 6 4 34 GHz, 7 mw amplifiers (design) In future: 7 or 1 GHz amplifiers? 1 3 4 5 V e J. Haker (Teledyne) M. Jones (UCSB) Z. Griffith Z. Griffith M. Urteaga (Teledyne) GHz digital logi (design) In future: 45 GHz lok rate? fast bloks for mirowave mixed-signal 5-4 GHz gain-bandwidth op-amps low IM3 @ GHz In future: GHz op-amps for low-im3 1 GHz amplifiers?
THz InP vs. near-thz CMOS: different opportunities 65 / 45 / 33 /... nm CMOS vast #s of very fast transistors... having low breakdown, high output ondutane what NEW mm-wave appliations will this enable? Q izer Q I I massive monolithi mm-wave arrays 1 Gb/s over ~1 km mm-wave MIMO omprehensive equalization of ~1 Gb/s wireless, wireline, optial links mm-wave imaging sensor networks
InP DHBTs: September 8 f (GHz z) max GHz 8 7 6 5 4 3 1 3 GHz 4 GHz Updated Sept. 8 5 GHz 6 GHz 5 nm 6nm = f max f τ 5 nm 35 nm 1 3 4 5 6 7 8 Teledyne DHBT UIUC DHBT NTT DHBT EHTZ DHBT UIUC SHBT UCSB DHBT NGST DHBT HRL DHBT IBM SiGe Vitesse DHBT popular f ( f τ (1 τ f or f + f τ f τ f max max + 1 max metris ti : alone ) / f max ) 1 muh better metris : power amplifiers: PAE, assoiated gain, mw/ μm low noise amplifiers: F min digital : f ( C ( R ( R lok b ex, assoiated gain, I, hene ΔV / I f t (GHz) ( τ + τ ) b bb I ), / ΔV ), / Δ V ),
Bipolar Transistor Design We τ τ b I T D D b = T v C εa n sat b = /T, max vsat Ae ( Ve,operating + V e,punh-through ) / T T b W b ( ) emitter length L E T ΔT P L E L e 1 + ln We R ex = ρ ontat / A e W W e b ρ Rbb = ρ sheet + + 1Le 6L e A ontat ontats
Bipolar Transistor Design: Saling We τ τ b T D D b = T v C εa I n sat b = /T, max vsat Ae ( Ve,operating + V e,punh-through ) / T T b W b ( ) emitter length L E T ΔT P L E L e 1 + ln We R ex = ρ ontat / A e W W e b ρ Rbb = ρ sheet + + 1Le 6L e A ontat ontats
Bipolar Transistor Saling Laws Changes required to double transistor bandwidth: parameter hange olletor depletion layer thikness derease :1 base thikness derease 1.414:1 emitter juntion width derease 4:1 olletor juntion width derease 4:1 emitter ontat resistane derease 4:1 urrent density inrease 4:1 base ontat resistivity derease 4:1 Linewidths sale as the inverse square of bandwidth beause thermal onstraints dominate.
InP Bipolar Transistor Saling Roadmap industry university industry university 7-8 appears feasible maybe emitter 51 56 18 64 3 nm width 16 8 4 1 Ω μm aess ρ base 3 175 1 6 3 nm ontat width, 1 5.5 1.5 Ω μm ontat ρ olletor 15 16 75 53 37.5 nm thik, 4.5 9 18 36 7 ma/μm urrent density 4.9 4 3.3.75 -.5 V, breakdown f τ 37 5 73 1 14 GHz f max 49 85 13 8 GHz power amplifiers 45 43 66 1 14 GHz digital :1 divider 15 4 33 48 66 GHz
51 nm InP DHBT Laboratory Tehnology 5 nm mesa HBT 15 GHz M/S lathes 175 GHz amplifiers UCSB / Teledyne / GCS UCSB 5 nm sidewall HBT DDS IC: 45 HBTs -4 GHz op-amps Prodution ( Teledyne ) Z. Griffith M. Urteaga P. Rowell D. Pierson B. Brar V. Paidi Teledyne f τ = 45 GHz f max = 39 GHz V br, eo = 4 V Teledyne / BAE GHz lok Teledyne / UCSB 53 dbm OIP3 @ GHz with 1 W dissipation
15 nm thik olletor 56 nm Generation 4 InP DHBT 3 1 8 1 4.7 db Gain at 36 GHz. 34 GHz, 7 mw amplifier 5 design S1, S11, S (db) -5-1 -15 S S11 S1 db from one HBT - 4 6 8 3 3 freq. (GHz) GHz master-slave lath design Z. Griffith, E. Lind, J. Haker, M. Jones 1 H 1 f τ = 44 GHz U f max = 78 GHz 1 9 1 1 1 11 1 1 7 nm thik olletor Hz 3 db 1 1 9 U 1 1 f τ = 56 GHz 1 11 H 1 f max = 56 GHz 1 1 1 9 1 1 1 11 1 1 Hz 6 nm thik olletor db 4 3 U H 1 Hz m ma/μ ma/μm ma/μm 6 4 1 3 4 5 15 1 5 3 V e 1 3 4 V e 1 f = 18 GHz 1 max f = 66 GHz t 1 9 1 1 1 11 1 1 1 3 V e
34 GHz Medium Power Amplifiers in 56 nm HBT ICs designed by Jon Haker / Teledyne Teledyne 56 nm proess flow- Haker et al, 8 IEEE MTT-S ~ mw saturated output power Ga ain (db), Pow wer (dbm), PAE (%) 1-1 Output Power (dbm) Gain (db) Drain Current (ma) PAE (%) 4 3 1 Cur rrent, ma - - -15-1 -5 5 Input Power (dbm)
Can we make a 1 THz SiGe Bipolar Transistor? emitter 18 nm width 1. Ω μm aess ρ Simple physis learly drives saling transit times, C b /I thinner layers, higher h urrent density base 56 nm ontat width, high power density narrow juntions 1.4 Ω μm ontat ρ small juntions low resistane ontats Key hallenge: Breakdown 15 nm olletor very low breakdown (also need better Ohmi ontats) olletor 15 nm thik 15 ma/μm urrent density??? V, breakdown f τ 1 GHz f max GHz Solutions Eliminating exess olletor area would partly ease saling PAs 1 GHz digital 48 GHz (:1 stati divider metri) Assumes olletor juntion 3:1 wider than emitter. Assumes ontats :1 wider than juntions
What Would You Do With a THz Transistor? mirowave ADCs and DACs more resolution & more bandwidth High-Performane - GHz Mirowave Systems high exess transistor bandwidth + preision design --> high linear, highly preise mirowave systems mirowave op-amps high IP3 at low DC power translinear mixers high IP3 at low DC power 67-1 GHz imaging systems single-hip 3-6 GHz spetrometers (gas detetion) sub-mm-wave ommuniations
mm-wave Op-Amps for Linear Mirowave Amplifiation Redue distortion with strong negative feedbak DARPA / UCSB / Teledyne FLARE: Griffith & Urteaga linear response output powe er, dbm inreasing feedbak -tone intermodulation 3 GHz / 4 V InP HBT R. Eden input power, dbm measured -4 GHz bandwidth measured 54 dbm OIP3 @GHz new designs in fabriation simulated 56 dbm OIP3 @ GHz
What Would You Do With a THz Transistor? mirowave ADCs and DACs more resolution & more bandwidth High-Performane - GHz Mirowave Systems high exess transistor bandwidth + preision design --> high linear, highly preise mirowave systems mirowave op-amps high IP3 at low DC power translinear mixers high IP3 at low DC power 67-1 GHz imaging systems single-hip 3-6 GHz spetrometers (gas detetion) sub-mm-wave ommuniations
15 & 5 GHz Bands for 1 Gb/s Radio? Wiltse, 1997 IEEE APS-Symposium, P reeived / Ptrans = ( Dt Dr / 16 π )( λ / R) sea level reeived ( 4QPSK ) = Q ktfb ; Q 6 4 km 4πA eff λ P D = 15-15 GHz, -3 GHz: enough bandwidth for 1 Gb/s QPSK 15 GHz arrier, 1 Gbs/s QPSK radio: 3 m antennas, 1 dbm power, fair weather 1 km range 15 GHz band: Expet ~1- db/km attenuation for rain But, for > 3 GHz : expet >3 db/km from 9% humidity 9 km
mm-wave (6-8 GHz) MIMO wireless at 4+ Gb/s rates? Rayleigh Criterion : Spatial angular separation of adjaent transmitters: δθ = Reeive array angular resolution lti : δθ = λ /( N To resolve adjaent hannels, δθ δθ r r r 1 ) D ( N 1) D = t D / R λr( N 1) 7 GH 1 k 16 l t l i ti 3 6 3 6 t 5 GB d QPSK 7 GHz, 1 km, 16 elements, polarizations, 3.6 x 3.6 meter array,.5 GBaud QPSK 16 Gb/s digital radio?
mm-wave MIMO: -hannel prototype, 6 GHz, 4 meters 5mV pe er division 5mV pe er division 5ps per division 5ps per division
mm-wave & Sub-mm-Wave Wireless Links The ICs will soon make this possible SiGe BiCMOS: up to 15 GHz now, future unertain Si CMOS: up to 15 GHz now, -3 GHz soon, low output power InP HBT: up to 5 GHz now, up to 1 GHz soon moderate to high power, moderate noise Propagation harateristis will determine appliations Foul-Weather Attenuation, Highly Diretional (LOS only) propagation Massive mm-wave IC omplexity in future aggressive system adaptations / orretions