& (300-3000 GHz) Sub-mm-Wave ICs



Similar documents
GHZ Wireless: Transistors, ICs, and System Design

High-Frequency Integrated Circuits

AT Up to 6 GHz Low Noise Silicon Bipolar Transistor

TowerJazz High Performance SiGe BiCMOS processes

Serial 12.5 Gbaud, 10 km SMF Link with Clock and Data Recovery IC

SiGe:C BiCMOS Technologies for RF Automotive Application

Wireless 100Gb/s Using A Powerand Hardware-Efficient Approach (Project Real100G.com)

Lecture 23 - Frequency Response of Amplifiers (I) Common-Source Amplifier. December 1, 2005

Department of Electrical and Computer Engineering Ben-Gurion University of the Negev. LAB 1 - Introduction to USRP

Low Noise, Matched Dual PNP Transistor MAT03

Product Description. Ordering Information. GaAs HBT GaAs MESFET InGaP HBT

Nomadic Base Station (NBS): a Software Defined Radio (SDR) based Architecture for Capacity Enhancement in Mobile Communications Networks

Spike-Based Sensing and Processing: What are spikes good for? John G. Harris Electrical and Computer Engineering Dept

EE 186 LAB 2 FALL Network Analyzer Fundamentals and Two Tone Linearity

A 2.4GHz Cascode CMOS Low Noise Amplifier

UGF W, 1 GHz, 26V Broadband RF Power N-Channel Enhancement-Mode Lateral MOSFET

Equalization/Compensation of Transmission Media. Channel (copper or fiber)

TO-92 SOT-23 Mark: 3G. TA = 25 C unless otherwise noted. Symbol Parameter Value Units

Demonstration of a Software Defined Radio Platform for dynamic spectrum allocation.

Data Sheet. HFBR-0600Z Series SERCOS Fiber Optic Transmitters and Receivers

mm-wave Sensor and Communications Components at 60, 94, and 122 GHz in SiGe BiCMOS Technology

Experiences in positioning and sensor network applications with Ultra Wide Band technology

Asimple analytic method for transistor

How To Make A Power Amplifier For A Mobile Phone

Programmable Single-/Dual-/Triple- Tone Gong SAE 800

Recent developments in high bandwidth optical interconnects. Brian Corbett.

Op amp DC error characteristics and the effect on high-precision applications

OBJECTIVE QUESTIONS IN ANALOG ELECTRONICS

mm-wave System-On-Chip & System-in-Package Design for 122 GHz Radar Sensors

EE4367 Telecom. Switching & Transmission. Prof. Murat Torlak

SFP+ LR 10G Ethernet 10km SFP+ Transceiver 10GBASE-LR / 10BBASE-LW

Advanced VLSI Design CMOS Processing Technology

Dispersion in Optical Fibres

NBB-402. RoHS Compliant & Pb-Free Product. Typical Applications

Fiber optic communication

Technology Developments Towars Silicon Photonics Integration

Volumes. Goal: Drive optical to high volumes and low costs

NTE923 & NTE923D Integrated Circuit Precision Voltage Regulator

DISCRETE SEMICONDUCTORS DATA SHEET. BFQ34 NPN 4 GHz wideband transistor. Product specification File under Discrete Semiconductors, SC14

RF Power Amplifiers for Cellphones

Antennas & Propagation. CS 6710 Spring 2010 Rajmohan Rajaraman

UTBB-FDSOI 28nm : RF Ultra Low Power technology for IoT

Schedule of Accreditation issued by United Kingdom Accreditation Service High Street, Feltham, Middlesex, TW13 4UN, UK

GaN High Power Amplifiers: Optimal Solutions Addressing Pico to Macro BTS Demands

Data Transmission. Data Communications Model. CSE 3461 / 5461: Computer Networking & Internet Technologies. Presentation B

DWH-1B. with a security system that keeps you in touch with what matters most

Introduction to Optical Link Design


Case Study Competition Be an engineer of the future! Innovating cars using the latest instrumentation!

ipimms is an industry primary impedance measurement service supplied and maintained by UK s National Physical Laboratory. [4]

Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED

PS323. Precision, Single-Supply SPST Analog Switch. Features. Description. Block Diagram, Pin Configuration, and Truth Table. Applications PS323 PS323

EE-612: Nanoscale Transistors (Advanced VLSI Devices) Spring 2005

An Introduction to the EKV Model and a Comparison of EKV to BSIM

TCOM 370 NOTES 99-4 BANDWIDTH, FREQUENCY RESPONSE, AND CAPACITY OF COMMUNICATION LINKS

Lecture 1: Communication Circuits

Coherent sub-thz transmission systems in Silicon technologies: design challenges for frequency synthesis

The D.C Power Supply

BJT Circuit Configurations

In 3G/WCDMA mobile. IP2 and IP3 Nonlinearity Specifications for 3G/WCDMA Receivers 3G SPECIFICATIONS

Intel Labs at ISSCC Copyright Intel Corporation 2012

Fundamentals of Power Electronics. Robert W. Erickson University of Colorado, Boulder

Integrated Circuits & Systems

INTRODUCTION TO COMMUNICATION SYSTEMS AND TRANSMISSION MEDIA

FCX V NPN SILICON HIGH VOLTAGE DARLINGTON TRANSISTOR SUMMARY SOT 89. V CEO=120V; V CE(sat)= 1V; I C= 1A

CHAPTER 10 OPERATIONAL-AMPLIFIER CIRCUITS

AMS/RF-CMOS circuit design for wireless transceivers

Amplifier for Small Magnetic and Electric Wideband Receiving Antennas (model AAA-1B)

Bipolar Transistor Amplifiers

HIGH REPEATABILITY SPDT, BROADBAND 12 GHZ MAGNETIC-LATCHING RF RELAY

I. Wireless Channel Modeling

Scalable Frequency Generation from Single Optical Wave

Regulated D.C. Power Supply

Photonics for the Coherent CFP2-ACO Unlocking 100G and 200G for the Metro

AN Single stage 5-6 GHz WLAN LNA with BFU730F. document information

US-SPI New generation of High performances Ultrasonic device

Features. Applications. Transmitter. Receiver. General Description MINIATURE MODULE. QM MODULATION OPTIMAL RANGE 1000m

CA723, CA723C. Voltage Regulators Adjustable from 2V to 37V at Output Currents Up to 150mA without External Pass Transistors. Features.

Enhancing Second Harmonic Suppression in an Ultra-Broadband RF Push-Pull Amplifier

STMicroelectronics. Deep Sub-Micron Processes 130nm, 65 nm, 40nm, 28nm CMOS, 28nm FDSOI. SOI Processes 130nm, 65nm. SiGe 130nm

RF IF. The World Leader in High-Performance Signal Processing Solutions. RF Power Amplifiers. May 7, 2003

Table Of Contents. Special Options. Specification Definitions. Detailed Data Sheets. Fiber Optic Enclosures. 50 khz GHz LBL Fiber Optic Link

Jeff Thomas Tom Holmes Terri Hightower. Learn RF Spectrum Analysis Basics

A 1 to 2 GHz, 50 Watt Push-Pull Power Amplifier Using SiC MESFETs. high RF power. densities and cor- capacitances per watt.

Tx/Rx A high-performance FM receiver for audio and digital applicatons

GaAs, phemt, MMIC, 0.25 W Power Amplifier, DC to 40 GHz HMC930A

Chapter 6. CMOS Class-E Power Amplifier

Wideband Driver Amplifiers

Amplifier Teaching Aid

Achievable Transmission Rates and Self-Interference Channel Estimation in Hybrid Full-Duplex/Half-Duplex MIMO Relaying

A New Programmable RF System for System-on-Chip Applications

SILICON TRANSISTOR 2SC3355

Heterojunction Bipolar Transistor Technology (InGaP HBT) Broadband High Linearity Amplifier

A 1-GSPS CMOS Flash A/D Converter for System-on-Chip Applications

2.5 A Output Current IGBT and MOSFET Driver

Thermal Antenna for Passive THz Security Screening System and Current- Mode Active-Feedback Readout Circuit for Thermal Sensor

HA-5104/883. Low Noise, High Performance, Quad Operational Amplifier. Features. Description. Applications. Ordering Information. Pinout.

Transcription:

The 11th International Symposium on Wireless Personal Multimedia Communiations (WPMC 8) Development of THz Transistors & (3-3 GHz) Sub-mm-Wave ICs Mark Rodwell University of California, Santa Barbara Coauthors E. Lobisser, M. Wistey, V. Jain, A. Baraskar, E. Lind, J. Koo, B. Thibeault, A.C. Gossard University of California, Santa Barbara E. Lind Lund University Z. Griffith, J. Haker, M. Urteaga, D. Mensa, Rihard Pierson, B. Brar Teledyne Sientifi Company X. M. Fang, D. Lubyshev, Y. Wu, J. M. Fastenau, W.K. Liu International Quantum Epitaxy, In. rodwell@ee.usb.edu 85-893-344, 85-893-575 fax

UCSB High-Frequeny Eletronis Group THz InP Bipolar Transistors. III-V CMOS for Si VLSI InGaAs-hannel MOSFETs for sub--nm saling Ultra high frequeny III-V ICs sub-mm-wave ICs 1-5 GHz digital logi 5- GHz Silion ICs 5- GHz Silion ICs mm-waves: MIMO links, arrays, sensor networks fiber optis

Multi-THz Transistors Are Coming InP Bipolars: 5 nm generation: 78 GHz f max, 4 GHz f τ, 5 V BV CEO 4 15 nm & 6 nm nodes ~THz devies db 3 U H 1 ma/μ μm 1 f = 78 GHz max f = 44 GHz τ 1 9 1 1 1 11 1 1 Hz 1 8 6 4 1 3 4 5 V e IBM IEDM '6: 65 nm SOI CMOS 45 GHz f max, ~1 V operation Intel June '7: 45 nm / high-k / metal gate prodution 65 nm: ~5 GHz f max ontinued rapid progress What appliations for III-V bipolars? What appliations for mm-wave CMOS?

THz InP vs. near-thz CMOS: different opportunities InP HBT: THz bandwidths, good breakdown, analog preision db 4 3 U H 1 1 f = 78 GHz max f = 44 GHz τ 1 9 1 1 1 11 1 1 Hz & I, I (A) b 1-1 -4 1-6 1-8 1-1 1-1 I I b 5575.5.5.75 1 V be (V) ma/μ μm 1 8 6 4 34 GHz, 7 mw amplifiers (design) In future: 7 or 1 GHz amplifiers? 1 3 4 5 V e J. Haker (Teledyne) M. Jones (UCSB) Z. Griffith Z. Griffith M. Urteaga (Teledyne) GHz digital logi (design) In future: 45 GHz lok rate? fast bloks for mirowave mixed-signal 5-4 GHz gain-bandwidth op-amps low IM3 @ GHz In future: GHz op-amps for low-im3 1 GHz amplifiers?

THz InP vs. near-thz CMOS: different opportunities 65 / 45 / 33 /... nm CMOS vast #s of very fast transistors... having low breakdown, high output ondutane what NEW mm-wave appliations will this enable? Q izer Q I I massive monolithi mm-wave arrays 1 Gb/s over ~1 km mm-wave MIMO omprehensive equalization of ~1 Gb/s wireless, wireline, optial links mm-wave imaging sensor networks

InP DHBTs: September 8 f (GHz z) max GHz 8 7 6 5 4 3 1 3 GHz 4 GHz Updated Sept. 8 5 GHz 6 GHz 5 nm 6nm = f max f τ 5 nm 35 nm 1 3 4 5 6 7 8 Teledyne DHBT UIUC DHBT NTT DHBT EHTZ DHBT UIUC SHBT UCSB DHBT NGST DHBT HRL DHBT IBM SiGe Vitesse DHBT popular f ( f τ (1 τ f or f + f τ f τ f max max + 1 max metris ti : alone ) / f max ) 1 muh better metris : power amplifiers: PAE, assoiated gain, mw/ μm low noise amplifiers: F min digital : f ( C ( R ( R lok b ex, assoiated gain, I, hene ΔV / I f t (GHz) ( τ + τ ) b bb I ), / ΔV ), / Δ V ),

Bipolar Transistor Design We τ τ b I T D D b = T v C εa n sat b = /T, max vsat Ae ( Ve,operating + V e,punh-through ) / T T b W b ( ) emitter length L E T ΔT P L E L e 1 + ln We R ex = ρ ontat / A e W W e b ρ Rbb = ρ sheet + + 1Le 6L e A ontat ontats

Bipolar Transistor Design: Saling We τ τ b T D D b = T v C εa I n sat b = /T, max vsat Ae ( Ve,operating + V e,punh-through ) / T T b W b ( ) emitter length L E T ΔT P L E L e 1 + ln We R ex = ρ ontat / A e W W e b ρ Rbb = ρ sheet + + 1Le 6L e A ontat ontats

Bipolar Transistor Saling Laws Changes required to double transistor bandwidth: parameter hange olletor depletion layer thikness derease :1 base thikness derease 1.414:1 emitter juntion width derease 4:1 olletor juntion width derease 4:1 emitter ontat resistane derease 4:1 urrent density inrease 4:1 base ontat resistivity derease 4:1 Linewidths sale as the inverse square of bandwidth beause thermal onstraints dominate.

InP Bipolar Transistor Saling Roadmap industry university industry university 7-8 appears feasible maybe emitter 51 56 18 64 3 nm width 16 8 4 1 Ω μm aess ρ base 3 175 1 6 3 nm ontat width, 1 5.5 1.5 Ω μm ontat ρ olletor 15 16 75 53 37.5 nm thik, 4.5 9 18 36 7 ma/μm urrent density 4.9 4 3.3.75 -.5 V, breakdown f τ 37 5 73 1 14 GHz f max 49 85 13 8 GHz power amplifiers 45 43 66 1 14 GHz digital :1 divider 15 4 33 48 66 GHz

51 nm InP DHBT Laboratory Tehnology 5 nm mesa HBT 15 GHz M/S lathes 175 GHz amplifiers UCSB / Teledyne / GCS UCSB 5 nm sidewall HBT DDS IC: 45 HBTs -4 GHz op-amps Prodution ( Teledyne ) Z. Griffith M. Urteaga P. Rowell D. Pierson B. Brar V. Paidi Teledyne f τ = 45 GHz f max = 39 GHz V br, eo = 4 V Teledyne / BAE GHz lok Teledyne / UCSB 53 dbm OIP3 @ GHz with 1 W dissipation

15 nm thik olletor 56 nm Generation 4 InP DHBT 3 1 8 1 4.7 db Gain at 36 GHz. 34 GHz, 7 mw amplifier 5 design S1, S11, S (db) -5-1 -15 S S11 S1 db from one HBT - 4 6 8 3 3 freq. (GHz) GHz master-slave lath design Z. Griffith, E. Lind, J. Haker, M. Jones 1 H 1 f τ = 44 GHz U f max = 78 GHz 1 9 1 1 1 11 1 1 7 nm thik olletor Hz 3 db 1 1 9 U 1 1 f τ = 56 GHz 1 11 H 1 f max = 56 GHz 1 1 1 9 1 1 1 11 1 1 Hz 6 nm thik olletor db 4 3 U H 1 Hz m ma/μ ma/μm ma/μm 6 4 1 3 4 5 15 1 5 3 V e 1 3 4 V e 1 f = 18 GHz 1 max f = 66 GHz t 1 9 1 1 1 11 1 1 1 3 V e

34 GHz Medium Power Amplifiers in 56 nm HBT ICs designed by Jon Haker / Teledyne Teledyne 56 nm proess flow- Haker et al, 8 IEEE MTT-S ~ mw saturated output power Ga ain (db), Pow wer (dbm), PAE (%) 1-1 Output Power (dbm) Gain (db) Drain Current (ma) PAE (%) 4 3 1 Cur rrent, ma - - -15-1 -5 5 Input Power (dbm)

Can we make a 1 THz SiGe Bipolar Transistor? emitter 18 nm width 1. Ω μm aess ρ Simple physis learly drives saling transit times, C b /I thinner layers, higher h urrent density base 56 nm ontat width, high power density narrow juntions 1.4 Ω μm ontat ρ small juntions low resistane ontats Key hallenge: Breakdown 15 nm olletor very low breakdown (also need better Ohmi ontats) olletor 15 nm thik 15 ma/μm urrent density??? V, breakdown f τ 1 GHz f max GHz Solutions Eliminating exess olletor area would partly ease saling PAs 1 GHz digital 48 GHz (:1 stati divider metri) Assumes olletor juntion 3:1 wider than emitter. Assumes ontats :1 wider than juntions

What Would You Do With a THz Transistor? mirowave ADCs and DACs more resolution & more bandwidth High-Performane - GHz Mirowave Systems high exess transistor bandwidth + preision design --> high linear, highly preise mirowave systems mirowave op-amps high IP3 at low DC power translinear mixers high IP3 at low DC power 67-1 GHz imaging systems single-hip 3-6 GHz spetrometers (gas detetion) sub-mm-wave ommuniations

mm-wave Op-Amps for Linear Mirowave Amplifiation Redue distortion with strong negative feedbak DARPA / UCSB / Teledyne FLARE: Griffith & Urteaga linear response output powe er, dbm inreasing feedbak -tone intermodulation 3 GHz / 4 V InP HBT R. Eden input power, dbm measured -4 GHz bandwidth measured 54 dbm OIP3 @GHz new designs in fabriation simulated 56 dbm OIP3 @ GHz

What Would You Do With a THz Transistor? mirowave ADCs and DACs more resolution & more bandwidth High-Performane - GHz Mirowave Systems high exess transistor bandwidth + preision design --> high linear, highly preise mirowave systems mirowave op-amps high IP3 at low DC power translinear mixers high IP3 at low DC power 67-1 GHz imaging systems single-hip 3-6 GHz spetrometers (gas detetion) sub-mm-wave ommuniations

15 & 5 GHz Bands for 1 Gb/s Radio? Wiltse, 1997 IEEE APS-Symposium, P reeived / Ptrans = ( Dt Dr / 16 π )( λ / R) sea level reeived ( 4QPSK ) = Q ktfb ; Q 6 4 km 4πA eff λ P D = 15-15 GHz, -3 GHz: enough bandwidth for 1 Gb/s QPSK 15 GHz arrier, 1 Gbs/s QPSK radio: 3 m antennas, 1 dbm power, fair weather 1 km range 15 GHz band: Expet ~1- db/km attenuation for rain But, for > 3 GHz : expet >3 db/km from 9% humidity 9 km

mm-wave (6-8 GHz) MIMO wireless at 4+ Gb/s rates? Rayleigh Criterion : Spatial angular separation of adjaent transmitters: δθ = Reeive array angular resolution lti : δθ = λ /( N To resolve adjaent hannels, δθ δθ r r r 1 ) D ( N 1) D = t D / R λr( N 1) 7 GH 1 k 16 l t l i ti 3 6 3 6 t 5 GB d QPSK 7 GHz, 1 km, 16 elements, polarizations, 3.6 x 3.6 meter array,.5 GBaud QPSK 16 Gb/s digital radio?

mm-wave MIMO: -hannel prototype, 6 GHz, 4 meters 5mV pe er division 5mV pe er division 5ps per division 5ps per division

mm-wave & Sub-mm-Wave Wireless Links The ICs will soon make this possible SiGe BiCMOS: up to 15 GHz now, future unertain Si CMOS: up to 15 GHz now, -3 GHz soon, low output power InP HBT: up to 5 GHz now, up to 1 GHz soon moderate to high power, moderate noise Propagation harateristis will determine appliations Foul-Weather Attenuation, Highly Diretional (LOS only) propagation Massive mm-wave IC omplexity in future aggressive system adaptations / orretions