Math 2280 - Assignment 6



Similar documents
SECOND-ORDER LINEAR DIFFERENTIAL EQUATIONS

Solutions for Review Problems

Linear algebra and the geometry of quadratic equations. Similarity transformations and orthogonal matrices

r (t) = 2r(t) + sin t θ (t) = r(t) θ(t) + 1 = 1 1 θ(t) Write the given system in matrix form x = Ax + f ( ) sin(t) x y z = dy cos(t)

Second Order Linear Partial Differential Equations. Part I

Method To Solve Linear, Polynomial, or Absolute Value Inequalities:

3.2 Sources, Sinks, Saddles, and Spirals

Second-Order Linear Differential Equations

Homework #1 Solutions

x(x + 5) x 2 25 (x + 5)(x 5) = x 6(x 4) x ( x 4) + 3

Math Practice exam 2 - solutions

Figure 2.1: Center of mass of four points.

Math 241, Exam 1 Information.

College of the Holy Cross, Spring 2009 Math 373, Partial Differential Equations Midterm 1 Practice Questions

MATH 425, PRACTICE FINAL EXAM SOLUTIONS.

A characterization of trace zero symmetric nonnegative 5x5 matrices

2 Integrating Both Sides

Ordinary Differential Equations

Math 447/547 Partial Differential Equations Prof. Carlson Homework 7 Text section Solve the diffusion problem. u(t,0) = 0 = u x (t,l).

x = + x 2 + x

ab = c a If the coefficients a,b and c are real then either α and β are real or α and β are complex conjugates

19.6. Finding a Particular Integral. Introduction. Prerequisites. Learning Outcomes. Learning Style

Derive 5: The Easiest... Just Got Better!

SECOND DERIVATIVE TEST FOR CONSTRAINED EXTREMA

Math Placement Test Practice Problems

INTEGRATING FACTOR METHOD

3.3. Solving Polynomial Equations. Introduction. Prerequisites. Learning Outcomes

System of First Order Differential Equations

Core Maths C1. Revision Notes

Exam 1 Sample Question SOLUTIONS. y = 2x

Student name: Earlham College. Fall 2011 December 15, 2011

Numerical Methods for Differential Equations

LS.6 Solution Matrices

Review Sheet for Test 1

[1] Diagonal factorization

Understanding Poles and Zeros

RAJALAKSHMI ENGINEERING COLLEGE MA 2161 UNIT I - ORDINARY DIFFERENTIAL EQUATIONS PART A

Coffeyville Community College #MATH 202 COURSE SYLLABUS FOR DIFFERENTIAL EQUATIONS. Ryan Willis Instructor

The Method of Partial Fractions Math 121 Calculus II Spring 2015

Nonhomogeneous Linear Equations

MATH 304 Linear Algebra Lecture 9: Subspaces of vector spaces (continued). Span. Spanning set.

Problem Set 5 Due: In class Thursday, Oct. 18 Late papers will be accepted until 1:00 PM Friday.

Chapter 20. Vector Spaces and Bases

x 2 + y 2 = 1 y 1 = x 2 + 2x y = x 2 + 2x + 1

Homework #2 Solutions

Methods of Solution of Selected Differential Equations Carol A. Edwards Chandler-Gilbert Community College

An Introduction to Partial Differential Equations

Readings this week. 1 Parametric Equations Supplement. 2 Section Sections Professor Christopher Hoffman Math 124

Inner Product Spaces

Merton College Maths for Physics Prelims October 10, 2005 MT I. Calculus. { y(x + δx) y(x)

Math 113 HW #7 Solutions

On using numerical algebraic geometry to find Lyapunov functions of polynomial dynamical systems

Algebra. Exponents. Absolute Value. Simplify each of the following as much as possible. 2x y x + y y. xxx 3. x x x xx x. 1. Evaluate 5 and 123

1.3 Algebraic Expressions

MATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors. Jordan canonical form (continued).

Solutions to old Exam 1 problems

South Carolina College- and Career-Ready (SCCCR) Pre-Calculus

Unit 3: Day 2: Factoring Polynomial Expressions

1.(6pts) Find symmetric equations of the line L passing through the point (2, 5, 1) and perpendicular to the plane x + 3y z = 9.

Nonlinear Systems of Ordinary Differential Equations

GRAPHING IN POLAR COORDINATES SYMMETRY

General Theory of Differential Equations Sections 2.8, , 4.1

Copyrighted Material. Chapter 1 DEGREE OF A CURVE

The Fourth International DERIVE-TI92/89 Conference Liverpool, U.K., July Derive 5: The Easiest... Just Got Better!

L 2 : x = s + 1, y = s, z = 4s Suppose that C has coordinates (x, y, z). Then from the vector equality AC = BD, one has

AP Calculus AB 2004 Scoring Guidelines

Applied Linear Algebra

Core Maths C2. Revision Notes

A QUICK GUIDE TO THE FORMULAS OF MULTIVARIABLE CALCULUS

Name: ID: Discussion Section:

Recall the basic property of the transpose (for any A): v A t Aw = v w, v, w R n.

Stability. Chapter 4. Topics : 1. Basic Concepts. 2. Algebraic Criteria for Linear Systems. 3. Lyapunov Theory with Applications to Linear Systems

So far, we have looked at homogeneous equations

1 TRIGONOMETRY. 1.0 Introduction. 1.1 Sum and product formulae. Objectives

Lecture 13 Linear quadratic Lyapunov theory

13.4 THE CROSS PRODUCT

1 Variational calculation of a 1D bound state

15.1. Exact Differential Equations. Exact First-Order Equations. Exact Differential Equations Integrating Factors

Complex Eigenvalues. 1 Complex Eigenvalues

Using the Theory of Reals in. Analyzing Continuous and Hybrid Systems

u dx + y = 0 z x z x = x + y = 0 6) 2

Mark Howell Gonzaga High School, Washington, D.C.

CHAPTER 2. Eigenvalue Problems (EVP s) for ODE s

MATH 21. College Algebra 1 Lecture Notes

A First Course in Elementary Differential Equations. Marcel B. Finan Arkansas Tech University c All Rights Reserved

19.7. Applications of Differential Equations. Introduction. Prerequisites. Learning Outcomes. Learning Style

Functions and their Graphs

We can display an object on a monitor screen in three different computer-model forms: Wireframe model Surface Model Solid model

Solutions to Practice Problems for Test 4

Mathematics Pre-Test Sample Questions A. { 11, 7} B. { 7,0,7} C. { 7, 7} D. { 11, 11}

Section 9.5: Equations of Lines and Planes

Linear Equations and Inequalities

THREE DIMENSIONAL GEOMETRY

APPLICATIONS. are symmetric, but. are not.

Calculus with Parametric Curves

CONTINUED FRACTIONS AND PELL S EQUATION. Contents 1. Continued Fractions 1 2. Solution to Pell s Equation 9 References 12

A Brief Review of Elementary Ordinary Differential Equations

FINAL EXAM SOLUTIONS Math 21a, Spring 03

Transcription:

Math 2280 - Assignment 6 Dylan Zwick Spring 2014 Section 3.8-1, 3, 5, 8, 13 Section 4.1-1, 2, 13, 15, 22 Section 4.2-1, 10, 19, 28 1

Section 3.8 - Endpoint Problems and Eigenvalues 3.8.1 For the eigenvalue problem y + λy = 0; y (0) = 0, y(1) = 0, first determine whether λ = 0 is an eigenvalue; then find the positive eigenvalues and associated eigenfunctions. Solution - First, if λ = 0 then the solution to the differential equation y = 0 is y = Ax + B. From this we get y = A, and so if y (0) = 0 we must have A = 0. This would mean y = B, and if y(1) = 0 then B = 0. So, only the trivial solution A = B = 0 works, and therefore λ = 0 is not an eigenvalue. For λ > 0 the characteristic polynomial for our linear differential equation is: r 2 + λ = 0, which has roots r = ± λ. The corresponding solution to our ODE will be: y = A cos( λx) + B sin ( λx). with derivative y = A λ sin ( λx) + B λcos ( λx). 2

So, y (0) = B λ, and therefore if y (0) = 0 then we must have B = 0, as λ > 0. So, our solution must be of the form: y = A cos ( λx). If we plug in y(1) = 0 we get: y(1) = A cos ( λ) = 0. If A 0 we must have cos( λ) = 0, which is true only if λ = π + nπ. So, the eigenvalues are: 2 λ n = ( ( )) 2 1 π 2 + n, with n N, and corresponding eigenfunctions (( π ) ) y n = cos 2 + nπ x. 3

3.8.3 Same instructions as Problem 3.8.1, but for the eigenvalue problem: y + λy = 0; y( π) = 0, y(π) = 0. Solution - If λ = 0 then, as in Problem 3.8.1, our solution will be of the form: y = Ax + B. This means y(π) = Aπ + B = 0, and y( π) = Aπ + B = 0. Adding these two equations we get 2B = 0, which means B = 0. If B = 0 then Aπ = 0, which means A = 0. So, the only solution is the trivial solution A = B = 0, and therefore λ = 0 is not an eigenvalue. Now if λ > 0 then again just as in Problem 3.8.1 we ll have a solution of the form: y(x) = A cos ( λx) + B sin ( λx). If we plug in our endpoint values we get: y(π) = A cos ( λπ) + B sin ( λπ) = 0, y( π) = A cos ( λπ) + B sin ( λπ) = A cos ( λπ) B sin ( λπ) = 0, where in the second line above we use that cos is an even function, while sin is odd. If we add these two equations together we get: 2A cos ( λπ) = 0. 4

This is true if either A = 0 or ( ) 1 λ = 2 + n. If ( ) 1 λ = 2 + n then (( ) ) 1 y(π) = B sin 2 + n π = 0. (( ) ) 1 As sin 2 + n π = ±1 we must have B = 0. On the other hand, if A = 0 above then we have: y(π) = B sin ( λπ). If B 0 then we must have λ = n. Combining our two results we get that the possible eigenvalues are: λ n = n2 4, for n N, and n > 0, with corresponding eigenfunctions: { ( cos n y n (x) = x) n odd 2 sin ( n x) n even 2 5

3.8.5 Same instructions as Problem 3.8.1, but for the eigenvalue problem: y + λy = 0; y( 2) = 0, y (2) = 0. Solution - If λ = 0 then, just as in Problem 3.8.1, the solution to the ODE will be: y(x) = Ax + B, y (x) = A. If we plug in our endpoint conditions we get y( 2) = 2A + B = 0 and y (2) = A = 0. These equations are satisfied if and only if A = B = 0, which is the trivial solution. So, λ = 0 is not an eigenvalue. If λ > 0 then, just as in Problem 3.8.1, the solution to the ODE will be of the form: y(x) = A cos ( λx) + B sin ( λx), with y (x) = A λsin ( λx) + B λ cos ( λx). Plugging in the endpoint conditions, and using that cos is even and sin is odd, we get: y( 2) = A cos ( 2 λ) + B sin ( 2 λ) = A cos (2 λ) B sin (2 λ) = 0, y (2) = A λ sin (2 λ) + B λcos (2 λ) = 0. If we divide both sides of the second equality by λ we get 6

A sin (2 λ) + B cos (2 λ) = 0. From these equations we get: A cos (2 λ) = B sin (2 λ) A B = tan (2 λ), B cos (2 λ) = A sin (2 λ) B A = tan (2 λ). So, A B = B A A2 = B 2. So, either A = B or A = B. If A = B then tan (2 λ) = 1, which means 2 λ = π 4 therefore + nπ, and (( ) 2 1 + 4n λ = π). 8 If A = B then tan(2 λ) = 1, which means 2 λ = 3π 4 therefore + nπ, and (( ) 2 3 + 4n λ = π). 8 So, the eigenvalues are: 7

(( ) ) 2 1 + 2n λ n = π 8 with n N and n > 0, with corresponding eigenfunctions: { (( cos 1+2n ) ) (( y n = 8 πx + sin 1+2n ) ) 8 πx n even cos (( ) ) (( 1+2n 8 πx sin 1+2n ) ) 8 πx n odd 8

3.8.8 - Consider the eigenvalue problem y + λy = 0; y(0) = 0 y(1) = y (1) (not a typo).; all its eigenvalues are nonnegative. (a) Show that λ = 0 is an eigenvalue with associated eigenfunction y 0 (x) = x. (b) Show that the remaining eigenfunctions are given by y n (x) = sin β n x, where β n is the nth positive root of the equation tanz = z. Draw a sketch showing these roots. Deduce from this sketch that β n (2n + 1)π/2 when n is large. Solution - (a) - If λ = 0 then the solution to the ODE will be of the form: y(x) = Ax + B, with y (x) = A. So, y(0) = B = 0, and y(1) = A = y (1). So, any function of the form y(x) = Ax will work, and our eigenfunction for λ = 0 is: y 0 = x. (b) - For λ > 0 the solutions will all be of the form: y(x) = A cos(λx) + B sin (λx). If we plug in y(0) = A = 0 we get the solutions are of the form: 9

y(x) = Bsin(\/ 5x), with = Bvcos (\/I). If we plug in the other endpoint values we get: y(l) = Bsin(v) = BVcos(v ) = y (l). If B 0 then we must have: tan(/)= So, v X works if it s a root of the equation tan z = z, and if 8, is the iith such root, then the associated eigenfunction is: sin(/ 3x). A sketch intersect: of z and tan z are below. The roots are where they L As ii gets large it occurs at approximately /277 + in J7F. 2 21

3.8.13 - Consider the eigenvalue problem y + 2y + λy = 0; y(0) = y(1) = 0. (a) Show that λ = 1 is not an eigenvalue. (b) Show that there is no eigenvalue λ such that λ < 1. (c) Show that the nth positive eigenvalue is λ n = n 2 π 2 + 1, with associated eigenfunction y n (x) = e x sin (nπx). Solution - (a) - If λ = 1 then the characteristic polynomial is: r 2 + 2r + 1 = (r + 1) 2, which has roots r = 1, 1. So, 1 is a root with multiplicity 2. The corresponding solution to the ODE will be: y(x) = Ae x + Bxe x. If we plug in the endpoint values we get: y(0) = A = 0, y(1) = Ae 1 + Be 1 = Be 1 = 0. From these we see the only solution is the trivial solution A = B = 0, so λ = 1 is not an eigenvalue. 11

(b) - If λ < 1 then the characteristic polynomial will be: r 2 + 2r + λ, which has roots r = 2 ± 2 2 4(1)λ 2 = 1 ± 1 λ. If λ < 1 then 1 λ will be real, and the solution to our ODE will be of the form: y(x) = Ae ( 1+ 1 λ)x + Be ( 1 1 λ)x. Plugging in our endpoint values we get: y(0) = A + B = 0, y(1) = Ae 1+ 1 λ + Be 1 1 λ = 0. From these we get, after a little algebra: A(1 e 2 1 λ ) = 0. If λ < 1 then e 2 1 λ < 1, and therefore 1 e 2 1 λ > 0. So, for the above equality to be true we must have A = 0, which means B = 0, and so the only solution is the trivial solution A = B = 0. Therefore, no value λ < 1 is an eigenvalue. (c) - If λ > 1 then again using the roots from the quadratic equation in part (b) we get that our solutions will be of the form: 12

y(x) = Ae x cos ( λ 1x) + Be x sin ( λ 1x). If we plug in the endpoint values we get: y(0) = A = 0, and so y(x) = Be x sin ( λ 1x). If we plug in our other endpoint value we get: y(1) = Be 1 sin ( λ 1) = 0. If B 0 then we must have sin ( λ 1) = 0, which is only possible if λ 1 = nπ, λ n = n 2 π 2 + 1. So, the eigenvalues are given above, and the corresponding eigenfunctions are: y n = e x sin (nπx), for n N, n > 0. 13

Section 4.1 - First-Order Systems and Applications 4.1.1 - Transform the given differential equation into an equivalent system of first-order differential equations. x + 3x + 7x = t 2. Solution - If we define x = x 1 then define: x 1 = x 2, x 2 = t2 3x 2 7x 1. So, the system is: x 1 = x 2 x 2 = 7x 1 3x 2 + t 2. 14

4.1.2 - Transform the given differential equation into an equivalent system of first-order differential equations. x (4) + 6x 3x + x = cos 3t. Solution - Define x = x 1. Then the equivalent system is: x 1 = x 2 x 2 = x 3 x 3 = x 4 x 4 = 6x 3 + 3x 2 x 1 + cos (3t). 15

4.1.13 - Find the particular solution to the system of differential equations below. Use a computer system or graphing calculator to construct a direction field and typical solution curves for the given system. x = 2y, y = 2x; x(0) = 1, y(0) = 0. Solution - If we differentiate y = 2x, we get y = 2x = 4y. So, we have the differential equation: y + 4y = 0. The solution to this ODE is: y(t) = A cos (2t) + B sin (2t). Now, x(t) = 1 2 y = 1 ( 2A sin (2t) + 2B cos (2t)) = A sin (2t) + B cos (2t). 2 If we plug in x(0) = B = 1 and y(0) = A = 0 we get: x(t) = cos (2t) y(t) = sin (2t). 16

More room, if necessary, for Problem 4.1.13. Pirec lvi V 4 / 7 o( Ndfe; 5hoI) be CI(cIJ 40 A 1 I bei 19

4.1.15 - Find the general solution to the system of differential equations below. Use a computer system or graphing calculator to construct a direction field and typical solution curves for the given system. x = 1 2 y, y = 8x. Solution - If we differentiate y = 8x we get y = 8x = 4y. So, our ODE is: y + 4y = 0. The solution to this ODE is: y(t) = A cos (2t) + B sin (2t). The function x(t) is: x(t) = 1 8 y (t) = A 4 sin (2t) + B 4 cos (2t). So, the general solution to this system of ODEs is: x(t) = A 4 sin (2t) + B 4 cos (2t) y(t) = A cos (2t) + B sin (2t). 18

Pirecio More room, if necessary, for Problem 4.1.15. 21

4.1.22 (a) - Beginning with the general solution of the system from Problem 13, calculate x 2 + y 2 to show that the trajectories are circles. (b) - Show similarly that the trajectories of the system from Problem 15 are ellipses of the form 16x 2 + y 2 = C 2. (a) - The general solution to the system of ODEs from Problem 4.1.13 is: From these we get: x(t) = A sin (2t) + B cos (2t) y(t) = A cos (2t) + B sin (2t). x(t) 2 + y(t) 2 = ( A sin (2t) + B cos (2t)) 2 + (A cos (2t) + B sin (2t)) 2 = A 2 sin 2 (2t) 2AB sin (2t) cos (2t) + B 2 cos 2 (2t) + A 2 cos 2 (2t) + 2AB sin (2t) cos (2t) + B 2 sin 2 (2t) So, circles. = A 2 + B 2. (b) - The general solution to the system of ODEs from Problem 4.1.15 is: x(t) = A 4 sin (2t) + B 4 cos (2t) y(t) = A cos (2t) + B sin (2t). So, 16x(t) 2 = A 2 sin 2 (2t) 2AB sin (2t) cos (2t) + B 2 cos 2 (2t), y(t) 2 = A 2 cos 2 (2t) + 2AB sin (2t) cos (2t) + B 2 sin 2 (2t). Combining these we get 16x(t) 2 + y(t) 2 = A 2 + B 2 = C 2. So, ellipses. 20

Section 4.2 - The Method of Elimination 4.2.1 - Find a general solution to the linear system below. Use a computer system or graphing calculator to construct a direction field and typical solution curves for the system. x = x + 3y y = 2y Solution - The differential equation y = 2y has the solution y(t) = Ae 2t. So, x = x + 3Ae 2t x + x = 3Ae 2t. This is a first-order linear ODE. Its integrating factor is: ρ(t) = e R 1dt = e t. Multiplying both sides by this integrating factor our linear ODE becomes: d ( e t x ) = 3Ae 3t. dt 21

33 The direction field looks kind of like this: (I)4(i)2t+B(i)t We can write this in vector form as: j(t) = Ae 2t. x(t) = Ae 2t + Be_t, So, the general solution to this system is: x Ae 2 + Be. etx = Ae 3t + B Integrating both sides we get:

4.2.10 Find a particular solution to the given system of differential equations that satisfies the given initial conditions. x + 2y = 4x + 5y, 2x y = 3x; x(0) = 1, y(0) = 1. Solution - If we add 2 times the second equation to the first we get: 5x = 10x + 5y. If we subtract 2 times the first equation from the second we get: 5y = 5x 10y 5y = 5x + 10y. Differentiating 5x = 10x+5y and plugging in 5y = 5x+10y we get: 5x = 10x + 5y = 10x + (5x + 10y) 5x = 10x + (5x + 10x 20x) 5x = 20x 15x x = 4x 3x. The linear homogeneous differential equation x 4x + 3x = 0 has characteristic equation: r 2 4r + 3 = (r 3)(r 1). 23

So, the roots are r = 3, 1, and the general solution to the ODE is: x(t) = c 1 e 3t + c 2 e t. From the equation 5y = 5x + 10y we get y = x + 2y, and therefore: y 2y = c 1 e 3t + c 2 e t. If we multiply both sides by the integrating factor e 2t we get: d ( e 2t y ) = c 1 e t + c 2 e t. dt Integrating both sides we get: e 2t y = c 1 e t c 2 e t + C, and so: y(t) = c 1 e 3t c 2 e t + Ce 2t. Plugging this into any of the equations in our system gives us C = 0. So, y(t) = c 1 e 3t c 2 e t. We can write this solution in matrix form as: x(t) = c 1 ( 1 1 ) e 3t + c 2 ( 1 1 ) e t. 24

If we plug in x(0) = ( 1 1 ) ( 1 = c 1 1 ) + c 2 ( 1 1 ) we can see immediately that c 1 = 0 and c 2 = 1. So, the solution to our initial value problem is: x(t) = ( 1 1 ) e t. 25

4.2.19 Find a general solution to the given system of differential equations. x = 4x 2y, y = 4x + 4y 2z, z = 4y + 4z. Solution - If we differentiate the first equation we get: x = 4x 2y = 4x 2( 4x + 4y 2z) x = 4x + 8x 8y + 4z. Differentiating again we get: x (3) = 4x + 8x 8y + 4z = 4x + 8x 8y + 4( 4y + 4z) x (3) = 4x + 8x 8y 16y + 16z x (3) = 4x + 8x 8y 16y + 8( y 4x + 4y) x (3) = 4x + 8x 16y + 16y 32x x (3) = 4x + 8x 8(4x x ) + 8(4x x ) 32x x (3) = 12x 32x x (3) 12x + 32x = 0. The characteristic equation for this ODE is r 3 12r 2 + 32r = r(r 8)(r 4). So, 26

x(t) = c 1 + c 2 e 8t + c 3 e 4t. From this we get: x (t) = 8c 2 e 8t + 4c 3 e 4t and y(t) = 2x 1 2 x = 2c 1 2c 2 e 8t. Finally, z(t) = 2x (t) + 2y(t) 1 2 y (t) = 2c 1 + 2c 2 e 8t 2c 3 e 4t. So, x(t) = c 1 + c 2 e 8t + c 3 e 4t, y(t) = 2c 1 2c 2 e 8t, z(t) = 2c 1 + 2c 2 e 8t 2c 3 e 4t. 27

4.2.28 For the system below first calculate the operational determinant to determine how many arbitrary constants should appear in a general solution. Then attempt to solve the system explicitly so as to find such a general solution. (D 2 + D)x + D 2 y = 2e t (D 2 1)x + (D 2 D)y = 0 Solution - The operational determinant of the system above is: (D 2 +D)(D 2 D) D 2 (D 2 1) = D 4 D 3 +D 3 D 2 D 4 +D 2 = 0. So, there are 0(!) arbitrary constants. How is this possible? Well, if we subtract the second relation from the first we get: (D + 1)x + Dy = 2e t Dy = 2e t (D + 1)x D 2 y = 2e t (D 2 + D)x (D 2 + D)x + D 2 y = 2e t. However, this cannot be, as our first relation above is: (D 2 + D)x + D 2 y = 2e t, and 2e t 2e t. So, there is no solution to the system. 28