So, you want to make a photo-realistic rendering of the Earth from orbit, eh? And you want it to look just like what astronauts see from the shuttle



Similar documents
Maya 2014 Still Life Part 1 Texturing & Lighting

Computer Animation: Art, Science and Criticism

Thea Omni Light. Thea Spot Light. Light setup & Optimization

Lezione 4: Grafica 3D*(II)

Illuminating With HDRI

My Materials. In this tutorial, we ll examine the material settings for some simple common materials used in modeling.

Making natural looking Volumetric Clouds In Blender 2.48a

Float a Beachball in Psuanmi

Photorealistic Rendering Techniques in AutoCAD 3D

The Car Tutorial Part 1 Creating a Racing Game for Unity

PRODUCT LIFECYCLE MANAGEMENT COMPETENCY CENTRE RENDERING. PLMCC, JSS Academy of Technical Education, Noida Rendering 1 of 16

Graphic Design. Background: The part of an artwork that appears to be farthest from the viewer, or in the distance of the scene.

A Short Introduction to Computer Graphics

INTRODUCTION TO RENDERING TECHNIQUES

The Rocket Steam Locomotive - Animation

AR-media TUTORIALS OCCLUDERS. (May, 2011)

Any source of light can be described in terms of four unique and independently respective properties:

BCC Multi Stripe Wipe

MicroStation V8i Training Manual 3D Level 3

SHOW MORE SELL MORE. Top tips for taking great photos

Working with the BCC Clouds Generator

Using Microsoft Picture Manager

Course: 3D Design Title: Deciduous Trees Blender: Version 2.6X Level: Beginning Author; Neal Hirsig (June 2012) Deciduous Trees

Optimizing your image with Pixlr on-line photo editor

SkillsUSA 2014 Contest Projects 3-D Visualization and Animation

Sweet Home 3D user's guide

Capture high-resolution pictures. Fill the frame with the item. Show the scale. Keep your photos from tinting. Capture detailed close-up shots.

Chapter 9- Animation Basics

Photoshop- Image Editing

Specular reflection. Dielectrics and Distribution in Ray Tracing. Snell s Law. Ray tracing dielectrics

The Four Seasons. A Warm Up Exercise. A Warm Up Exercise. A Warm Up Exercise. The Moon s Phases

Photo Studio. Site Map Preface What`s New? Getting Started Basic Tasks Advanced Tasks Workbench Description Customizing Glossary Index

Lighting & Rendering in Maya: Lights and Shadows

Microsoft Excel 2010 Charts and Graphs

Earth, Sun and Moon is a set of interactives designed to support the teaching of the QCA primary science scheme of work 5e - 'Earth, Sun and Moon'.

Introduction to Digital Resolution

Adding Animation With Cinema 4D XL

Cork Education and Training Board. Programme Module for. 3 Dimensional Computer Graphics. Leading to. Level 5 FETAC

How To Analyze Ball Blur On A Ball Image

PowerPoint: Graphics and SmartArt

SketchUp Instructions

Filters for Black & White Photography

Movie 11. Preparing images for print

Computer Graphics Global Illumination (2): Monte-Carlo Ray Tracing and Photon Mapping. Lecture 15 Taku Komura

AS COMPETITION PAPER 2008

Creating Your Own 3D Models

Producing a realistic drawing with CorelDRAW

Materials in NX Render

How Landsat Images are Made

EFX Keying/Alpha plugins for After Effects

Autodesk Revit Architecture 2011 Professional Massmodeling Rendering Video Tutorial

Blender Notes. Introduction to Digital Modelling and Animation in Design Blender Tutorial - week 9 The Game Engine

Blender 2.49b How to generate 3D-images?

Create A Collage Of Warped Photos

Chapter 17: Light and Image Formation

Overview. What is EMR? Electromagnetic Radiation (EMR) LA502 Special Studies Remote Sensing

ADVANCED THEORIES FOR CG LIGHTING

Lesson 7 - Creating Animation II

Preparing Images for PowerPoint, the Web, and Publication

How to rotoscope in Adobe After Effects

Earth In Space Chapter 3

Description of field acquisition of LIDAR point clouds and photos. CyberMapping Lab UT-Dallas

ACE: Illustrator CC Exam Guide

CTvox for Android. Version 1.5

Solar Observing in Schools

Course Overview. CSCI 480 Computer Graphics Lecture 1. Administrative Issues Modeling Animation Rendering OpenGL Programming [Angel Ch.

Art Tuts Learn how to draw, animate, etc. Inkscape tutorials How to draw a candle. Candle

Columbus College of Art & Design 1 Charlotte Belland

BASIC EXPOSURE APERTURES, SHUTTER SPEEDS AND PHOTO TERMINOLOGY

Using HDR Panoramas. Dr Ryan Southall - School of Architecture & Design, University of Brighton.

Blender 3D: Noob to Pro/Die Another Way

Microsoft Research WorldWide Telescope Multi-Channel Dome/Frustum Setup Guide

Course Project Lab 3 - Creating a Logo (Illustrator)

PDF Created with deskpdf PDF Writer - Trial ::

Planetary Imaging Workshop Larry Owens

VIRGINIA WESTERN COMMUNITY COLLEGE

Instructions for Creating a Poster for Arts and Humanities Research Day Using PowerPoint

Contrast ratio what does it really mean? Introduction...1 High contrast vs. low contrast...2 Dynamic contrast ratio...4 Conclusion...

Essential Question. Enduring Understanding

Stellarium a valuable resource for teaching astronomy in the classroom and beyond

Tutorial 8 Raster Data Analysis

Using Photorealistic RenderMan for High-Quality Direct Volume Rendering

Motions of Earth, Moon, and Sun

Which month has larger and smaller day time?

Computer Applications in Textile Engineering. Computer Applications in Textile Engineering

Poser Lighting Tips Part 2: IBL / HDR Lights

MASKS & CHANNELS WORKING WITH MASKS AND CHANNELS

Data source, type, and file naming convention

Monash University Clayton s School of Information Technology CSE3313 Computer Graphics Sample Exam Questions 2007

PREPARING PHOTOS for PRINTING

After a wave passes through a medium, how does the position of that medium compare to its original position?

IT 386: 3D Modeling and Animation. Review Sheet. Notes from Professor Nersesian s IT 386: 3D Modeling and Animation course

10 Tips to Better Image Editing with FlexiSIGN By Mark A. Rugen, Certified FlexiSIGN Instructor SA International,

Adobe Illustrator CS5 Part 1: Introduction to Illustrator

NavisWorks Presenter. User Manual

ASGVIS. By Chia Fu Chiang Damien Alomar Jorge Barrero Fernando Rentas. User Manual. A rendering plug-in for designers. V-Ray for SketchUp

The Lighting Effects Filter

CS 431/636 Advanced Rendering Techniques"

ART 269 3D Animation Fundamental Animation Principles and Procedures in Cinema 4D

Transcription:

So, you want to make a photo-realistic rendering of the Earth from orbit, eh? And you want it to look just like what astronauts see from the shuttle or ISS (International Space Station). No problem. Just follow these simple steps and you'll be there in no time. There's really nothing to the actual objects needed... there's just three highly subdivided spheres, each slightly larger than the other. In this tutorial, I'll be describing most of the whys of what I'm doing so you can apply these techniques to almost any other type of planet. Just a note, for orbital level points of view, which is around 200 to 250 miles in altitude, you'll need very high resolution images of the Earth's surface, topography, and clouds (on the order of 10,000 x 5,000 pixels) so that they don't become pixelated when rendered at these distances. For medium and long shots of the full disc of the Earth, images that are 2048 x 1024 pixels will do just fine. There are a lot of Earth images at many different resolutions available on-line, so these images are not provided in the zip file above. James Hastings-Trew and NASA's Blue Marble sites have all that you need for 1K all the way to 10K resolution images LET'S GET STARTED! 1. In Modeler, make a Sphere that's 127.6 KM in diameter with 96 sides and 48 segments. Use the Numeric input to enter these values. This is 1/100th the size of our Earth. Using a decimal fractional value of the real thing allows for more precise modeling of the other two objects yet to follow. 2. Give this sphere a surface name of "Earth - Surface" and Save the object as "Earth-Surface.lwo" 3. Select the Size tool and its Numeric input and increase diameter by entering 100.2%, then clicking Apply. This enlarges the sphere so that the cloud tops are around 15 miles above the surface (relatively speaking, that is... the actual scale is 1/100th that in these models). 4. Close the Numeric input and give this object a new surface called "Earth - Clouds" and Save it as "Earth-Clouds.lwo" 5. Undo the changes to surface and size by pressing the 'u' (undo) key twice to get back to the original object. Now, Size up the sphere again, this time by 101.7%. Give it a new surface name of "Earth - Atmosphere" and Save as "Earth-Atmosphere.lwo" This expands the sphere so that it extends about 120 miles or so (relative to the scale) which is where the atmosphere thins out to nothing (or there abouts, it doesn't have to be exact as shading this sphere will not be a precise science in achieving an exact maximum altitude for the end of the atmosphere anyway. Plus, the atmosphere always has a different look depending on the Sun's illumination angle and a myraid other factors that just can't be simulated in 3D. Some photos of the Earth from shuttle orbital altitudes show an extremely prominent limb, while others don't appear to have much of a fuzzy edge at all.) That's it for Modeler. Close it and run Layout.

1. Load into Layout the "Earth-Surface.lwo" object. TEXTURING THE EARTH'S SURFACE 2. Open the Surface Editor. Turn Smoothing On for "Earth - Surface" and set up the Color Channel as follows. (Note: All parameters not listed use their default values and all image maps have Pixel Blending On and Texture Antialiasing Off). Color Base RGB 90 115 150 Texture Layer Type Image Map Opacity 50% Projection Image Axis Spherical your Earth image here Y The base dull bluish color above mixes with your desired Earth image map by setting it's opacity to 50%. This simulates the atmospheric scattering of light which pales and tints the land masses a bluish color. Set the opacity to 100% if you are using an image that has already been color corrected to account for this effect. 3. Set Diffuse to 70% to compensate for the brightening effect that the atmosphere object surface will have on it and add the following texture... Diffuse Texture 1 Layer Type Image Map Opacity Invert Layer Projection Image Axis 50% (or as desired) ON if using white clouds on black oceans Spherical your cloud image here Y Rotation H = 0.1, P = 0.0, B = 0.0 This is my poor man's (read that as really fast) method of faking cast shadows by the cloud object onto the surface object. By using the same cloud image map with a +/-0.1 degree heading rotation offset relative to both the camera viewing angle and the Sun incident angle, " shadows" that are indistinguishable from actual (and very much slower) ray traced shadows are created by the decreased diffuse values on the surface by the image map. The ONLY problem with this method is that it's not interactive with the light that's "casting" the "shadows." That is, the angle of the light and/or the camera relative to the Earth does not affect the offset of the shadows. Luckily, the rotation of the alpha mode image can be enveloped, so it is possible to change it over time to compensate and create the illusion of shadows getting "longer" (more offset) or "shorter" (less offset) based on the combination of camera view and light illumination angles. 4. Set up the Specular Channel as follows: (Note: Layer ORDER is critical. Layer 1 is on the TOP of the stack in the left hand surface bin pane)

Specular Base 0% Texture 1 Layer Type Image Map Opacity 30% Invert Layer Projection Image Axis ON if using white land on black oceans Spherical your specular image here Y Texture 2 Layer Type Image Map Blending Mode Invert Layer Projection Image Axis Alpha ON if using white land on black oceans Spherical same Y Texture 3 Layer Type Gradient Input Incident Angle Key 1 Value 200% 0 deg Key 2 Value 200% 20 deg Key 3 Value 0% 50 deg Texture 4 Layer Type Procedural Procedural Type Turbulence Value 20% Size 1 Km on all axis Let's break this specularity texture down. We don't need any base specular value because Texture 1's image map is providing the 30% amount we need via the Opacity value. Texture 2 is an Alpha mask for the Gradient texture under it to keep the gradient effect confined to just the oceans. Texture 3's gradient adds to the specularity based on the angle that the camera sees the sun 'reflecting' off the water. We want the specularity to get very 'hot' when the sun's rays are glancing off the edge or horizon limb of the Earth yet diminish it to the value set by Texture 1's image map when the sun is 'over head' or behind the camera.

This "fresnel" effect is created by the three keys listed to create the gradient and since specularity can go over 100%, values of 200% work well in simulating the same effects seen in real orbital photos. Texture 4 breaks up the "smooth" specularity with a touch of turbulent fractal noise to simulate the varying ocean current "textures." Because the ocean waves are so "microscopically" small at orbital altitudes, they effectively make the oceans equivalent to sandpaper... dull and diffuse... from straight above, but much more mirror-like towards the horizon. 5. Set Glossiness to 40%, 6. click on the Advanced tab, and set Diffuse Sharpness to 70%, which creates the sharp terminator shading from day to night. Your Earth - Surface is done so Save your Earth-Surface.lwo object now.

TEXTURING THE EARTH'S CLOUDS 1. Load into Layout the "Earth-Clouds.lwo" object. 2. Open the Surface Editor and turn Smoothing and Double Sided On, 3. Set up the Color Channel as follows: Color Base RGB 255 255 255 Texture Layer Type Procedural Procedural Type Turbulence Frequencies 7 Size 500 meters on all axis This creates more detailed cloud texture than what the transparency image map may produce. Placing it on the Color Channel instead of Diffuse allows you to adjust the Diffuse Channel without having to tweek a corresponding texture value as well. The default texture color of 200, 200, 200 gives a good contrast ratio. 4. Set Diffuse to 80% to compensate for the brightening effect that the atmosphere object surface will have on it. 5. Apply cloud image as a Sperical projection, Transparency image map on the Y axis. Be sure to check the Invert Layer check box since white in an image is transparent and we obviously don't want the clouds themselves to be transparent, just the black space between them. 6. Set up the Bump Channel as follows: Bump Texture Layer Type Procedural Procedural Type Turbulence, Dents, or Crumple Value 10% Frequencies 7 Size 300 meters on all axis This creates artificial cloud puffs that become visible closer to the day/night terminator. You can also add a second bump layer using the same cloud image to obtain cloud puffs that correspond to the cloud formations themselves. Doing so usually requires that the Bump Amplitude be set between 50% to 100% or more. 7. On the Advanced tab, set Diffuse Sharpness to 70%, and finally, Save this object. 8. Parent Earth-Clouds.lwo to Earth-Surface.lwo.

TEXTURING THE EARTH'S ATMOSPHERE This is the more critical of the objects to be shaded as it is the item that does most of the work in creating the look we've come to expect a planet to look like from orbit, namely, the fuzzy limb (horizon curvature) as the atmosphere thins out to nothing and the gradient "bluing" of the horizon up to the limb. 1. Load Earth-Atmosphere.lwo 2. Open the Surface Editor, set Smoothing On for "Earth - Atmosphere," and set up the Color Channel as follows. (Note: All parameters not listed use their default values and all image maps have Pixel Blending On and Texture Antialiasing Off ) Color Texture Layer Type Gradient Input Incident Angle Key 1 0 0 0 0 deg Key 2 65 125 225 10 deg Key 3 140 170 215 15 deg Key 4 90 110 150 18 deg Key 5 0 0 0 60 deg This color gradient based on incident angle with respect to the camera creates "part 1" of the atmosphere texture. Key 3's parameter of 15 degrees corresponds to the location on the edge of the atmosphere sphere that lines up with the hard edge of the surface sphere and applies only to this particular atmosphere to surface size ratio. It is a paler blue, the color being an average of several samples from real orbital images of this region. Keys 1 and 5 are black to help smooth out the transparency transition to the black of space for the limb and the transistion to fully transparent towards the center of the Earth. Transparency Texture Layer Type Gradient Input Incident Angle Key 1 Value 120% 0 deg Key 2 Value 100% 5 deg Key 3 Value 0% 15 deg

Key 4 Value 100% 70 deg This transparency gradient based on incident angle with respect to the camera creates "part 2" of the atmosphere texture. Key 3's parameter of 15 degrees is at 0% transparent so that you don't see the hard edge of either the clouds or the surface objects. Instead, a smooth blend is achieved. Keys 1 and 2 are set and placed for optimum smoothness of transparency transition to space. Key 4's position creates the best transition width of the blue haze portion towards the center of the Earth. 3. Click on the Advanced tab and set Additive Transparency to 40% and Diffuse Sharpness to 70%. Additive Transparency doesn't act the same as making the whole object somewhat transparent. Instead, the brighter the underlying surfaces, the less the overlying color "covers it up." The darker the underlying surfaces, the more opaque the overlying surface is. This just helps to keep the atmosphere layer from being totally opaque at the limb and covering over the cloud and specularity colors and intensities at the horizon. However, even though the atmosphere goes 100% transparent at around the 50-60 degree incident angle point, additive transparency still adds a measurable amount of brightening to the underlying surfaces, thus, as noted above, these underlying surfaces have their diffusity reduced to compensate. 4. Set Object Dissolve in the Properties panel to 10% or as desired to reduce the overall intensity of the limb glow in cases where it is obviously too intense. This method eliminates the need to tweek the various transparency gradient key params to achieve the same look. Certain lighting conditions (angles of the sun to the Earth) tend to reduce the limb glow effect while others tend to enhance it (eg. setting/rising sun). Of course, there will be times, for instance, when simulating a setting or rising sun, that you'll have to add some sort of luminousity incident angle gradient to simulate the backlit illumination of the limb glow in addition to adjusting the colors for that deep red-orange to deep blue gradient. This is left up to you to create. 5. Parent Earth-Atmosphere.lwo to Earth-Surface.lwo Your Earth - Atmosphere is done, so Save your Earth-Atmosphere.lwo object now. Example of how the three spheres are parented together.

SETTING UP YOUR SCENE The default distant light makes for a good sun as is. All you have to do to it is: 1. Turn Affect Specular Off, 2. Rename the light to Sun Illum, 3. Clone it. 4. Rename this clone Sun Spec. 5. Set the Color of this light to 250, 220, 180 6. Turn Affect Diffuse Off and Affect Specular On. 7. Set Ambient Intensity to 0% 8. And finally, parent Sun Spec to Sun Illum. Two lights are used so that we can seperate specularity and illumination attributes. Sun Spec's pale golden color creates the warm, yellowish ocean specular seen in real orbital photos, while not affecting the actual "white balance" of the scene. With the combination of the gradient specular texture on Earth - Surface, the specular becomes more intense as it approaches the horizon, again, a real-world effect that also varies depending on a myraid of other variables. Save this scene as "Earth-Setup.lws" You can then do the Load From Scene thing to add this Earth to new space animations. This concludes this tutorial. Thanks for following along. Email me if you encounter any missing, vague, or confusing information or if you just want to say it helped you in your LW shading skills. Download the Objects, texture maps and scene here.