DISTANCE MEASURE FOR ORDINAL DATA *



Similar documents
Generalized solutions for the joint replenishment problem with correction factor

APPENDIX III THE ENVELOPE PROPERTY

Sequences and Series

A Study of Unrelated Parallel-Machine Scheduling with Deteriorating Maintenance Activities to Minimize the Total Completion Time

Master Thesis Mathematical Modeling and Simulation On Fuzzy linear programming problems solved with Fuzzy decisive set method

Measuring the Quality of Credit Scoring Models

Lecture 7. Norms and Condition Numbers

16. Mean Square Estimation

Credibility Premium Calculation in Motor Third-Party Liability Insurance

STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS. x, where. = y - ˆ " 1

Abraham Zaks. Technion I.I.T. Haifa ISRAEL. and. University of Haifa, Haifa ISRAEL. Abstract

Fuzzy Task Assignment Model of Web Services Supplier in Collaborative Development Environment

A MODEL FOR AIRLINE PASSENGER AND CARGO FLIGHT SCHEDULING

T = 1/freq, T = 2/freq, T = i/freq, T = n (number of cash flows = freq n) are :

Generalized Difference Sequence Space On Seminormed Space By Orlicz Function

IDENTIFICATION OF THE DYNAMICS OF THE GOOGLE S RANKING ALGORITHM. A. Khaki Sedigh, Mehdi Roudaki

Fractal-Structured Karatsuba`s Algorithm for Binary Field Multiplication: FK

Security Analysis of RAPP: An RFID Authentication Protocol based on Permutation

An SVR-Based Data Farming Technique for Web Application

Preprocess a planar map S. Given a query point p, report the face of S containing p. Goal: O(n)-size data structure that enables O(log n) query time.

Statistical Pattern Recognition (CE-725) Department of Computer Engineering Sharif University of Technology

Applications of Support Vector Machine Based on Boolean Kernel to Spam Filtering

DECISION MAKING WITH THE OWA OPERATOR IN SPORT MANAGEMENT

Optimal multi-degree reduction of Bézier curves with constraints of endpoints continuity

Developing a Fuzzy Search Engine Based on Fuzzy Ontology and Semantic Search

Banking (Early Repayment of Housing Loans) Order,

The simple linear Regression Model

Projection model for Computer Network Security Evaluation with interval-valued intuitionistic fuzzy information. Qingxiang Li

EXAMPLE EXAMPLE EXAMPLE EXAMPLE 4 UNIVERSAL TRADITIONAL APPROACH EXAMPLE 5 FLEXIBLE PRODUCT... 26

Numerical Methods with MS Excel

OPTIMAL KNOWLEDGE FLOW ON THE INTERNET

Finite Difference Method

FUZZY PERT FOR PROJECT MANAGEMENT

A Parallel Transmission Remote Backup System

Fr ag m e n tac i ó n y c o m p l e j i da d: a n á l i s i s d e l c a m b i o

Optimal Packetization Interval for VoIP Applications Over IEEE Networks

6.7 Network analysis Introduction. References - Network analysis. Topological analysis

Green Master based on MapReduce Cluster

Randomized Load Balancing by Joining and Splitting Bins

Chapter Eight. f : R R

CSSE463: Image Recognition Day 27

ANOVA Notes Page 1. Analysis of Variance for a One-Way Classification of Data

Average Price Ratios

A Fast Clustering Algorithm to Cluster Very Large Categorical Data Sets in Data Mining

A New Bayesian Network Method for Computing Bottom Event's Structural Importance Degree using Jointree

Settlement Prediction by Spatial-temporal Random Process

Conversion of Non-Linear Strength Envelopes into Generalized Hoek-Brown Envelopes

Present and Future Value Formulae for Uneven Cash Flows Based on Performance of a Business

Classic Problems at a Glance using the TVM Solver

Automated Event Registration System in Corporation

10.5 Future Value and Present Value of a General Annuity Due

Bayesian Network Representation

Near Neighbor Distribution in Sets of Fractal Nature

Software Size Estimation in Incremental Software Development Based On Improved Pairwise Comparison Matrices

Maintenance Scheduling of Distribution System with Optimal Economy and Reliability

Decision Science Letters

An IMM Algorithm for Tracking Maneuvering Vehicles in an Adaptive Cruise Control Environment

Polyphase Filters. Section 12.4 Porat 1/39

On formula to compute primes and the n th prime

Project 3 Weight analysis

Relaxation Methods for Iterative Solution to Linear Systems of Equations

STANDARDISATION OF DATA SET UNDER DIFFERENT MEASUREMENT SCALES. 1 The measurement scales of variables

Report 52 Fixed Maturity EUR Industrial Bond Funds

Fast, Secure Encryption for Indexing in a Column-Oriented DBMS

1. The Time Value of Money

Curve Fitting and Solution of Equation

SHAPIRO-WILK TEST FOR NORMALITY WITH KNOWN MEAN

ADAPTATION OF SHAPIRO-WILK TEST TO THE CASE OF KNOWN MEAN

Common p-belief: The General Case

Approximation Algorithms for Scheduling with Rejection on Two Unrelated Parallel Machines

Automated Alignment and Extraction of Bilingual Ontology for Cross-Language Domain-Specific Applications

On Error Detection with Block Codes

Put the human back in Human Resources.

Application of GA with SVM for Stock Price Prediction in Financial Market

ECONOMIC CHOICE OF OPTIMUM FEEDER CABLE CONSIDERING RISK ANALYSIS. University of Brasilia (UnB) and The Brazilian Regulatory Agency (ANEEL), Brazil

Proceedings of the 2010 Winter Simulation Conference B. Johansson, S. Jain, J. Montoya-Torres, J. Hugan, and E. Yücesan, eds.

Redundant Virtual Machine Placement for Fault-tolerant Consolidated Server Clusters

We will begin this chapter with a quick refresher of what an exponent is.

Numerical Comparisons of Quality Control Charts for Variables

n Using the formula we get a confidence interval of 80±1.64

Efficient Traceback of DoS Attacks using Small Worlds in MANET

Fault Tree Analysis of Software Reliability Allocation

of the relationship between time and the value of money.

Performance Attribution. Methodology Overview

The Time Value of Money

Analyzing and Evaluating Query Reformulation Strategies in Web Search Logs

Study on prediction of network security situation based on fuzzy neutral network

ON SLANT HELICES AND GENERAL HELICES IN EUCLIDEAN n -SPACE. Yusuf YAYLI 1, Evren ZIPLAR 2. yayli@science.ankara.edu.tr. evrenziplar@yahoo.

How To Make A Profit From A Website

Transcription:

ARGUMENTA OECONOMICA No (8) 999 PL ISSN 33-5835 Mre Wes DISTANCE MEASURE FOR ORDINAL DATA * The study cosders the proe of costructo esures of srty for ord dt. The ord chrcter of the dt requred the ppcto of specfc esure of the oect s dstce. Wes (993 p. 44 45) gves the propos of ew esure of oects srty whch c e pped the stuto whe vres descrg oects re esured o the ord sce. Ths esure ws used order to evute the srtes of oects whch were sed o uers of retos equ to greter th d ser th. The dstce esure tes cre of vres wth equ weghts. We sh descre sght geersto of ths esure so coverg dfferet weghts of vres. The stregths d weesses of the proposed dstce esure re dscussed.. INTRODUCTION Cssfcto utdeso scg d er orderg ethods re portt d frequety pped toos of utvrte sttstc yss. The ppcto of these ethods requres forsto of the ter srty of oects. The use of prtcur costructo of srty esure depeds o the sce o whch the vres re esured. I the esureet theory four sc sces re dstgushed: o ord terv d rto. These were troduced y Steves (959). Aog the four sces of esureet the o s cosdered the weest. It s foowed y the ord sce the terv sce d the rto sce whch s the strogest. The choce of srty esures s rther spe whe the vres descrg eed oects re esured o the se sce. Lterture presets pety of dfferet wys of srty esureet whch c e dopted to vres esured o the sce: rto terv d (or) rto o ( cudg ry vres). A wde rge of srty esures hs ee show : Corc (97); Adererg (973); Evertt (974); Kuf d Rousseeuw (990); Co d Co (994 p. 0 ); Wede d Kur (998 p. 47). * Deprtet of Ecooetrcs d Coputer Scece Wrocłw Uversty of Ecoocs e-: rew@e.e.gor.p.

M. WALESIAK 68 Wes (993 p. 44 45) gves the propos of ew esure of oects srty whch c e pped stuto whe vres descrg those oects re esured oy o the ord sce (see: so Wes Dzechcrz d Bą 998 p. 656 657). If we hve set A of oects descred y ord vres the coutg of evets s the oy posse rthetc operto whch c e perfored o these oects. The proposed esure s gve y the foowg foru: d () where: r p r p r p r p f f 0 f for p = ; r = ; =... uer of oect =... uer of ord vre ) ( th ( th th) oservto o th ord vre oect h oservedfor ser t h d retos greter t uer of. oect h oservedfor ser t h d retos greter t uer of Epe. Appcto of dstce () to copute the dstces of oects fro the ptter (de pot). The output resut s vector of dstces.

DISTANCE MEASURE FOR ORDINAL DATA 69 Te Dt No. Noteoo Effcecy Equpet Quty Ergoocs Docuetto Cfor Access 600 6 76 3 35 6 Cfor Access 7000 00 9 6 35 8 3 Cevo Mtsu P-96-3R 90 87 5 38 7 4 Cevo Mtsu P-98R 80 68 5 40 0 5 Copq Ard 590DT 66 9 5 4 7 6 De Lttude CP 66ST 03 07 6 47 8 7 Dgt HNote VP 735 30 5 48 7 8 Dgt HNote Utr 000 87 5 5 8 9 Euroco 8500 4 54 5 3 7 0 Futsu LfeBoo 675CDT 6 46 5 58 5 Futsu LfeBoo 765TCDT 98 47 5 4 5 Futsu LfeBoo 985CDT 5 77 6 38 7 3 GerCo Overdose Epre 8500T 0 5 33 7 4 Hyud HN-5000 93 33 39 7 5 IBM ThPd TP380ED 87 94 4 5 9 6 Po 800 4 53 7 35 7 7 Tosh Stete Pro 480CDT 0 7 40 0 8 Tosh Tecr 750DVD 4 5 43 0 9 Tup Moto Le d 5/66 77 04 5 4 5 0 Twhed Arsto FT-9000 DSC 66 63 69 5 34 8 Twhed Arsto FT-9000 TFT 00 9 93 5 38 8 Twhed Arsto FT-9300T 5 47 5 39 7 3 Vos HS LeBoo Advce 66 DSC 64 86 4 40 7 4 Vos HS LeBoo Advce 00 TFT 78 3 5 40 7 Ptter 5 77 7 58 0 Weghts Source: CHIP 998 o. 4. Te The dstces of oects fro the ptter (de pot) Posto Noteoo Dstce () Posto Noteoo Dstce () 8.58383 3.48530.74336 4 5.500000 3 7.79340 5 4.56730 4 6.30463 6.5797 5 7.3477 7 3.60750 6 6.350934 8 4.69053 7 4.355505 9 5.654434 8 0.36639 0 9.67754 9.37504 3.69567 0 8.45738 0.746548.49903 3 3.789940 9.44909 4.906303 Source: ow reserch.

70 M. WALESIAK. MODIFICATION OF DISTANCE MEASURE d The dstce esure () tes cre of vres wth equ weghts. We sh descre sght geersto of ths esure so coverg dfferet weghts of vres. Suppose vre weghts w ( =... ) stsfy codtos: w (0; ). () w Three or ethods of vre weghtg hve ee deveoped: pror sed o epert opos procedures sed o forto cuded the dt d coto of these two ethods. Grńs (99) Mg (989) Arhowcz d Ząc (986) d Borys (984) dscuss the proe of vre weghtg utvrte sttstc yss. The proe of whether or ot to weght vres hs cused cotroversy. Ws sys (see: Adederfer d Bshfed 984 p. ) tht weghtg s spy the puto of vue of vre. Seth d So (973) suggest tht the pproprte wy to esure srty s to gve vres equ weght. If vre weghts re ot ufor the dstce esure s defed s (3). w d (3) w w w w Whe vre weghts re equ the foru (3) ecoes dstce esure (). Epe. Appcto of dstce (3) to copute the dstces of oects fro the ptter (de pot). The output resut s vector of dstces. Te 3 w Weghts for vres sed o CHIP epert opos Vre Effcecy Equpet Quty Ergoocs Docuetto Weghts.54.5 0.385.54 0.385 Source: CHIP 998 o. 4.

DISTANCE MEASURE FOR ORDINAL DATA 7 Te 4 The dstces of oects fro the ptter (de pot) Posto Noteoo Dstce (3) Posto Noteoo Dstce (3) 0.349586 3 6.5504 8.3748 4 9.5398 3 7.395476 5.556 4.399 6 4.556 5 6.43806 7 5.5730 6.43846 8.5730 7.446563 9 9.5730 8 4.45497 0 3.530083 9 8.46396 3.606073 0 7.477099 3.667944 4.500000 3 0.83573 5.500000 4.86357 Source: ow reserch. 3. THE STRENGTHS AND WEAKNESSES OF THE DISTANCE MEASURE d Dstce esure d : c e pped stuto whe vres descrg oects re esured oy o the ord sce eeds t est oe pr of o-detc oects A ot to hve zero the deotor Ked s de of correto coeffcet for ord vres ws used for the esure d costructo (see: Ked 955 p. 9) dstce d ssues vues fro the [0; ] terv. Vue 0 dctes tht for the copred oects etwee correspodg oservtos of ord vres oy retos equ to te pce. Vue dctes tht for the copred oects etwee correspodg oservtos o ord vres retos greter th te pce or retos greter th d retos equ to f they re hed for other oects (.e. oects uered =... ; where ) dstce d stsfes codtos: d 0 d 0 d d (for =... ) suto yss proves tht dstce d ot wys stsfes the trge equty trsforto of ord dt y y strcty cresg fucto does ot chge the vue of d dstce.

7 M. WALESIAK 4. CONCLUDING REMARKS The use of vres esured o ord sce s retvey rre the terture. Specfc ytc toos re eeded for such forto. The proposed dstce esures () d (3) re pproprte such stutos. Whe vre weghts re equ foru (3) ecoes dstce esure (). The ddto resut of ths study s coputer progr whch ows coputg dstces etwee oects (see Apped). APPENDIX The coputer code the C++ guge coputg the vue of esure (3) of the dstce cosdered s ve t Wrocłw Uversty of Ecoocs the Dept of Ecooetrcs d Coputer Scece (e-: @e.e.gor.p). Ths verso of the progr ows to copute dstces etwee oects (the output resut s syetrc dstce tr) d so ccuto of the dstces of oects fro the ode or de pot (the output resut s vector of dstces). Ths tr y e used the herrchc ggoertve ethods of the cssfcto for the dvso of set of oects to csses. Ths tr c so e used for further coputtos the SPSS for Wdows pcge. Acowedgeets: The reserch preseted the pper ws supported y the proect KBN H0B 0 6. REFERENCES Arhowcz M. Ząc K. (986): Metod wże zeych w tsoo uerycze procedurch porządow owego [Vre Weghtg Agorth Nuerc Tooy d Ler Orderg Procedures]. Wrocłw Uversty of Ecoocs Reserch Ppers o. 38 pp. 5 7. Adederfer M. S. Bshfed R. K. (984): Custer Ayss Sge Bevery Hs. Adererg M. R. (973): Custer Ayss for Appctos. Acdec Press New Yor S Frcsco Lodo. Borys T. (984): Ktegor ośc w sttystycze ze porówwcze [Ctegory of Quty Sttstc Coprtve Ayss]. Wrocłw Uversty of Ecoocs Reserch Ppers o. 84. Corc R. M. (97): A Revew of Cssfcto (wth Dscusso) Jour of the Roy Sttstc Socety seres: A (3) pp. 3 367. Co T.F. Co M.A. A. (994): Mutdeso Scg Chp d H Lodo. Evertt B. S. (974): Custer Ayss Hee Lodo. Grńs T. (99): Metody tsooetr [Tooetrc Methods] Crcow Uversty of Ecoocs Krów.

DISTANCE MEASURE FOR ORDINAL DATA 73 Kuf L. Rousseeuw P. J. (990): Fdg Groups Dt: Itroducto to Custer Ayss Wey New Yor. Ked G. (955): R Correto Methods Grff Lodo. Mg G. W. (989): A Vdto Study of Vre Weghtg Agorth for Custer Ayss Jour of Cssfcto o. pp. 53 7. Seth P. H. A. So R. R. (973): Nuerc Tooy W.H. Free d Co. S Frcsco. Steves S. S. (959): Mesureet Psychophyscs d Utty : Church C. W. d Rtoosh P. (eds.): Mesureet; Deftos d Theores. Wey New Yor. Wes M. (993): Sttystycz z weowyrow w dch retgowych [Mutvrte Sttstc Ayss Mretg Reserch]. Wrocłw Uversty of Ecoocs Reserch Ppers o. 654. Wes M. (996): Metody zy dych retgowych [Methods of Mretg Dt Ayss]. PWN Wrszw. Wes M. Dzechcrz J. Bą A. (998): Ord Vres the Segetto of Advertseet Recevers : Rzz A. Vch N. Boc H. H.: Advces Dt Scece d Cssfcto Proc. 6th Cof. Iterto Federto of Cssfcto Socetes Roe. Sprger Hedeerg pp. 655 66. Wede M. Kur W. A. (998): Mret Segetto. Coceptu d Methodoogc Foudtos Kuwer Bosto Dordrecht Lodo. Receved: 0.0.99; revsed verso 07.0.99