Redundant Virtual Machine Placement for Fault-tolerant Consolidated Server Clusters
|
|
|
- Annice Quinn
- 9 years ago
- Views:
Transcription
1 Redudt Vrtul Mche Plceet for Fult-tolert Cosoldted Server Clusters Fuo Mchd, Mshro Kwto d Yoshhru Meo Servce Pltfors Reserch Lbortores, NEC Cororto 753, Shoube, Nkhr-ku, Kwsk, Kgw , J {h-chd@b, -kwto@, d y-eo@j}.j.ec.co Abstrct Cosoldted server systes usg server vrtulzto volves serous rsks of host server flures tht duce uexected dows of ll hosted vrtul ches d lctos. To rotect lctos requrg hgh-vlblty fro uredctble host server flures, redudt cofgurto usg vrtul ches c be effectve couteresure. Ths er resets vrtul che lceet ethod for estblshg redudt cofgurto gst host server flures wth less host servers. The roosed ethod esttes the requste u uber of vrtul ches ccordg to the erforce requreets of lcto servces d decdes otu vrtul che lceet so tht u cofgurtos survve t y k host server flures. The evluto results clrfy tht the roosed ethod cheves requested fult-tolerce level wth less uber of hostg servers cored to the covetol N+M redudt cofgurto roch. Idex Ters Vrtul Mche, Fult-tolert, Redudt Cofgurto, Plceet Algorth I. INTRODUCTION ever vrtulzto hs eerged s owerful techque for Scosoldtg servers dt ceters. Vrtulzto ltfors such s VMwre Ifrstructure [] d Ctrx XeServer [2] vrtulze hrdwre resources d geerte ultle vrtul executo evroets clled vrtul ches. Ech vrtul che c behve s deedet hyscl server, d hece ultle OS stces c ru cocurretly o hostg server. Dt ceters d lrge-dstrbuted eterrse systes hve y teorl uutlzed servers. By covertg these servers to vrtul ches d rug the o the fewer hostg servers, resource utlztos of the whole dt ceters roves [3]. The reducto of the uber of hostg servers lso cotrbutes to cuttg bck the ower cosutos the dt ceters [4][5]. A flure of hostg server becoes serous roble cosoldted server systes usg vrtulzto. Vrtul ches deed o hyscl devces d vrtulzto ltfor o the hostg server. Whe the hostg server goes dow due to y flures of ther cooets, ll vrtul ches o ths server re uble to esce fro servce dow. The ore vrtul ches the hostg server hosts, the ore serous dge flure of ths hostg server cuses. Ay couteresures gst ultle server dows cused by host server flures re requred. Ths er resets ethod to ke redudt cofgurto of vrtul ches tcto of host server flures cosoldted server systes hostg vrous ole lctos. The roosed ethod esttes the requste u uber of vrtul ches ccordg to erforce requreets of lcto servces d decdes otu vrtul che lceet so tht u cofgurtos survve t y k host server flures. I ters of the cost reducto by server cosoldto, the uber of hostg server should be zed. A otu vrtul che lceet for zg the uber of requred hostg server deeds o severl fctors such s the requred fult-tolerce level k, the ccty of hostg server, the uber of lctos d ther erforce requreets. The er defes ths roble s cobtorl otzto roble d resets lgorth for deterg otu vrtul che lceet uder gve codtos. Fro soe evluto results, we hve observed the roosed ethod cheves requested fult-tolerce level k wth less uber of hostg servers cored to the covetol N+M redudt cofgurto roch. N+M redudt cofgurto reres M redudt cooets so s to kee N cooets t y M cooet flures. The rest of the er s orgzed s follows. Secto II descrbes cofgurto d requreets for cosoldted server systes usg vrtulzto. Secto III rovdes roble defto for deterg redudt vrtul che cofgurtos whle zg the uber of requred hostg servers. Secto IV dscusses erforce odel for esttg requred resources to eet erforce requreets for lctos. I Secto V, ethod for deterg redudt cofgurto uder the gve costrts s roosed. Exerets d evlutos re show Secto VI, relted work s reseted Secto VII, d flly the sury of ths er s gve Secto VIII. II. REQUIREMENTS FOR HOSTING SERVER CLUSTER Ths secto descrbes the cofgurto of hostg server cluster tht hosts vrous ole lctos, d ther erforce requreets d level of fult-tolerce /0/$26.00 c 200 IEEE 32
2 A. Hostg Server Cluster Dt ceter rovders recetly rovde vrtul che hostg servce by troducg server vrtulzto to ow hyscl server clusters. Alcto rovders, who wt to luch lcto servces the dt ceter, c ret vrtul ches d strt servces quckly by sgg cotrct wth the dt ceter rovder. The lcto servces troduced by the lcto rovders ofte tke redudt server cofgurtos for ssurg sclblty d vlblty. There re y redudt cofgurto ethods for ole lctos such s web servers, l servers d dt bse servers. Web servers dstrbute ther worklods to ultle servers usg lod blcg odule [6]. Ml servers c rove ther erforce d fult-tolerce by dstrbutg rocesses to relcto servers usg DNS roud rob. Dt bse servers ofte use clusterg ethod for sclblty d hgh-vlblty [7]. Ths er ssues tht ech hosted lcto hs ow redudt cofgurto ethod d focuses o the vrtul che lceet ssue dt ceter rovders to rovde fult-tolert hosg server cluster. B. Perforce Requreets A dt ceter rovder d lcto rovder ke greeet for erforce of lctos the servce level greeet (SLA). Perforce requreets of ole lctos such s web lctos re usully secfed verge resose te of lcto servce. The resose te deeds o the vrous fctors lke resource cctes, utlzto lttos d etwork cogestos. The dt ceter rovder hs to llocte suffcet resources to the lctos to kee the requested verge resose te. Perforce requreets for lcto restrct the u resource cofgurtos cludg the uber of vrtul ches or CPUs for the lcto. By lloctg ore coutg resources, ost of CPU-tesve ole lctos lke web lctos rove ther rocessg ower d verge resose te. Sce the relto betwee verge resose te d the CPU llocto c be odeled usg queug theory, the requste uber of vrtul ches or CPUs c be estted fro the requested verge resose te. The detl of the erforce odel s descrbed the Secto IV. C. Fult-tolerce of Hostg Servers A host server flure s serous ssue the cosoldted server systes becuse t cuses the dows of ultle vrtul ches o the hostg server. Host server flures re duced by vrous cuses lke OS hg u, devce flures d uexected ower dow. To rotect lcto servces fro y host server flures, dt ceter rovder should cofgure the hostg server cluster wth redudt lcto stces. The fult-tolerce level of the dt ceter servce gst host server flure c be esured by the ccetble uber of sulteous host server flures. The etrc dctes cblty of keeg lcto servces survve t server flures the dt ceter. I the re of the dstrbuted coutg systes, syste tht c cotue servces cse of y k cooets flures s clled k-fult-tolerce [8]. I order to ke syste k-fult-tolerce wthout vrtulzto, the dt ceter rovder should rere k ddtol servers for ech lcto. For the dt ceter usg vrtulzto, lceet of vrtul ches s ortt s well s the rerto of redudt lcto stces to cheve k-fult tolerce. The fult-tolerce level c be chged by vrtul che lceets. Let us cosder exle of redudt cofgurto of four lctos {, 2, 3, 4 } usg three hostg servers {s, s 2, }. Ech hyscl server c ru three vrtul ches d ech lcto requres t lest oe vrtul che for u cofgurto. Fg. llustrtes two dfferet tters of vrtul che lceets. Fg. () dctes tht two vrtul ches for lcto d oe vrtul che for lcto 4 re lced o the hostg server s. The descrtos re se for s 2 d. 4 s s lcto vrtul che hostg server () o-fult-tolerce lceet (b) -fult-tolerce lceet Fg.. Redudt cofgurto of vrtul ches usg three hostg servers The dfferece betwee two lceets ers t host server flure. Whe y oe of hostg servers fls, the lceet () voltes the u cofgurto of y oe of lctos (, 2 or 3 ). O the other hd, the lceet (b) kees the u cofgurto of ll lctos d hece cheves -fult-tolerce. The lceet () becoes -fult-tolerce by ddg hostg server d lloctg ore vrtul ches for lcto stces s show Fg. 2 (c). The ore uber of hostg servers geerlly creses the uber of redudt lcto stces d roves the fult-tolerce level. However, the uber of hostg servers the dt ceter should be reduced ters of the totl cost. Dt ceter rovders eed to fd vrtul che lceet tht stsfes the requred fult-tolerce level, whle zg the uber of hostg servers s 4 s s 4 (c) -fult-tolerce lceet wth 4servers s 3 4 s 2 lcto vrtul che hostg server Fg. 2. Redudt cofgurto of vrtul ches usg four hostg servers III. PROBLEM DEFINITION The roble of vrtul che lceet for zg the uber of hostg server uder the secfed erforce requreets d fult-tolerce level s defed s cobtorl otzto roble. The ssutos de IEEE/IFIP Network Oertos d Mgeet Syosu - NOMS 200: M-Coferece 33
3 here re tht ll hostg servers hve the se ccty d ll vrtul ches re equl ters of the requred ccty. The ssutos re relstc eseclly for the sle hostg servces chrgg by the out of used vrtul ches d rovdg the coo qulty of the hostg servce. For rovdg the bss of the roble defto, the erforce requreets re ssued to secfy by the verge resose te. A. Redudt Vrtul Mche Plceet Let the set of lctos hosted the dt ceter be A= {, 2,.., }, d the set of equed hostg servers be S={s, s 2,.., s }. The x uber of vrtul ches s deoted s tht equls to the uber of vrtul CPUs o the server f ech vrtul che uses oe vrtul CPU. Vrtul ches o the server s j re deoted s {v j, v j2,..,v j }. The vrtul che lceet s exressed by the rojecto fucto φ ( v xy ) tht dctes the lcto rug o the vrtul che v xy. The gol of the otzto roble s to ze the uber of hostg servers, whle stsfyg the fult-tolerce level k d ll erforce requreets tht re secfed by the verge resose te r for ech lcto. Redudt vrtul che lceet roble: Solve vrtul che lceet φ so s to ze the uber of hostg servers uder the gve vlues of,, k d ( ). r The roble s cobtorl otzto roble tht hs objectve fucto. TABLE I NOTATION USED IN THE REDUNDANT VIRTUAL MACHINE PLACEMENT PROBLEM Sybol s j k r v xy φ( v xy ) Descrto Alcto clss ( ) Hostg server ( j ) Nuber of lcto clsses Nuber of hostg servers Mx uber of vrtul ches o hostg server Requred fult-tolerce level Requred verge resose te for lcto A vrtul che o the hostg server s x ( x, y ) Vrtul che lceet tht dctes the lcto clss tht rus o the v xy B. Lower Boud The uber of vrtul ches llocted to lcto s lted by the erforce requreets r. Let the u uber of vrtul ches for lcto be c. The lower boud of the uber of hostg server the redudt vrtul che lceet roble c be derved theoretclly fro the cosderto of the uber of vrtul ches survvg fter k host server flures. The uber of survvg vrtul ches t k host server flures out of host servers s gve by ( k). Sce these vrtul ches ust cot the u uber of vrtul ches c for ll, the followg codto s obted. c = ( k) () Becuse s teger vlue, the lower boud of s gve s follows. c + k (2) = IV. PERFORMANCE MODEL Ths secto descrbes the erforce odel for deterg the requste u uber of vrtul ches to stsfy the gve erforce requreets. The erforce of ole lcto such s web lcto servce s ofte lyzed usg queug odels. A sle erforce odel for sgle web server whch ssues Posso rrvl, geerl servce te d bouded cceted request uber of K hs bee odeled s M/G//K queue odel [9]. To cororte the burst request rrvl, the exteded odel MMPP/G//K hs bee reseted [0]. For ult-ter lcto systes, the request rrvl rte for ech server deeds o the lod blcg/schedulg lgorths. Severl studes used G/G/ to odel the erforce of ult-ter web lctos [][2]. Sce there s o geerl erforce odel tht c ly vrous ole lctos, ths er troduce M/M/ queue odel s bsc exle whch ssues Posso request rrvl d exoetl servce te. These ssutos re ot relstc soe ole lctos systes. The rorte erforce odel for ech lcto should be detered through soe exerets or observtos of rel worklod. Accordg to M/M/ odel, the verge resose te r of lcto wth servce rte μ d request rrvl rte λ s odeled s follows [3]. r = (3) μ λ Whe the lcto gets c tes lrger coutto ower by usg ore vrtul ches or vrtul CPUs, the verge resose te s roxted s follows. (4) r = λ μ c Cosequetly, gve the requested verge resose te r, the requste u uber of vrtul ches c s bouded by followg exresso. λ (5) c c = μ r Although the vlue of μ deeds o the lcto d vlble resources, t c be estted by observg the vlues of λ d r fro soe erforce exerets. Exresso (5) llows us to detere the requste u uber of vrtul ches c for stsfyg the requested verge resose te r. The estted u cofgurto s used to detere the vrtul che lceet ethod descrbed the ext secto IEEE/IFIP Network Oertos d Mgeet Syosu - NOMS 200: M-Coferece
4 Sybol λ μ c TABLE II NOTATION USED IN THE M/M/ PERFORMANCE MODELS Descrto Request rrvl rte of lcto Servce rte of lcto Requste u uber of vrtul ches for lcto V. VIRTUAL MACHINE PLACEMENT Ths secto troduces k-redudcy ethod d ultle k-redudcy ethod for deterg redudt vrtul che lceet. The ultle k-redudcy ethod cheves theoretclly u uber of hostg servers. A. Aroch r Perforce exerets λ μ Perforce Model c k Estto of redudt resources ' c Plceet Algorth Fg. 3. Procedure to solve the redudt vrtul che lceet roble A overvew of the roosed rocedure to solve the redudt vrtul che lceet roble s dected Fg. 3. Frst, erforce odel for ech lcto s geerted through exeretl erforce evlutos. Usg the geerted odel, the requste u uber of vrtul ches c s estted for stsfyg the requred verge resose te r. Next, to cheve the requred fult-tolerce level k, the uber of redudt vrtul ches c ' s estted cosderto wth c d. The uber of requred hostg servers s solved t the se te. Flly, lgorth for vrtul che lceet deteres lceet φ by c d. The detl of the lgorth s show the followg secto. Clerly, the estto ste dotes the decso of the requred uber of hostg servers tht s the objectve fucto of the redudt vrtul che lceet roble. As the estto ethods, the k-redudcy ethod s descrbed Secto C d the ultle k-redudcy ethod s descrbed Secto D. B. Plceet Algorth We defe lgorth for vrtul che lceet so s to cheve k fult-tolerce uder the gve c d. The redudt vrtul ches tht rovde the se lcto servce should be dstrbuted to the dfferet hostg servers order to dversfy the rsks of servce dow or erforce degrdto due to the hostg server flures. Therefore, the lceet lgorth for vrtul che lceet s desged wth the heurstc of dstrbutg the se lcto stces to dfferet hostg servers. The lceet lgorth s show Fg. 4. The fucto h-v-lceet returs vrtul che lceet lceet[] wth ut reters of c[] d. Ths fucto φ sorts ll of the vrtul ches by the lcto clsses, d ths order, lloctes the to the dfferet hostg servers uber order. Algorth :# c[] : requred VMs for ech lcto 2:# : uber of the hostg servers 3: 4: h-v-lceet(c[], ) { 5: cs[] = sort(c[]); # sort by lcto tye 6: totl = cs[].legth; # totl u of VMs 7: =0, y=; 8: whle (=<totl) { 9: for (x=; x++; x=<) { 0: lceet[x, y] = cs[]; # llocte : ++; 2: } 3: y++; 4: } 5: retur lceet[]; 6:} C. K-redudcy Method K-redudcy ethod lloctes k redudt vrtul ches to ech lcto. To ccolsh the k-fult-tolerce of the hostg server clusters, t lest k redudt vrtul ches for ech lcto re eeded besdes the u cofgurtos estted s c. I the covetol server clusters wthout vrtulzto, k-fult-tolerce s ccolshed by rerg k redudt hyscl servers. The k-redudcy ethod s estblshed o ths covetol roch. The totl uber of redudt vrtul ches for ech lcto, c s exressed s follows. ' c ' = c + k (6) Wth the k-redudcy ethod, vrtul ches tht host the se lcto stces ust ot ru o the se hostg server. Otherwse flure of sgle hostg server cuses ultle dows of the se lcto stces d leds to SLA voltos. Sce the lceet lgorth lloctes vrtul ches to the dfferet hostg servers the order of s j, ths restrcto s secfed s the followg costrt for. x c ' = x c + k (7) Aother costrt for s derved fro the fct tht the totl uber of requred vrtul ches c ' s ot over the totl = vlble vrtul ches o the hostg servers. Ths restrcto s exressed s follows d leds to other costrt codto for. = Fg. 4. Algorth for vrtul che lceet c ' (8) c ' = c + k (9) = = Fro the costrts (7) d (9), the u uber of hostg servers KR by k-redudcy ethod s exressed s follows. KR = x{x c + k, c + k } (0) = 200 IEEE/IFIP Network Oertos d Mgeet Syosu - NOMS 200: M-Coferece 35
5 The lgorth geertes vrtul che lceet usg the reters c d KR tht re decded by the exresso ' (6) d (0). I ths vrtul che lceet, u cofgurtos gve s c ecessrly survve t y k hostg server flures. Sce the syste s dssble to k host server flures, k-fult-tolerce of hosg server cluster s cheved. A drwbck of the k-redudcy ethod s tht the uber of hostg server KR s ot lwys equl to the theoretcl u vlue. For exle, the k-redudcy ethod does ot cheve the theoretcl u uber of hostg server the syste =3, k=, =3, d (c, c 2, c 3 ) = (3,, ). s 2 s 2 3 s () 8 VMs o 4 hosts (b) 9 VMs o 3 hosts Fg. 5. Redudt vrtul che cofgurto by k-redudcy ethod () d ltertve (b) The uber of redudt vrtul ches (c ', c 2 ', c 3 ') re clculted s (4, 2, 2) by the exresso (6). The KR equls to 4 by the exresso (0) d the vrtul che lceet s decded s Fg. 5 () by the lgorth. However, the k-fult-tolerce c be cheved wth oly three hostg servers, f the lceet s rovded s Fg. 5 (b) wth ddtol vrtul che for. I ths exle, the k-redudcy ethod requres uecessry hostg server. As result the k-redudcy ethod zes the totl uber of requred vrtul ches for k-fult-tolerce, but does ot lwys ze the uber of hostg servers. D. Multle k-redudcy Method Multle k-redudcy ethod roves the k-redudcy ethod for zg the requred uber of hostg servers. There s rsk of ore th k flures t k hostg server flures, f c + k s greter th. I order to kee c vrtul ches t k hostg server flures, the ultle k-redudcy ethod reres the tegrl ultle (ultles of x, where x s teger) of k of redudt vrtul ches. More secfclly, the totl uber of redudt vrtul ches for ech lcto decded by the ultle k-redudcy ethod s exressed s follows. c c ' = c + k k () The u cofgurtos secfed by c c be susted cse of y k hostg server flures, f the vrtul che lceet s decded by lgorth wth c ' estted by exresso (). The roof s gve s below. c < k Fro the exresso (), the uber of redudt vrtul ches s gve by c ' = c k (2) + s s Sce c ' s true ths cse, the c of vrtul ches c survve t y k server flures. ( α ) ( k) c < α ( k) where α s y teger greter th. Fro the exresso (), the uber of redudt vrtul ches s gve by c ' = c + α k (3) Sce ( α ) + k c ' < α s true ths cse, k server flures does ot cuse to ore th α k flures of vrtul ches d hece the c of vrtul ches certly survve. Fro the cosderto of the bove two cses, t s roved tht for ll ( c ), c of vrtul ches certly survve t y k hostg server flures. I the ultle k-redudcy ethod, there s o restrcto tht rohbts the exstece of ultle lcto stces o the se hostg server. The uber of hostg servers s bouded by the costrt of the totl uber of requred vrtul ches. The totl uber of requred vrtul ches s ot over the totl vlble vrtul ches *. = c ' (4) By rewrtg the c ' wth the exresso (), the totl uber of requred vrtul ches re exressed s follows. c c ' = c + k = = k (5) c c + k = k = c k = The exresso (4) c be rewrtte usg the bove equlty. c (6) k = The the costrt codto for c be exressed s below. c + k (7) = Cosequetly, the u uber of hostg servers MKR by the ultle k-redudcy ethod s gve by = c + k (8) MKR = By substtutg MKR to the exresso (), the uber of redudt vrtul ches for lcto s exressed s c ' = c + c c k (9) = The reters for lgorth, c ' d MKR re decded by the exresso (8) d (9), d the lgorth geertes vrtul che lceet tht cheves k-fult-tolerce of hostg server clusters. Sce MKR s equl to the theoretcl u vlue descrbed Secto III-B, the ultle k-redudcy ethod c ze the requred hostg servers uder y gve codtos IEEE/IFIP Network Oertos d Mgeet Syosu - NOMS 200: M-Coferece
6 VI. EVALUATION I order to evlute the roosed redudt cofgurto ethod, we coducted erforce exerets d sultos studes. A. Perforce Proflg The roosed roch descrbed Secto 5 uses the erforce odel for esttg the requste u uber of vrtul ches fro the erforce requreets secfed s r. A reter of the M/M/ odel μ whch vres deedg o lctos d vlble resources eeds to be estted by soe erforce exerets. Here, exle of erforce odel for web server s cosdered. The M/M/ odel for the web server s geerted fro the exeretl observto of the reltoshs og the uber of llocted CPUs, request rtes d verge resose tes. Clet Clet Clet CGI Ache HTTP requests Fedor Core 8 hostg server vrtul che CPU Core 2 Duo.8GHz x 2 Xe 3..2 RAM 0GB Fedor Core 8 Fg. 6. Cofgurto of testg evroet Fg. 6 llustrtes the cofgurtos of erforce test evroet. A Xe-bsed vrtul che rus o the hostg server tht hs 2 Dul Core Itel Xeo.8 GHz rocessors d 0GB of RAM wth Fedor Core 8 d Xe 3..2 hyervsor. A Ache web server rus o to of the test server. The erforce exerets re coducted by test CGI scrt tht receves web requests fro other clet host. Resose te (sec) Arrvl rte Fg. 7. Observtos d odel for request resose tes cu 2 cu 3 cu 4 cu Fg. 7 shows the chge of reltos betwee the request rtes d the verge resose tes by vryg the uber of vrtul CPU llocto fro to 4. The verge resose te s lwys uder 00 sec, uless the request rte over cert ot. Whe the request rte exceeds the ot the verge resose te creses steely. The vlue of the flecto ot of request rte s roortol to the uber of llocted vrtul CPUs. The roxto curves by M/M/ queue odel wth μ =0.6 re lso fgured s dotted les the Fg. 7. Although the she of the curve does ot coletely ft to the observed vlues, the odel gves good dcto for the boudry vlue of the request rte corresodg to the uber of llocted vrtul CPUs. By coductg slr erforce exerets, erforce odel for ech lcto c be geerted. The requste u uber of vrtul ches or vrtul CPUs s estted fro the geerted erforce odel secfed s exresso (5) d requred verge resose te r. For exle, to kee the verge resose te of ths lcto below 500 sec uder the codto λ = 25, the erforce odel revels tht t requres ore th 3 vrtul CPUs. B. Allocto Methods As descrbed Secto II, the uber of requred hostg servers for chevg the k-fult-tolerce uder y gve codtos chges deedg o the vrtul che lceet. I ths secto covetol roches for vrtul che lceet re descrbed for corso. The roble of vrtul che lceet for zg the uber of requred hostg server s forulzed s b ckg roble [4][5]. The b ckg roble s kow to NP-hrd roble whch s dffcult to solve coletely the relstc te, thus soe heurstc lgorths re used to coe wth ths roble. Frst-Ft decrese (FFD) s well kow owerful heurstc roch to the b ckg roble [6]. The FFD s effectve soluto to vrtul che lceet where ech lcto stce o the vrtul che requres dfferet sze of resources (e.g. the uber of CPUs). However, sce the cluster cofgured usg FFD does ot hve redudcy, ddtol k clusters tht hs the se cofgurto re requred to ccolsh the k-fult-tolerce. The requred uber of the hostg servers s show s below. FFD The FFD decdes vrtul che lceet of u cluster tht stsfes ll erforce requreets of hosted lctos, whle zg the uber of requred hostg servers s uch s ossble. By rerg k bcku clusters of ths u cluster, the syste c cheve k-fult-tolerce. Let the requred uber of hostg servers for the u cofgurto by the FFD be FFD. The vlue of FDD s bouded s follows. c (20) FFD = I ddto, uer boud of FFD s gve by FFD OPT c (2) = where OPT s otu soluto of the b ckg roble [6] d the vlue of OPT s ore th c. = The the best d worst of the requred uber of hostg servers by FFD re gve s follows. FFD -best = c ( k + ) (22) = FFD -worst = c = ( k ) (23) 200 IEEE/IFIP Network Oertos d Mgeet Syosu - NOMS 200: M-Coferece 37
7 Nuber of hostg servers MKR KR-best KR-worst FFD-best FFD-worst Nuber of lctos () (b) (c) Nuber of hostg servers MKR KR-best KR-worst FFD-best FFD-worst Fult-tolerce level k Nuber of hostg servers Ccty Fg. 8. Corso results by vryg () the uber of lctos, (b) the requred fult-tolert level k, d (c) the ccty of hostg server. MKR KR-best KR-worst FFD-best FFD-worst k-redudcy ethod The syste wthout vrtulzto hs to rere k redudt servers to cheve k-fult-tolerce. Ths kd of redudt cofgurto techque s clled s N+M redudt cofgurto. The k-redudcy ethod les ths roch to the vrtul che cofgurtos. The requred uber of the hostg servers by the k-redudcy ethod s rovded s KR s show Secto V-C. The vlue of KR deeds o the xu vlue of c whch vres wth the followg rge. c x c c + (24) = = The the best d worst of the requred uber of hostg servers by k-redudcy ethod re gve s follows. KR -best = x{ c + k, c + k } (25) = = KR -worst = x{ c + + k, c + k } (26) = = Multle k-redudcy ethod The ultle k-redudcy ethod roves the k-redudcy ethod to cheve k-fult-tolerce wth lower uber of the hostg servers. Ths ethod reres the tegrl ultle of k of redudt vrtul ches. The requred uber of hostg servers by ultle k-redudcy ethod s rovded s MKR s show Secto V-D. A. Sulto Studes The requred uber of hostg servers by the ultle k-redudcy ethod s evluted uder vrous ut reters wth corso to the FFD bsed roch d k-redudcy ethod. Frst, order to observe the effects of the chge of the uber of lctos, the requred uber of hostg servers re evluted wth the gve reters =4,k=, d c = c = 3 (the verge uber of c ). Corso = results show Fg. 8 () dcte the roosed ultle k-redudcy ethod s ror to y other ethods deedet to the vlue of. The greter, the ore dvtge the ultle k-redudcy ethod hs. The drwbck of the k-redudcy ethod s the vrto of the results deedg o the cobto of the uber of lcto stces for ech lcto clss. The result rglly worse th the ultle k-redudcy ethod the best cse, however, the worst cse, the k-redudcy ethod requres ore th twce uber of the hostg servers cored wth the ultle k-redudcy ethod. Next, order to observe the effects of the chge of the requred fult-tolerce level k, the requred uber of hostg servers re evluted wth the gve reters =4, =5, d c = 3. Corso results show Fg. 8 (b) dcte the ultle k-redudcy ethod cheves best erforce the gve requreets k cored to other ethods. Furtherore, order to observe the effects of the chge of the ccty of ech hostg server, the requred uber of hostg servers re evluted wth the gve reters k=, =20, d c = 3. Corso results show Fg. 8 (c) dcte the ultle k-redudcy ethod s ror to y other ethods deedet to the vlue of. Accordg to the crese of the ccty, the dfferece betwee the ultle k-redudcy ethod d the best cse of the k-redudcy ethod becoe sll. However, the worst cse of the k-redudcy ethod does ot rove eve f the ccty creses. VII. RELATED WORK Although there hs bee lot of works o hgh-vlblty techques for server clusters, the cobto of hgh-vlblty techques d vrtulzto s oe of the eergg ssues [7]. To ke lcto systes rug o vrtul ches hgh-vlble, VMwre rovdes VMwre HA (Hgh Avlblty) [8]. I the evet of host server flure, VMwre HA restrts vrtul ches utotclly o the other hostg server. Sce the VMwre HA s rectve roch, teorl servce dow or erforce degrdto s evtble. Cotrrly, roctve roch bsed o the flure erdto of the hostg server hs bee roosed for Xe vrtulzto ltfor [9]. The ethod redcts hostg server flure by resource otorg, d evcutes vrtul ches oto the dfferet hostg server before the occurrece of y flures. Soe flures re redctble by otorg the sttus of server resources lke CPU, eory, f d dsk logs. However, t s dffcult to redct ll flures by otorg dvce. The roosed ethod s ctegorzed s roctve roch d hs orgl dvtge tht kees the u IEEE/IFIP Network Oertos d Mgeet Syosu - NOMS 200: M-Coferece
8 cofgurto of lcto servce t y k hostg server flures. A sle redudt cofgurto ethod for vrtul ches o ultle hostg servers s reseted [7]. I cotrst, our study defes redudt vrtul che lceet roble s cobtorl otzto roble d rovdes otu soluto. Dyc resource llocto roble hs bee studed well the cluster systes, grd coutg d utlty coutg. Cluster Reserves reseted resource llocto echs for soltg the erforce of clustered web servces [20]. Cluster-O Ded resets utoted frework to ge resources shred hostg ltfor [2]. For the ult-ter web lcto systes, the dyc resource rovsog ethod bsed o G/G/ erforce odel hs bee roosed [22]. Sce the exstg resource llocto d rovsog ethods ly focus o the otzto of erforce d resource utlzto systes, they do ot tke to ccout the fult-tolerce crter. Few works cororte the requreets for relblty d vlblty of lcto systes the resource llocto lgorth [23][24]. However the vrtul che lceet roble corresodg to host server flures s ot forulted d otu soluto hs bee ot dscussed well. Ths er defes vrtul che lceet roble wth the codto of requred fult-tolerce level d shows lgorth to fd otu soluto. VIII. CONCLUSION Ths er resets ethod to ke redudt cofgurto of hostg server cluster for ultle lctos usg vrtul ches. Cosoldted server systes usg server vrtulzto volves serous rsks of host server flures tht cuses ultle dows of vrtul ches. The roosed ultle k-redudcy ethod zes the uber of requred hostg servers to kee the u cofgurto for stsfyg the erforce requreets for ll lctos t y k host server flures. The ethod lloctes tegrl ultle of k of redudt vrtul ches to ech lcto d lces the to dfferet hostg server usg the sle lceet lgorth. The dvtge of the ultle k-redudcy ethod s show through the exeretl results of corso wth the covetol N+M redudt cofgurto roch d the FFD-bsed vrtul che lceet roch. Cosoldted server systes becoe ore relble wth low cost by usg the roosed ultle k-redudcy ethod. REFERENCES [] VMwre Ifrstrcture: htt:// [2] Ctrx XeServer: htt://ctrx.co/eglsh/s2/roducts/roduct.s?cotetid=68348 [3] G. Kh, K. Bety, G. Kr, d A. Kochut, Alcto Perforce Mgeet Vrtulzed Server Evroets, I Proceedgs of 0th IEEE/IFIP Network Oertos d Mgeet Syosu (NOMS2006), , [4] D. Kusc, J. Kehrt, J. Hso, N. Kdsy, d G. Jg, Power d Perforce Mgeet of Vrtulzed Coutg Evroets V Lookhed Cotrol, I Proceedgs of the 5th IEEE Itertol Coferece o Autooc Coutg (ICAC2008),. 3-2, [5] L. Hu, H. J, X. Lo, X. Xog, d H. Lu, Mget: A ovel schedulg olcy for ower reducto cluster wth vrtul ches, I Proceedgs of the 2008 IEEE Itertol Coferece o Cluster Coutg,. 3-22, [6] Ache Module od_roxy_blcer, htt://httd.che.org/docs/2.2/ od/od_roxy_blcer.htl [7] MySQL Cluster NDB 6.X/7.X Referece Gude, htt://dev.ysql.co/doc/#cluster [8] A. S. Tebu, d M. v Stee, Dstrbuted Systes Prcles d Prdgs, Pretce Hll Ic., , [9] J. Co, M. Adersso, C. Nyberg, d M. Khl, Web Server Perforce Modelg usg M/G//K*PS Queue, I Proceedgs of the 0th Itertol Coferece o Telecouctos (ICT 2003), [0] M. Adersso, J. Co, M. Khl, d C. Nyberg, Perforce Modelg of Ache Web Server wth Bursty Arrvl Trffc, I Proceedgs of the Itertol Coferece o Iteret Coutg (IC), [] Z. C, Y. Che, V. Kur, D. Mlojcc, d K. Schw, Autoted Avlblty Mgeet Drve by Busess Polces, I Proceedgs of the 0th IFIP/IEEE Itertol Syosu o Itegrted Mgeet (IM2007), , [2] B. Urgokr, P. Sheoy, A. Chdr, d P. Goyl, Dyc Provsog of Mult-ter Iteret Alctos, I Proceedgs of the 2d IEEE Itertol Coferece o Autooc Coutg (ICAC2005), , [3] G. Tesuro, N. Jog, R. Ds, d M. Be. A Hybrd Reforceet Lerg Aroch to Autooc Resource Allocto, I Proceedgs of the 3rd IEEE Itertol Coferece o Autooc Coutg (ICAC2006), , [4] G. Jugy, K. R. Joshz, M. A. Hltue, R. D. Schlchtg, d C. Pu, Geertg Adtto Polces for Mult-Ter Alctos Cosoldted Server Evroets, I Proceedgs of the 5th IEEE Itertol Coferece o Autooc Coutg (ICAC2008), , [5] N. Bobroff, A. Kochut, d K Bety, Dyc Plceet of Vrtul Mches for Mgg SLA Voltos, I Proceedgs of the 0th IFIP/IEEE Itertol Syosu o Itegrted Mgeet (IM2007),. 9-28, [6] B. Korte, J. Vyge, Cobtorl Otzto: Theory d Algorths, Jese Edto 2005, Srger, [7] S. Loveld, E. M. Dow, F. LeFevre, D. Beyer, d P. F. Ch, Levergg vrtulzto to otze hgh-vlblty syste cofgurtos, IBM Syste Jourl, Vol. 47, No. 4, [8] VMwre Hgh Avlblty: htt:// [9] A. B. Ngrj, F. Mueller, C. Egel, d S. L. Scott, Proctve fult tolerce for HPC wth Xe vrtulzto, I Proceedgs of the 2st ul tertol coferece o Suercoutg (ICS07), , [20] M. Aro, P. Druschel, d W. Zweeoel, Cluster Reserves: A Mechs for Resource Mgeet Cluster-bsed Network Servers, I Proceedgs of the ACM SIGMETRICS Coferece 2000,. 90-0, [2] J. S. Chse, D. E. Irw, L. E. Grt, J. D. Moore, d S. E. Srekle, Dyc vrtul clusters grd ste ger, I Proceedgs of the 2th IEEE Itertol Syosu o Hgh Perforce Dstrbuted Coutg (HPDC-2), , [22] B. Urgokr, P. Sheoy, A. Chdr, P. Goyl d T. Wood, Agle Dyc Provsog of Mult-ter Iteret Alctos, ACM Trsctos o Autooous d Adtve Systes (TAAS), Volue 3(), :-:39, Mrch [23] N. R. Gottuukkl, C. Legsuksu, R. Nssr, d S. L. Scott, Relblty-Awre Resource Allocto HPC Systes, I Proceedgs of the IEEE Itertol Coferece o Cluster Coutg 2007 (Cluster2007), , [24] F. Mchd, d Y. Meo, Avlblty-Costred Vrtul Mche Plceet for HA Clusters, I the Fst Abstrct of The 39th IEEE/IFIP Itertol Coferece o Deedble Systes d Networks (DSN2009), IEEE/IFIP Network Oertos d Mgeet Syosu - NOMS 200: M-Coferece 39
Sequences and Series
Secto 9. Sequeces d Seres You c thk of sequece s fucto whose dom s the set of postve tegers. f ( ), f (), f (),... f ( ),... Defto of Sequece A fte sequece s fucto whose dom s the set of postve tegers.
A Study of Unrelated Parallel-Machine Scheduling with Deteriorating Maintenance Activities to Minimize the Total Completion Time
Joural of Na Ka, Vol. 0, No., pp.5-9 (20) 5 A Study of Urelated Parallel-Mache Schedulg wth Deteroratg Mateace Actvtes to Mze the Total Copleto Te Suh-Jeq Yag, Ja-Yuar Guo, Hs-Tao Lee Departet of Idustral
Present and Future Value Formulae for Uneven Cash Flows Based on Performance of a Business
Itertol Jourl of Bkg d Fce Volue 8 Issue Artcle 0--0 reset d Future Vlue Forule for Ueve Csh Flows Bsed o erforce of Busess Aeh Tefer Tesse Costructo d Busess Bk, Etho, [email protected] Follow ths d ddtol
APPENDIX III THE ENVELOPE PROPERTY
Apped III APPENDIX III THE ENVELOPE PROPERTY Optmzato mposes a very strog structure o the problem cosdered Ths s the reaso why eoclasscal ecoomcs whch assumes optmzg behavour has bee the most successful
We will begin this chapter with a quick refresher of what an exponent is.
.1 Exoets We will egi this chter with quick refresher of wht exoet is. Recll: So, exoet is how we rereset reeted ultilictio. We wt to tke closer look t the exoet. We will egi with wht the roerties re for
Public Auditing Based on Homomorphic Hash Function in
Publc Audtg Bsed o Homomorhc Hsh Fucto Secure Cloud Storge Shufe NIU, Cfe Wg, Xo DU Publc Audtg Bsed o Homomorhc Hsh Fucto Secure Cloud Storge Shufe NIU, Cfe Wg, 3 Xo DU, College of Comuter Scece d Egeerg,
FUZZY PERT FOR PROJECT MANAGEMENT
Itertol Jourl of dvces Egeerg & Techology Sept. 04. IJET ISSN: 96 FUZZY PERT FOR PROJECT MNGEMENT Ther hed Sdoo l S Rd M. Ro l Brhe ssst. Prof ssstt Lecturer College of dstrto d Ecoocs Mgeet Iforto Systes
A Fair Non-repudiation Protocol without TTP on Conic Curve over Ring
Far No-reudato Protocol wthout TTP o Coc Curve over Rg Z L Zhahu, Fa Ka, 3L Hu, Zheg Ya Far No-reudato Protocol wthout TTP o Coc Curve over Rg Z 1 L Zhahu, Fa Ka, 3 L Hu, 4 Zheg Ya 1State Key Laboratory
Approximation Algorithms for Scheduling with Rejection on Two Unrelated Parallel Machines
(ICS) Iteratoal oural of dvaced Comuter Scece ad lcatos Vol 6 No 05 romato lgorthms for Schedulg wth eecto o wo Urelated Parallel aches Feg Xahao Zhag Zega Ca College of Scece y Uversty y Shadog Cha 76005
n Using the formula we get a confidence interval of 80±1.64
9.52 The professor of sttistics oticed tht the rks i his course re orlly distributed. He hs lso oticed tht his orig clss verge is 73% with stdrd devitio of 12% o their fil exs. His fteroo clsses verge
A. Description: A simple queueing system is shown in Fig. 16-1. Customers arrive randomly at an average rate of
Queueig Theory INTRODUCTION Queueig theory dels with the study of queues (witig lies). Queues boud i rcticl situtios. The erliest use of queueig theory ws i the desig of telehoe system. Alictios of queueig
THE well established 80/20 rule for client-server versus
IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, ACCEPTED FOR PUBLICATION 1 Optml Fuctolty Plcemet for Multply Servce Provder Archtectures Ios Pppgotou, Studet Member, IEEE, Mtths Fler, Member, IEEE,
Dynamic Provisioning Modeling for Virtualized Multi-tier Applications in Cloud Data Center
200 IEEE 3rd Iteratoal Coferece o Cloud Computg Dyamc Provsog Modelg for Vrtualzed Mult-ter Applcatos Cloud Data Ceter Jg B 3 Zhlag Zhu 2 Ruxog Ta 3 Qgbo Wag 3 School of Iformato Scece ad Egeerg College
Optimal multi-degree reduction of Bézier curves with constraints of endpoints continuity
Computer Aded Geometrc Desg 19 (2002 365 377 wwwelsevercom/locate/comad Optmal mult-degree reducto of Bézer curves wth costrats of edpots cotuty Guo-Dog Che, Guo-J Wag State Key Laboratory of CAD&CG, Isttute
A MODEL FOR AIRLINE PASSENGER AND CARGO FLIGHT SCHEDULING
A MODEL FOR AIRLINE PASSENGER AND CARGO FLIGHT SCHEDULING Shgyo YAN Yu-Hsu CHEN Professor Mster Deprtet of Cvl Egeerg Deprtet of Cvl Egeerg Ntol Cetrl Uversty Ntol Cetrl Uversty No300, Jhogd Rd, Jhogl
16. Mean Square Estimation
6 Me Sque stmto Gve some fomto tht s elted to uow qutty of teest the poblem s to obt good estmte fo the uow tems of the obseved dt Suppose epeset sequece of dom vbles bout whom oe set of obsevtos e vlble
The impact of service-oriented architecture on the scheduling algorithm in cloud computing
Iteratoal Research Joural of Appled ad Basc Sceces 2015 Avalable ole at www.rjabs.com ISSN 2251-838X / Vol, 9 (3): 387-392 Scece Explorer Publcatos The mpact of servce-oreted archtecture o the schedulg
Measuring the Quality of Credit Scoring Models
Measur the Qualty of Credt cor Models Mart Řezáč Dept. of Matheatcs ad tatstcs, Faculty of cece, Masaryk Uversty CCC XI, Edurh Auust 009 Cotet. Itroducto 3. Good/ad clet defto 4 3. Measur the qualty 6
INVESTIGATION OF PARAMETERS OF ACCUMULATOR TRANSMISSION OF SELF- MOVING MACHINE
ENGINEEING FO UL DEVELOENT Jelgv, 28.-29.05.2009. INVESTIGTION OF ETES OF CCUULTO TNSISSION OF SELF- OVING CHINE leksdrs Kirk Lithui Uiversity of griculture, Kus [email protected] bstrct. Uder the
Generalized solutions for the joint replenishment problem with correction factor
Geerzed soutos for the ot repeshet proe wth correcto fctor Astrct Erc Porrs, Roert Deer Ecooetrc Isttute, erge Isttute, Ersus Uversty Rotterd, P.O. Box 73, 3 DR Rotterd, he etherds Ecooetrc Isttute Report
MATHEMATICS FOR ENGINEERING BASIC ALGEBRA
MATHEMATICS FOR ENGINEERING BASIC ALGEBRA TUTORIAL - INDICES, LOGARITHMS AND FUNCTION This is the oe of series of bsic tutorils i mthemtics imed t begiers or yoe wtig to refresh themselves o fudmetls.
A Framework for Intelligent Decision Support System for Traffic Congestion Management System
Egeerg 2010 2 **-** do:10.4236/eg.2010.24037 Publshed Ole Aprl 2010 (http://www. ScRP.org/jourl/eg) 41 A Frework for Itellget Decso Support Syste for rffc Cogesto Mgeet Syste Abstrct Mohd K. Hs Deprtet
Preprocess a planar map S. Given a query point p, report the face of S containing p. Goal: O(n)-size data structure that enables O(log n) query time.
Computatoal Geometry Chapter 6 Pot Locato 1 Problem Defto Preprocess a plaar map S. Gve a query pot p, report the face of S cotag p. S Goal: O()-sze data structure that eables O(log ) query tme. C p E
Fuzzy Task Assignment Model of Web Services Supplier in Collaborative Development Environment
, pp.199-210 http://dx.do.org/10.14257/uesst.2015.8.6.19 Fuzzy Task Assget Model of Web Servces Suppler Collaboratve Developet Evroet Su Ja 1,2, Peg Xu-ya 1, *, Xu Yg 1,3, Wag Pe-e 2 ad Ma Na- 4,2 1. College
Green Master based on MapReduce Cluster
Gree Master based o MapReduce Cluster Mg-Zh Wu, Yu-Chag L, We-Tsog Lee, Yu-Su L, Fog-Hao Lu Dept of Electrcal Egeerg Tamkag Uversty, Tawa, ROC Dept of Electrcal Egeerg Tamkag Uversty, Tawa, ROC Dept of
Numerical Comparisons of Quality Control Charts for Variables
Global Vrtual Coferece Aprl, 8. - 2. 203 Nuercal Coparsos of Qualty Cotrol Charts for Varables J.F. Muñoz-Rosas, M.N. Pérez-Aróstegu Uversty of Graada Facultad de Cecas Ecoócas y Epresarales Graada, pa
ANOVA Notes Page 1. Analysis of Variance for a One-Way Classification of Data
ANOVA Notes Page Aalss of Varace for a Oe-Wa Classfcato of Data Cosder a sgle factor or treatmet doe at levels (e, there are,, 3, dfferet varatos o the prescrbed treatmet) Wth a gve treatmet level there
Maintenance Scheduling of Distribution System with Optimal Economy and Reliability
Egeerg, 203, 5, 4-8 http://dx.do.org/0.4236/eg.203.59b003 Publshed Ole September 203 (http://www.scrp.org/joural/eg) Mateace Schedulg of Dstrbuto System wth Optmal Ecoomy ad Relablty Syua Hog, Hafeg L,
Software Size Estimation in Incremental Software Development Based On Improved Pairwise Comparison Matrices
Computer Scece Systems Bology Reserch Artcle Artcle Ocheg d Mwg, 204, 7:3 http://d.do.org/0.472/csb.0004 Ope Ope Access Softwre Sze Estmto Icremetl Softwre Developmet Bsed O Improved Prwse Comprso Mtrces
The Gompertz-Makeham distribution. Fredrik Norström. Supervisor: Yuri Belyaev
The Gompertz-Makeham dstrbuto by Fredrk Norström Master s thess Mathematcal Statstcs, Umeå Uversty, 997 Supervsor: Yur Belyaev Abstract Ths work s about the Gompertz-Makeham dstrbuto. The dstrbuto has
6.7 Network analysis. 6.7.1 Introduction. References - Network analysis. Topological analysis
6.7 Network aalyss Le data that explctly store topologcal formato are called etwork data. Besdes spatal operatos, several methods of spatal aalyss are applcable to etwork data. Fgure: Network data Refereces
Polyphase Filters. Section 12.4 Porat 1/39
Polyphase Flters Secto.4 Porat /39 .4 Polyphase Flters Polyphase s a way of dog saplg-rate coverso that leads to very effcet pleetatos. But ore tha that, t leads to very geeral vewpots that are useful
The simple linear Regression Model
The smple lear Regresso Model Correlato coeffcet s o-parametrc ad just dcates that two varables are assocated wth oe aother, but t does ot gve a deas of the kd of relatoshp. Regresso models help vestgatg
Conversion of Non-Linear Strength Envelopes into Generalized Hoek-Brown Envelopes
Covero of No-Lear Stregth Evelope to Geeralzed Hoek-Brow Evelope Itroducto The power curve crtero commoly ued lmt-equlbrum lope tablty aaly to defe a o-lear tregth evelope (relatohp betwee hear tre, τ,
10.5 Future Value and Present Value of a General Annuity Due
Chapter 10 Autes 371 5. Thomas leases a car worth $4,000 at.99% compouded mothly. He agrees to make 36 lease paymets of $330 each at the begg of every moth. What s the buyout prce (resdual value of the
OPTIMAL KNOWLEDGE FLOW ON THE INTERNET
İstabul Tcaret Üverstes Fe Blmler Dergs Yıl: 5 Sayı:0 Güz 006/ s. - OPTIMAL KNOWLEDGE FLOW ON THE INTERNET Bura ORDİN *, Urfat NURİYEV ** ABSTRACT The flow roblem ad the mmum sag tree roblem are both fudametal
An Integrated Honeypot Framework for Proactive Detection, Characterization and Redirection of DDoS Attacks at ISP level
Jourl of Iformto Assurce Securty 1 (28) 1-15 A Itegrte Hoeypot Frmework for Proctve Detecto, Chrcterzto Rerecto of DDoS Attcks t ISP level Ajl Sr R. C. Josh 1 1 I Isttute of Techology Roorkee, Roorkee,
Repeated multiplication is represented using exponential notation, for example:
Appedix A: The Lws of Expoets Expoets re short-hd ottio used to represet my fctors multiplied together All of the rules for mipultig expoets my be deduced from the lws of multiplictio d divisio tht you
IDENTIFICATION OF THE DYNAMICS OF THE GOOGLE S RANKING ALGORITHM. A. Khaki Sedigh, Mehdi Roudaki
IDENIFICAION OF HE DYNAMICS OF HE GOOGLE S RANKING ALGORIHM A. Khak Sedgh, Mehd Roudak Cotrol Dvso, Departmet of Electrcal Egeerg, K.N.oos Uversty of echology P. O. Box: 16315-1355, ehra, Ira [email protected],
3 The Utility Maximization Problem
3 The Utility Mxiiztion Proble We hve now discussed how to describe preferences in ters of utility functions nd how to forulte siple budget sets. The rtionl choice ssuption, tht consuers pick the best
Efficient Traceback of DoS Attacks using Small Worlds in MANET
Effcet Traceback of DoS Attacks usg Small Worlds MANET Yog Km, Vshal Sakhla, Ahmed Helmy Departmet. of Electrcal Egeerg, Uversty of Souther Calfora, U.S.A {yogkm, sakhla, helmy}@ceg.usc.edu Abstract Moble
A Fast Clustering Algorithm to Cluster Very Large Categorical Data Sets in Data Mining
A Fast Clusterg Algorth to Cluster Very Large Categorcal Data Sets Data Mg Zhexue Huag * Cooperatve Research Cetre for Advaced Coputatoal Systes CSIRO Matheatcal ad Iforato Sceces GPO Box 664, Caberra
Proceedings of the 2010 Winter Simulation Conference B. Johansson, S. Jain, J. Montoya-Torres, J. Hugan, and E. Yücesan, eds.
Proceedgs of the 21 Wter Smulato Coferece B. Johasso, S. Ja, J. Motoya-Torres, J. Huga, ad E. Yücesa, eds. EMPIRICAL METHODS OR TWO-ECHELON INVENTORY MANAGEMENT WITH SERVICE LEVEL CONSTRAINTS BASED ON
A Parallel Transmission Remote Backup System
2012 2d Iteratoal Coferece o Idustral Techology ad Maagemet (ICITM 2012) IPCSIT vol 49 (2012) (2012) IACSIT Press, Sgapore DOI: 107763/IPCSIT2012V495 2 A Parallel Trasmsso Remote Backup System Che Yu College
Chapter Eight. f : R R
Chapter Eght f : R R 8. Itroducto We shall ow tur our atteto to the very mportat specal case of fuctos that are real, or scalar, valued. These are sometmes called scalar felds. I the very, but mportat,
Performance Attribution. Methodology Overview
erformace Attrbuto Methodology Overvew Faba SUAREZ March 2004 erformace Attrbuto Methodology 1.1 Itroducto erformace Attrbuto s a set of techques that performace aalysts use to expla why a portfolo's performace
The analysis of annuities relies on the formula for geometric sums: r k = rn+1 1 r 1. (2.1) k=0
Chapter 2 Autes ad loas A auty s a sequece of paymets wth fxed frequecy. The term auty orgally referred to aual paymets (hece the ame), but t s ow also used for paymets wth ay frequecy. Autes appear may
DISTANCE MEASURE FOR ORDINAL DATA *
ARGUMENTA OECONOMICA No (8) 999 PL ISSN 33-5835 Mre Wes DISTANCE MEASURE FOR ORDINAL DATA * The study cosders the proe of costructo esures of srty for ord dt. The ord chrcter of the dt requred the ppcto
Load and Resistance Factor Design (LRFD)
53:134 Structural Desg II Load ad Resstace Factor Desg (LRFD) Specfcatos ad Buldg Codes: Structural steel desg of buldgs the US s prcpally based o the specfcatos of the Amerca Isttute of Steel Costructo
Classic Problems at a Glance using the TVM Solver
C H A P T E R 2 Classc Problems at a Glace usg the TVM Solver The table below llustrates the most commo types of classc face problems. The formulas are gve for each calculato. A bref troducto to usg the
On formula to compute primes and the n th prime
Joural's Ttle, Vol., 00, o., - O formula to compute prmes ad the th prme Issam Kaddoura Lebaese Iteratoal Uversty Faculty of Arts ad ceces, Lebao Emal: [email protected] amh Abdul-Nab Lebaese Iteratoal
Statistical Pattern Recognition (CE-725) Department of Computer Engineering Sharif University of Technology
I The Name of God, The Compassoate, The ercful Name: Problems' eys Studet ID#:. Statstcal Patter Recogto (CE-725) Departmet of Computer Egeerg Sharf Uversty of Techology Fal Exam Soluto - Sprg 202 (50
MATH 150 HOMEWORK 4 SOLUTIONS
MATH 150 HOMEWORK 4 SOLUTIONS Section 1.8 Show tht the product of two of the numbers 65 1000 8 2001 + 3 177, 79 1212 9 2399 + 2 2001, nd 24 4493 5 8192 + 7 1777 is nonnegtive. Is your proof constructive
STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS. x, where. = y - ˆ " 1
STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS Recall Assumpto E(Y x) η 0 + η x (lear codtoal mea fucto) Data (x, y ), (x 2, y 2 ),, (x, y ) Least squares estmator ˆ E (Y x) ˆ " 0 + ˆ " x, where ˆ
ADAPTATION OF SHAPIRO-WILK TEST TO THE CASE OF KNOWN MEAN
Colloquum Bometrcum 4 ADAPTATION OF SHAPIRO-WILK TEST TO THE CASE OF KNOWN MEAN Zofa Hausz, Joaa Tarasńska Departmet of Appled Mathematcs ad Computer Scece Uversty of Lfe Sceces Lubl Akademcka 3, -95 Lubl
of the relationship between time and the value of money.
TIME AND THE VALUE OF MONEY Most agrbusess maagers are famlar wth the terms compoudg, dscoutg, auty, ad captalzato. That s, most agrbusess maagers have a tutve uderstadg that each term mples some relatoshp
Low-Cost Side Channel Remote Traffic Analysis Attack in Packet Networks
Low-Cost Sde Chael Remote Traffc Aalyss Attack Packet Networks Sach Kadloor, Xu Gog, Negar Kyavash, Tolga Tezca, Nkta Borsov ECE Departmet ad Coordated Scece Lab. IESE Departmet ad Coordated Scece Lab.
Bayesian Network Representation
Readgs: K&F 3., 3.2, 3.3, 3.4. Bayesa Network Represetato Lecture 2 Mar 30, 20 CSE 55, Statstcal Methods, Sprg 20 Istructor: Su-I Lee Uversty of Washgto, Seattle Last tme & today Last tme Probablty theory
Load Balancing Control for Parallel Systems
Proc IEEE Med Symposum o New drectos Cotrol ad Automato, Chaa (Grèce),994, pp66-73 Load Balacg Cotrol for Parallel Systems Jea-Claude Heet LAAS-CNRS, 7 aveue du Coloel Roche, 3077 Toulouse, Frace E-mal
How To Make A Profit From A Website
Mg Koledge-Shrg Stes for Vrl Mretg Mtthe Rchrdso d edro Dogos Deprtet of Coputer Scece d Egeerg Uversty of Wshgto Box 3535 Settle, WA 9895-35 {ttr,pedrod}@cs.shgto.edu ABSTRACT Vrl retg tes dvtge of etors
Curve Fitting and Solution of Equation
UNIT V Curve Fttg ad Soluto of Equato 5. CURVE FITTING I ma braches of appled mathematcs ad egeerg sceces we come across epermets ad problems, whch volve two varables. For eample, t s kow that the speed
Real-Time Scheduling Models: an Experimental Approach
Real-Tme Schedulg Models: a Expermetal Approach (Techcal Report - Nov. 2000) Atóo J. Pessoa de Magalhães [email protected] Fax: 22 207 4247 SAI DEMEGI Faculdade de Egehara da Uversdade do Porto -
Chapter 3. AMORTIZATION OF LOAN. SINKING FUNDS R =
Chapter 3. AMORTIZATION OF LOAN. SINKING FUNDS Objectves of the Topc: Beg able to formalse ad solve practcal ad mathematcal problems, whch the subjects of loa amortsato ad maagemet of cumulatve fuds are
Fault Tree Analysis of Software Reliability Allocation
Fault Tree Aalyss of Software Relablty Allocato Jawe XIANG, Kokch FUTATSUGI School of Iformato Scece, Japa Advaced Isttute of Scece ad Techology - Asahda, Tatsuokuch, Ishkawa, 92-292 Japa ad Yaxag HE Computer
A DISTRIBUTED REPUTATION BROKER FRAMEWORK FOR WEB SERVICE APPLICATIONS
L et al.: A Dstrbuted Reputato Broker Framework for Web Servce Applcatos A DISTRIBUTED REPUTATION BROKER FRAMEWORK FOR WEB SERVICE APPLICATIONS Kwe-Jay L Departmet of Electrcal Egeerg ad Computer Scece
Optimization Model in Human Resource Management for Job Allocation in ICT Project
Optmzato Model Huma Resource Maagemet for Job Allocato ICT Project Optmzato Model Huma Resource Maagemet for Job Allocato ICT Project Saghamtra Mohaty Malaya Kumar Nayak 2 2 Professor ad Head Research
Discrete-Event Simulation of Network Systems Using Distributed Object Computing
Dscrete-Evet Smulato of Network Systems Usg Dstrbuted Object Computg Welog Hu Arzoa Ceter for Itegratve M&S Computer Scece & Egeerg Dept. Fulto School of Egeerg Arzoa State Uversty, Tempe, Arzoa, 85281-8809
A New Bayesian Network Method for Computing Bottom Event's Structural Importance Degree using Jointree
, pp.277-288 http://dx.do.org/10.14257/juesst.2015.8.1.25 A New Bayesa Network Method for Computg Bottom Evet's Structural Importace Degree usg Jotree Wag Yao ad Su Q School of Aeroautcs, Northwester Polytechcal
Optimal Packetization Interval for VoIP Applications Over IEEE 802.16 Networks
Optmal Packetzato Iterval for VoIP Applcatos Over IEEE 802.16 Networks Sheha Perera Harsha Srsea Krzysztof Pawlkowsk Departmet of Electrcal & Computer Egeerg Uversty of Caterbury New Zealad [email protected]
Abraham Zaks. Technion I.I.T. Haifa ISRAEL. and. University of Haifa, Haifa ISRAEL. Abstract
Preset Value of Autes Uder Radom Rates of Iterest By Abraham Zas Techo I.I.T. Hafa ISRAEL ad Uversty of Hafa, Hafa ISRAEL Abstract Some attempts were made to evaluate the future value (FV) of the expected
Security Analysis of RAPP: An RFID Authentication Protocol based on Permutation
Securty Aalyss of RAPP: A RFID Authetcato Protocol based o Permutato Wag Shao-hu,,, Ha Zhje,, Lu Sujua,, Che Da-we, {College of Computer, Najg Uversty of Posts ad Telecommucatos, Najg 004, Cha Jagsu Hgh
IMPLEMENTATION IN PUBLIC ADMINISTRATION OF MEXICO GOVERNMENT USING GAMES THEORY AND SOLVING WITH LINEAR PROGRAMMING
Itertol Jourl of Advces Egeerg & Techolog, J., 05. IJAET ISSN: 96 IMPLEMENTATION IN PUBLIC ADMINISTRATION OF MEICO GOVERNMENT USING GAMES THEORY AND SOLVING WITH LINEAR PROGRAMMING Frcsco Zrgoz Huert.
Using Phase Swapping to Solve Load Phase Balancing by ADSCHNN in LV Distribution Network
Iteratoal Joural of Cotrol ad Automato Vol.7, No.7 (204), pp.-4 http://dx.do.org/0.4257/jca.204.7.7.0 Usg Phase Swappg to Solve Load Phase Balacg by ADSCHNN LV Dstrbuto Network Chu-guo Fe ad Ru Wag College
The Time Value of Money
The Tme Value of Moey 1 Iversemet Optos Year: 1624 Property Traded: Mahatta Islad Prce : $24.00, FV of $24 @ 6%: FV = $24 (1+0.06) 388 = $158.08 bllo Opto 1 0 1 2 3 4 5 t ($519.37) 0 0 0 0 $1,000 Opto
SHAPIRO-WILK TEST FOR NORMALITY WITH KNOWN MEAN
SHAPIRO-WILK TEST FOR NORMALITY WITH KNOWN MEAN Wojcech Zelńsk Departmet of Ecoometrcs ad Statstcs Warsaw Uversty of Lfe Sceces Nowoursyowska 66, -787 Warszawa e-mal: wojtekzelsk@statystykafo Zofa Hausz,
How do bookmakers (or FdJ 1 ) ALWAYS manage to win?
How do bookakers (or FdJ ALWAYS aage to w? Itroducto otatos & varables Bookaker's beeft eected value 4 4 Bookaker's strateges5 4 The hoest bookaker 6 4 "real lfe" bookaker 6 4 La FdJ 8 5 How ca we estate
Cyber Journals: Multidisciplinary Journals in Science and Technology, Journal of Selected Areas in Telecommunications (JSAT), January Edition, 2011
Cyber Jourals: Multdscplary Jourals cece ad Techology, Joural of elected Areas Telecommucatos (JAT), Jauary dto, 2011 A ovel rtual etwork Mappg Algorthm for Cost Mmzg ZHAG hu-l, QIU Xue-sog tate Key Laboratory
Efficient Statistics Based Framework for Network Intrusion Detection
Iteratoal Joural of Soft Coutg ad Egeerg (IJSCE) ISSN: 223-2307, Volue-3, Issue-, March 203 Effcet Statstcs Based Fraework for Network Itruso Detecto uo-che Lee, Zh-Ju Hsu, L Lu Astract Due to the growg
Applications of Support Vector Machine Based on Boolean Kernel to Spam Filtering
Moder Appled Scece October, 2009 Applcatos of Support Vector Mache Based o Boolea Kerel to Spam Flterg Shugag Lu & Keb Cu School of Computer scece ad techology, North Cha Electrc Power Uversty Hebe 071003,
Load Balancing Algorithm based Virtual Machine Dynamic Migration Scheme for Datacenter Application with Optical Networks
0 7th Iteratoal ICST Coferece o Commucatos ad Networkg Cha (CHINACOM) Load Balacg Algorthm based Vrtual Mache Dyamc Mgrato Scheme for Dataceter Applcato wth Optcal Networks Xyu Zhag, Yogl Zhao, X Su, Ruyg
Chapter 3 0.06 = 3000 ( 1.015 ( 1 ) Present Value of an Annuity. Section 4 Present Value of an Annuity; Amortization
Chapter 3 Mathematcs of Face Secto 4 Preset Value of a Auty; Amortzato Preset Value of a Auty I ths secto, we wll address the problem of determg the amout that should be deposted to a accout ow at a gve
Geometric Motion Planning and Formation Optimization for a Fleet of Nonholonomic Wheeled Mobile Robots
Proceedgs of the 4 IEEE Iteratoal Coferece o Robotcs & Automato New Orleas, LA Arl 4 Geometrc oto Plag ad Formato Otmzato for a Fleet of Noholoomc Wheeled oble Robots Rajakumar Bhatt echacal & Aerosace
ON SLANT HELICES AND GENERAL HELICES IN EUCLIDEAN n -SPACE. Yusuf YAYLI 1, Evren ZIPLAR 2. [email protected]. evrenziplar@yahoo.
ON SLANT HELICES AND ENERAL HELICES IN EUCLIDEAN -SPACE Yusuf YAYLI Evre ZIPLAR Departmet of Mathematcs Faculty of Scece Uversty of Akara Tadoğa Akara Turkey yayl@sceceakaraedutr Departmet of Mathematcs
Numerical Methods with MS Excel
TMME, vol4, o.1, p.84 Numercal Methods wth MS Excel M. El-Gebely & B. Yushau 1 Departmet of Mathematcal Sceces Kg Fahd Uversty of Petroleum & Merals. Dhahra, Saud Araba. Abstract: I ths ote we show how
ANALYTICAL MODEL FOR TCP FILE TRANSFERS OVER UMTS. Janne Peisa Ericsson Research 02420 Jorvas, Finland. Michael Meyer Ericsson Research, Germany
ANALYTICAL MODEL FOR TCP FILE TRANSFERS OVER UMTS Jae Pesa Erco Research 4 Jorvas, Flad Mchael Meyer Erco Research, Germay Abstract Ths paper proposes a farly complex model to aalyze the performace of
Report 52 Fixed Maturity EUR Industrial Bond Funds
Rep52, Computed & Prted: 17/06/2015 11:53 Report 52 Fxed Maturty EUR Idustral Bod Fuds From Dec 2008 to Dec 2014 31/12/2008 31 December 1999 31/12/2014 Bechmark Noe Defto of the frm ad geeral formato:
MDM 4U PRACTICE EXAMINATION
MDM 4U RCTICE EXMINTION Ths s a ractce eam. It does ot cover all the materal ths course ad should ot be the oly revew that you do rearato for your fal eam. Your eam may cota questos that do ot aear o ths
