FUZZY PERT FOR PROJECT MANAGEMENT

Size: px
Start display at page:

Download "FUZZY PERT FOR PROJECT MANAGEMENT"

Transcription

1 Itertol Jourl of dvces Egeerg & Techology Sept. 04. IJET ISSN: 96 FUZZY PERT FOR PROJECT MNGEMENT Ther hed Sdoo l S Rd M. Ro l Brhe ssst. Prof ssstt Lecturer College of dstrto d Ecoocs Mgeet Iforto Systes Deprtet Uversty of Mosul Irq BSTRCT Oe of the ost chllegg jobs tht y ger c tke o the geet of lrge scle project tht requres coordtg uerous ctvtes throughout the orgzto. yrd of detls ust be cosdered plg how to coordte ll these ctvtes developg relstc schedule d the otorg the progress of the project. Fortutely two closely relted opertos reserch techques PERT (progr evluto d revew techques) d CPM (crtcl pth ethod) were developed the 50's wth dfferet cotexts: the CPM ws developed for plg d cotrol of DuPot egeerg projects d the PERT ws developed for the geet of the producto cycle of the Polrs ssle. They shre the se objectves such s defg the project durto d the crtcl tsk. The PERT/CPM techque s bsed o two strght steps; forwrd propgto to defe the erlest strt d fsh dtes (d subsequetly the project durto d the free flots) d bckwrd proulgto for the ltest strt d fsh dtes (d the totl flots). Itlly the ctvty tes re sttc wth the CPM techque d probblstc wth the PERT techque. Over the lst few decdes both CPM d PERT techques h bee uversl to fuzzy d stochstc res. To trety wth ucertty project geet. Predotly Fuzzy PERT d CPM re to be delberted to trety prtculrly wth fuzzy plg. O the tgostc to PERT/CPM techque tht gores y cosderto of resources other Fortutously two closely relted opertos reserch techques PERT (progr evluto d revew techques) d CPM (crtcl pth ethod) re preseted to ssst the project ger crryg out these resposbltes PERT/cost s systetc produce (orlly coputerzed) to help the project ger pl schedule d cotrol projects cost. The PERT/cost produce begs wth the hrd work of developg estte of the cost ech ctvty whe t s perfored the plg wy (cludg y crshg). We propose to prove PERT by usg Fuzzy Delph for esttg T T d T for ech ctvty the fuzzy PERT s llustrted d gve cse study redyde fctory. The result of the proposed odel d te-cost trdeoff. I the ext secto proposed odel s ore thoroughly defed ths proposed odel s ore thoroughly defed. Ths s followed by the pplcto of the fuzzy logc to Pjs relty wer(clothg) fctory I Mosul. PERT/cost s systetc produce (orlly coputerzed) to help the project ger pl schedule d cotrol projects cost. The PERT/cost produce begs wth the hrd work of developg estte of the cost ech ctvty whe t s perfored the plg wy (cludg y crshg).we propose to prove PERT by usg Fuzzy Delph for esttg T T T for ech ctvty the fuzzy PERT s llustrted d gve cse study redyde fctory. KEY WORDS: PERT CPM FUZZY LOGIC PROJECT MNGEMENT I. INTRODUCTION My of dustrl projects ssg y of vlble physcl resource to types of ctvtes tht eeds y tes cheveet ther project relted to developet project buldg reserch producto vsble d defese whch eeds lrge cpblty plg d schedulg dfferet ctvtes (Rggs 997) [5]. 50 Vol. 7 Issue 4 pp

2 Itertol Jourl of dvces Egeerg & Techology Sept. 04. IJET ISSN: 96 I ths reserch two ethod used successfully plg for y lrge project whch s clled PERT d CPM especlly whe the project ctvtes h to be perfored specfed techologcl sequeces(rvrdr. et. l.987) [6]. Project Mgeet s coplcted eterprse volvg plg of vrous ctvty whch h to be perfored the process of developet of ew product or techology. Project h specfed begg d ed for coveece they re subdvded to ctvtes Whch lso h specfed beggs d eds. The ctvtes h to be perfored order Soe before others Soe sulteously the te requred for copleto of ech ctvty hs to be estted (George B. d Bojdzev M p78([]. The bsc for of PERT& CPM focus o detfyg the Logest te Cosug pth through etworks of tsks s bsc for plg d Cotrollg project (Mrk M. Dvs et. l. 00. p94) [9]. The Crtcl Pth Method s oe of the project schedulg specfctes. The jorty of the reserch o the project schedulg topc hs bee devoted to fuzzy PERT s expled before the PERT techque s coposed of two steps; the forwrd d the bckwrd propgtos.(msoudm Erw Hs d l Hït0) []. The geerlzto of the PERT techque to fuzzy preters s coplex tsk. The forwrd propgto s doe usg fuzzy rthetc ledg to fuzzy erlest dtes d fuzzy ed-of-project evet. Ufortutely bckwrd propgto s o loger pplcble becuse ucertty would be tke to ccout twce.( Chs et l. 00) [0].study the crtclty of tsks wth fuzzy project.( Dubos et l. 00) [6]. Show tht the boudres of soe fuzzy preters lke the tsks' ltest dtes d flots re reched extree cofgurtos Expdg the PERT ode to tke cogzce of the fct tht Fuzzy logc o project ctvtes s tkg plce t vryg rte dds coplexty to the odel. Now the te to coplete Ut s fucto of two vrble ely:. The uber of Te the vrous ctvtes h bee repeted o pror rus of the project.. Fuzzy Logc of ech te ctvty However ths coplexty c be redly by coputerzg the odel. The odel use uder the followg codto:. The te of ctvty hs bee copleted o project rus s ot se for ll ctvtes coprsg the etwork. Ths s the resultt of repetg prtlly repetg prtlly repettve project.. Fuzzy logc s tested for chrge project copleto tes whe fuzzy logc tke plce o ll ctvtes. The result of the proposed odel d te-cost trdeoff. I the ext secto proposed odel s ore thoroughly defed ths proposed odel s ore thoroughly defed. Ths s followed by the pplcto of the fuzzy logc to Pjs relty wer (clothg) fctory I Mosul. Fuzzy set through represet ttrctve tool to d reserch producto geet whe the Dyc of the producto Evroet lted the specfcto of odel objectves costrts d the precse esureet of odel preters. Ebled us to pply the proposed odel to detere the tes of the pleetto of the ew product Pjs fctory clothes Mosul d through the detfcto of ctvtes the costtuet of ths Delph project d reltoshps precedece betwee the vrous ctvtes d the te requred to pleet ech of the ctvtes whch h bee detered by experts usg the Delph ethod where bee detfed te optstc d pessstc d ost lkely te d were the used Fuzzy logc to detere these tes d the detere the cost d the we clculte the crtcl pth whch cludes ll the crtcl ctvtes tht cuse dely whch the dely the copleto of the fl product s well s detfy tes of ccelertg d ssocted costs h reched set of coclusos d recoedtos. II. RELTED WORK Trdtolly schedulg theory hs bee cocered wth llocto of resources to tsks or ctvtes (Prker 995) [0]. O the re of schedulg fst progress cocerg odels d ethods hs bee de. Two techques of resource geet ely: 5 Vol. 7 Issue 4 pp

3 Itertol Jourl of dvces Egeerg & Techology Sept. 04. IJET ISSN: 96 - Resource-costred project schedulg ubguously tkes to ccout costrts o resources d s t schedulg the ctvtes subject to the precedece costrts d the resource costrts order to ze the project durto. Resource-costred project schedulg proble s oe of the ost ttrctble clsscl probles prctce. Multple exct techques d heurstcs d uber of et-heurstcs h bee ppled to solve the RCPSP proble. - Resource levelg tkes to ccout the superorty costrts betwee the ctvtes d s t copletg the project wth ts due dte wth resource usge whch s s leveled s possble throughout the project durto.( Herroele 007) []. Severl studes h vestgted the cse where ctvty tes project re pproxtely kow d ore pproprtely represeted by fuzzy sets rther th crsp ubers. ( Lorterpog P. & Moselh O ) []. (D. Dubos H. Frger V. Glvgoo ) [6]. I specfc the probles of coputg the tervls of possble vlues of the ltest strtg tes d flots of ctvtes wth vgue durtos represeted by fuzzy or tervl ubers h fscted tesvely ttetos d y solutos ethods h bee suggested. (P. Zelsk ) [8].(D. Dubos H. Prde ) [5]. Most of the re strght forwrd postpoeets of deterstc CPM. They re ly bsed o the CPM wth foruls for the forwrd d bckwrd recursos whch the deterstc ctvty tes re replced wth the fuzzy ctvty tes. However s oted by Zelsk [] the bckwrd recurso fls to copute the sets of possble vlues of the ltest strtg tes d flots of ctvtes. Moreover for the se pth dfferet deftos of the fuzzy crtcl pth gve dfferet esttos of the grde of crtclty. Dubos et l. proposed severl heurstcs for coputg the sets of possble vlues of the ltest strtg tes d flots of ctvtes usg rgorous forulzto of fuzzy PERT. Zelsk [] developed ew polyol lgorths for deterg the tervls of the ltest strtg tes the geerl etwork. Chs d Zelsk [] dscussed the coplexty of crtclty Chs d Zelsk [] proposed turl geerlzto of the crtclty cocept for project etworks wth tervl d fuzzy ctvty tes whch two ethods of clcultg the degree of possble crtclty d soe results re provded. The dvtge of ths ethod s tht t prevets fuzzy ubers fro gettg lrger d lso the result of subtrcto of ech fuzzy uber fro tself s crsp zero []. (C.T. Che et. l.)[] proposed ethod to del wth copleto te geet d the crtcl degrees of ll ctvtes for project etwork[] []. Che d Hug[] lso proposed pproch usg postve trgulr fuzzy uber. Ths ethod however does ot support bckwrd pss clcultos drect er slr to tht used the forwrd pss. Ths s ly due to the fct tht fuzzy subtrcto s ot proportote to the verse of fuzzy ddto.therefore ths ethod s cpble of clcultg project chrcterstcs such s the ltest tes. (K. Ush Mdhur S. Sresh d N. Rv Shkr 0 0 4) [7]. V Drop d Kotoz clude the two sded power (TSP) Dstrbuto the PERT ethodology kg use of the dvtges tht ths four- preter dstrbuto offers. I order to be copletely detered dstrbuto of ths type eeds the se s the Bet Dstrbuto ew deprtet fro the three usul vlues optstc pessstc ost lkely (v drop d Kotoz 00 b 56([0] (J.Jssb d S. Kh Mohd ) [6] Itroduce ew pproch for predctg d lyss of the project durto usg fuzzy durtos d fuzzy possbltes the Bet probblty s chged to bet probblty dstrbuto fucto().(yo et l. ) [7].used sged dstce rkg of fuzzy ubers to fd crtcl pth fuzzy project Network. (Che et l.) []used defuzzfcto ethod to fd possble crtcl pths fuzzy project Network.(S. Chs d zelsk) []. ssue tht the cooperto te of ech ctvty c be represeted s crsp vlue tervl or fuzzy uber. (D. Dubos H. Frger V. Glvgoo) []. III. FUZZY PERT FOR TIME FORECSTING We propose to prove PERT by usg Fuzzy Delph ethod s geerlzto of the clsscl ethod for log rge forecstg geet scece kow s Delph ethod. It ws developed 5 Vol. 7 Issue 4 pp

4 Itertol Jourl of dvces Egeerg & Techology Sept. 04. IJET ISSN: 96 the sxtes by the Rd Corporto t St Moc Clfor. The e coes fro the cet Greek orcles of Delph who were fous for forecstg the future. The essece of Delph ethod c be descrbed s follows:. Experts wth hgh equlztos regrdg subject re requested to gve ther opo seprtely d depedetly of ech other bout the relzto dtes of cert evet sy scece techology or busess. They y be sked to forecst the geerl stte of the rket ecooy techologcl dvces etc.. The dt whch h subjectve chrcter re lyzed sttstclly by fdg ther rge d the results re coucted to the experts.. The experts revew the results d provde ew esttes whch re lyzed sttstclly d set g to the experts for estto. Ths process could be repeted g d g utl the outcoe coverges to resoble soluto fro the pot of vew of ger or goverg body. Usully two or three repettos re suffcet. The Fuzzy Delph Method s lytcl ethod bsed o the Delph Method tht drws o the des of the Fuzzy Theory. The Delph Method s type of collectve decso-kg ethod (Lstoe & Turoff 00) [0]. wth severl rouds of oyous wrtte questore surveys coducted to sk for experts opo. s drect predcto ethod bsed o the expert judget d expert eetg vestgto ethod t possesses the followg propertes:. oyty: The experts volved wth the predcto process do ot see ech other re oyous d do t kow how y experts re volved. Ths helps to prevet the fro fluecg d ecourges objectvty.. Feedbck: The survey feedbck gves the prtcpts de bout the des the group. They c the drw fro t forto relevt to the ke ew judget d the subt t to the group g.. Sttstcl: The expert opos re processed sttstclly d sples grph produced wth the expert opo frequeces rryed chroologclly. The top s the jorty cosesus (50% experts) represetg the predcto te s opo. The top d botto qurter percetle (ech represetg 5% of the experts) represet the predcto devto. 4. Covergece: Through ultple reverse feedbck ke the fl predcto results coverge. (Yu- Feg HoHso-L Wg) [8]. However log rge forecstg probles volve precse d -coplete dt forto. lso the decsos de by the experts rely o ther dvdul copetece d re subjectve. Therefore t s ore pproprte the dt to be preseted by fuzzy ubers sted of crsp ubers. Especlly trgulr ubers re very sutble for tht purpose sce they re costructed esly by specfyg three vlues the sllest the lrgest d the ost plusble. Isted of crsp rge the lyss wll be bsed o fuzzy rge. The Fuzzy Delph ethod ws troduced by Kuf d Gupt (988]. It cossts of the followg steps[9] [] : Step : Experts E.. re sked to provde the possble relzto dtes of cert evet scece techology or busess ely: the erlest dte the ost plusble dte d the ltest dte. The dt gve by the experts E re preseted the for of trgulr ubers ( )... () Step : Frst the rge (e) ( M ) of ll s coputed ( M ) ( 5 Vol. 7 Issue 4 pp ). () The for ech expert E the devto betwee d s coputed. It s trgulr uber defed by ( ) ( M M M M ) ()

5 Itertol Jourl of dvces Egeerg & Techology Sept. 04. IJET ISSN: 96 The devto - s set bck to the expert E for reexto. Step : Ech expert E presets ew trgulr uber : B ( b b b ) M... (4) Ths process strtg wth Step s repeted. The trgulr rge B s clculted ccordg to forul : ( ( ) wth the dfferece tht ow M c ( ( c 54 Vol. 7 Issue 4 pp ) M re substtuted correspodgly by c ) (5) b b M ecessry ew trgulr ubers re geerted d ther rge C s clculted. The process could be repeted g d g utl two successve es B C becoe resobly close. Step 4 : t lter te the forecstg y be reexed by the se process f there s portt forto vlble due to ew dscoveres. Fuzzy Delph ethod s typcl ult-experts forecstg procedure for cobg vews d opos. We propose to prove PERT by usg Fuzzy Delph For esttg t t M t for ech ctvty. Experts represet ech te for ctvty copleto by trgulr ubers of the type (t t M t ). For ech ctvty the trgulr rge uber s clculted. To defed crsp ctvty te vlue we h to use defuzzffcto Sply we y tke the xzg vlue (X x M) or resort to the rge foruls (5)()-(). () () () () () () Wth the dfferece. tht ow re substtuted Correspodgly by b b b. If ecessry ew trgulr ubers c () () () () ( c c c re geerted d ther rge C s clculted The process Could be repeled g d g utl two successve es Bre Bre Cre. Becoe resobly close X x M. (6) () M...(7) () M (8) () X MX 4 () () X M () X MX 6 c M 4 ) (9) The project schedulg reserch d developet of ew product (Pjs) redy wer fctory Mosul. I order to coplete ths project we wll eed forto fro the fctory reserch d developet product testg ufcturg cost esttg d rket reserch groups. Tble () Descrpto of the Pjs producto process ctvty Descrpto Iedte predecessors Optstc Most probble Pessstc R& D Product desg B Pl rket reserch C Routg 4 D Buld prototype odel 4 E Prepre rketg 4 brochure F Cost estte C.5.5 G Prelry product testg D b If

6 Itertol Jourl of dvces Egeerg & Techology Sept. 04. IJET ISSN: 96 H Mrket Surrey BE I Prcg d Fr cost H.5 report J Fl report FGI Tble () Iproved etwork Plg odel usg Fuzzy PERT ctvty Norl te Crsh te Norl Cost c x Crsh cost C C x Cost slope E H I J Tble () Norl d crsh te d cost of crtcl ctvty E H I J The cost slope coeffcet clculted for ctvty gves K ctvty Norl te Crsh te Norl Cost $ Crsh cost C T x x ctvty te C C c x c x ctvty Tble (4) Pjs Network PERT clculto verge ctvty T T T B B B C T C T D D D E T E F T F G Optstc te t Most lkely te t Pessstc te T T.5 5 C T 4 T 4 E T T G G H T H I F T.5.5 T H T T I I J T J T J T Vol. 7 Issue 4 pp

7 Itertol Jourl of dvces Egeerg & Techology Sept. 04. IJET ISSN: 96 C F B 5.5 E 4 D.5 H G Fg () Pjs etwork Ech trgulr uber represetg the rge ctvty te ( the secod colu lbel 4 ) hs to be defuzzfed to produce crsp uber expressg the ctvty copleto toe. These Trgulr uber re lost cetrl fro hece we c pply forul ( 6 ) for defuzzcto whch produces the uber the fourth colu lbeled T M the use of foruls (789) gves close results. The defuzzfed tes c be preseted proved etwork plg odel ( fg ) The totl te for project copleto expressed by the trgulr uber T s the te for copletos the ctvtes o the Crtcl pth. ddg the ubers o the three Colus Tble 4 desgted by t t M t excludg those belogg to ctvtes B d D gves T T T E T H T I T J (5.59) Hece the project durto wll be betwee dys d 9 dys ost lkely 5.5 dys. The lst uber 5.5 dys s the result of defzzcto geertes the Crsp Nubers : () T x () T x () T x I They re close to ( 7.75 ) s cocluso the copleto te for the project s forecsted to be ( 7.75 ) dys If the trgulr uber re s close to cetrl trgulr uber eg tht s lost the ddle of ( ) the (6 ) gves good crsp vlue X x. the the three rge foruls () () (789 ) lso produce uber ( xzg vlues ) close to hece there s o eed to be used usully pplctos the trgulr rge ubers pper to be cetrl for. however the experts delg wth gve stuto h to use ther judget whe selectg xzg vlue Followg PERT we troduce the ottos t-orl te for copletg ctvty. C orl cost for copletg ctvty C c Crsh cost ( cresed cost ) for copletg ctvty crsh te. We llustrte here Fuzzy PERT for Shorteg project legth o the troduce ew product. To shorte project legth es to shorte the te for copleto the crtcl pth.e to shorte the totl te T x 7 dys.shorteg durto te of ctvtes ot o the crtcl pth d ( D G J) ( B H I J ). Wll ot reduce T x However soe resources llocted to (CFJ) (DGJ) ( B H I J ) could be rellocted to ctvtes ( E H I J ) order to shorte ther copleto te ( terl rellocto ). Here we cosder shorteg ctvtes te o the crtcl pth wthout terl rellocto of recourses. The orl te t for ech ctvty s lredy estted t s the te T x t show tble.7 the fourth colu. J 56 Vol. 7 Issue 4 pp

8 Itertol Jourl of dvces Egeerg & Techology Sept. 04. IJET ISSN: 96 The crsh te t c the orl cost C d the crsh Cost C c for ech ctvty could be forecsted Slrly to the orl te t pplyg Fuzzy Delph The defuzzfed vlues bsed o forul ( 6 ) wll be deoted by t c x d C c x correspodgly. Here estto s preseted for the orl Cost C c c be estted slrly. Three experts re sked to estte the orl Cost for copleto ctvty the for of trgulr uber C C ( C C C ) where C s Cost d C s the hghest cost. ssue the experts esttes re those tble 5. ( M ) ( () X x M () X x () X x () X x 4 4 Expert 6 Tble 5 Experts estte for copleto ctvty t orl Cost C Lowest cost C Most lkely cost C Hghest cost C N E E E totl Usg forul ( step ) gves the rge orl cost three dgts to or 000 gves c c ( ) re the decls d roudg off the lst Further groups of experts forecst t c C c d C c for the other ctvtes o the crtcl pth the defuzzuffy d roud off s bove. ssue tht the defuzzfed results for the ctvtes o the crtcl pth re those preseted tble (6). To select ctvtes for shorteg durto te PERT uses the oto of cost slope wth our ottos t s preseted s ( see fg ) K cost slop C t x C x t c c x x. () Fg () shows tht s orl te t x decreses pprochg the crsh te t c x the orl cost C x creses pprochg the crsh cost C c x. The cost slope fg () clculted for ctvty gve : 57 Vol. 7 Issue 4 pp

9 Itertol Jourl of dvces Egeerg & Techology Sept. 04. IJET ISSN: 96 ctvty cost Crsh pot C c x.. C x t c x Norl pot T x ctvty durto Fg() Cost Slope Tble 6 Defuzzfed orl d crsh tes d cost for ctvtes New product plg ctvty Norl Te t x Te t c x Cost C x Crsh cost C c x Cost slope $ per dy E H I J The cost slope coeffcet for the other ctvtes re Clculted slrly. the results re dsplyed the lst colu of tble 6. I geerl ddtol resources should be ppled frst to ctvtes wth sllest cost slope. The ctvtes tble 6 re rked tble 7 ccordg to ther cost slopes fro the sllest to be the lrgest. Tble: 7 Rked ctvtes ccordg to cost slope. Rk ctvty Reduced te T x - t c x ddtol cost C x-c x Cost slope $ per dy H J I E ssue tht the geet wts to reduce the legth of the project fro 7 dys to 07 dys reducto of (0) dys of the ctvtes o the crtcl pth ctvty H rked frst ( Tble 7 ) hs the 58 Vol. 7 Issue 4 pp

10 Itertol Jourl of dvces Egeerg & Techology Sept. 04. IJET ISSN: 96 sllest K $ 000 per dy By vestg $ 0000 the te durto for ctvty H c be reduced by 0 dys. further reducto of ( 0 ) dys ust be foud good cddte s ctvty rked wll cost o Tble 7. 0 dy reducto wll cost dollrs However f there re soe reso gst shorteg the ctvty toe for H or for or for both other Optos ust be exed. IV. CONCLUSION PERT ethodology s to estte the e d the vrce of rdo vrble of whch oly the vlues (pessstc) (ost lkely) d p (optstc) suppled by expert re Kow d for whch uderlyg bet dstrbuto s ssued.to obt the estte t the e t s oly requred tht ths (stdrdzed bet ) dstrbuto s esokurtc (B ) or of costt vrce(-/6).the gol of ths pper s to get optl PERT susg Fuzzy Logc. The ssues cosdered whle selectg PERT s totl u cost tke for project to coplete power requred to coplete the project fucto pots requred to coplete t.ll three costrts re crshed te bss.the costrts re crshed by cosderg the crshed te oly.now the optl PERT s to be selected usg Fuzzy Logc. We developed fuzzy expert syste whch s used select optl PERT chrt. optlty s descrbed here wth the rules of Fuzzy Logc. We h used ew defuzzfcto forul for trpezodl fuzzy uber d ppled to the flot te for ech ctvty the fuzzy project etwork to fd the crtcl pth. Cosderg the proble of Pjs' project geet the redyde fctory Mosul ths reserch s lso devoted o the fuzzy PERT/cost lyss of ctvty durtos. the the crtcl pth of the fuzzy PERT/cost wll be cheved. REFERENCES [] buj H. N. Dozz S.p. d bourzk S. M. 994 project Mgeet Wley New York. [] C.T. Che S.F. Hug pplyg fuzzy ethod for esurg crtclty Project etwork Iforto sceces 77 (007) [] Chs S. P. Zelsk 00crtcl pth lyss the etwork wth fuzzy tsk te Fuzzy sets d systes0-6) [4] Chs S. Dubos D. Zelsk P. 00. Necessry crtclty the etwork wth precse ctvty tes. IEEE Trsctos o Systes M d Cyberetcs [5] Che S. M. d Chg T.H. 00 Fdg Multple possble crtcl pths usg Fuzzy PERT IEEE Trsctos o systes d cyberetcs- prt :systes d hus vol.o.6. [6] Dubos D. Frger V vgoo H.V. 00 o ltest strtg tes d flots tsk etworks wth ll-kow durtos. Europe Jourl of opertol reserch 450 t [7] Dubos D. d Prde H. 988 possblty theory : pproch to coputerzed processg of ucertty ple N.4 [8] D. Dubos H. Prde (978) Opertos o fuzzy ubers Itertol Jourl of systes scece [9] Dvs Mrk M. Nchols J qulo d Rchrd B Chse 00 Fudetl of Operto Mgeet 4th McGrw Hll Irw P 94. [0] Drop JR V Kotoz S (00b) the stdrd two sded power dstrbuto d ts propertes :wth pplctos fcl egeerg the erc sttstc :90-99 p56. [] N. Rv Shkr V. Sreesh d P. Ph Bush Ro lytcl Method for Fdg Crtcl Pth Fuzzy Project Network. [] George Bojdzev & Mr Bojdzev 007 dvces Fuzzy syste : pplcto d Theory Fuzzy logc for Busess fce d geet d ed. vol.. World Scetfc publsher Co. Pte. Ltd. p78. [] Guffrd lfred L. d Ng Rkesh. Fuzzy set theory pplctos producto Mgeet Reserch Lterture Surrey p.-. [4] Hpke M. d Slowsk R. 996 Fuzzy prorty heurstcs for project schedulg fuzzy sets d systes vol. 8 o.pp [5] Jes L.Rggs 987 producto syste : plg lyss d cotrol 4th ed joh Wley & Sos New York. [6] Jssb J. d Mohd S.Kh ew pproch for predctg project durto usg Bet shpe ebershp fucto sd sulto. 59 Vol. 7 Issue 4 pp

11 Itertol Jourl of dvces Egeerg & Techology Sept. 04. IJET ISSN: 96 [7] K. Ush Mdhur S. Sresh d N. Rv Shkr 0 New pproch for Solvg Fuzzy Crtcl Pth Proble Usg L-L Fuzzy Nubers [8] Kuf d Gupt M.M (985) Fuzzy thetcl Models Egeerg d Mgeet Scece. [9] Kuf.d Gupt M.M 988 Itroducto to Fuzzy rthetc : theory d pplcto v o strd Rehold New York. [0] Lstoe H.. & Turoff M. ed 00 The Delph Method: Techques d pplctos ISBN [] Loots F.989. Stochstc d fuzzy PERT. Europe Jourl of Opertol Reserch [] Lorterpog P. & MoselhO. (996) Project-etwork lyss usg fuzzy sets theory. Jourl of Costructo Egeerg Mgeet [] Mlek Erw Hs d l Hït. Fuzzy tctcl project plg: pplcto to helcopter tece. I the 6th IEEE Itertol Coferece o Eergg Techologes d Fctory utoto ETF'0 Toulouse Frce Septeber 0. (Cted o pges ). [4] Mo D. L. Chegs CH. d Lu H. C. 995 pplcto of fuzzy dstrbuto o project geet fuzzy sets d systes vol. 7 o.pp7-4. [5] P. Zelsk (005) O coputg the ltest strtg tes d flots of ctvtes etwork wth precse durtos Fuzzy Sets d Systes [6] Rvdr Phlps Do T. & Jes J Solberg 987 opertos reserch Prcples d ed. Joh Wley & Sos M.Y. [7] YO J.S. d L F.T. 000 Fuzzy crtcl pth ethod Bsed o Sged Dstce rkg of fuzzy ubers JIEEE Trsctos o systes d cyberetcs prt. Systes d Hus Vol.0Nol 0:76-8. [8] Yu-Feg HoHso-L Wg pplyg Fuzzy Delph Method to Select the Vrbles of Sustble Urb Syste Dycs Model. [9] Zdeh. L. (98) the Role of Fuzzy logc the geet of ucertty Expert systes Fuzzy sets d syste pp UTHORS THEIR HMED SDOON L SMMN ws bor MOSUL IRQ. He receved the Bchelor 984 degree fro the uversty of MOSUL IRQ d the ster yer 987 degree fro the uversty of MOSULIRQ both busess geet d the Ph.D. yer 008 degree fro the uversty of MOSULIRQ.He s curretly ss. Prof. geet forto syste the college of Busess dstrto uversty of MOSUL. Hs reserch terests clude operto geet d opertos reserch. 60 Vol. 7 Issue 4 pp

Sequences and Series

Sequences and Series Secto 9. Sequeces d Seres You c thk of sequece s fucto whose dom s the set of postve tegers. f ( ), f (), f (),... f ( ),... Defto of Sequece A fte sequece s fucto whose dom s the set of postve tegers.

More information

n Using the formula we get a confidence interval of 80±1.64

n Using the formula we get a confidence interval of 80±1.64 9.52 The professor of sttistics oticed tht the rks i his course re orlly distributed. He hs lso oticed tht his orig clss verge is 73% with stdrd devitio of 12% o their fil exs. His fteroo clsses verge

More information

A Study of Unrelated Parallel-Machine Scheduling with Deteriorating Maintenance Activities to Minimize the Total Completion Time

A Study of Unrelated Parallel-Machine Scheduling with Deteriorating Maintenance Activities to Minimize the Total Completion Time Joural of Na Ka, Vol. 0, No., pp.5-9 (20) 5 A Study of Urelated Parallel-Mache Schedulg wth Deteroratg Mateace Actvtes to Mze the Total Copleto Te Suh-Jeq Yag, Ja-Yuar Guo, Hs-Tao Lee Departet of Idustral

More information

Redundant Virtual Machine Placement for Fault-tolerant Consolidated Server Clusters

Redundant Virtual Machine Placement for Fault-tolerant Consolidated Server Clusters Redudt Vrtul Mche Plceet for Fult-tolert Cosoldted Server Clusters Fuo Mchd, Mshro Kwto d Yoshhru Meo Servce Pltfors Reserch Lbortores, NEC Cororto 753, Shoube, Nkhr-ku, Kwsk, Kgw 2-8666, J {h-chd@b, -kwto@,

More information

Present and Future Value Formulae for Uneven Cash Flows Based on Performance of a Business

Present and Future Value Formulae for Uneven Cash Flows Based on Performance of a Business Itertol Jourl of Bkg d Fce Volue 8 Issue Artcle 0--0 reset d Future Vlue Forule for Ueve Csh Flows Bsed o erforce of Busess Aeh Tefer Tesse Costructo d Busess Bk, Etho, [email protected] Follow ths d ddtol

More information

A MODEL FOR AIRLINE PASSENGER AND CARGO FLIGHT SCHEDULING

A MODEL FOR AIRLINE PASSENGER AND CARGO FLIGHT SCHEDULING A MODEL FOR AIRLINE PASSENGER AND CARGO FLIGHT SCHEDULING Shgyo YAN Yu-Hsu CHEN Professor Mster Deprtet of Cvl Egeerg Deprtet of Cvl Egeerg Ntol Cetrl Uversty Ntol Cetrl Uversty No300, Jhogd Rd, Jhogl

More information

How To Make A Profit From A Website

How To Make A Profit From A Website Mg Koledge-Shrg Stes for Vrl Mretg Mtthe Rchrdso d edro Dogos Deprtet of Coputer Scece d Egeerg Uversty of Wshgto Box 3535 Settle, WA 9895-35 {ttr,pedrod}@cs.shgto.edu ABSTRACT Vrl retg tes dvtge of etors

More information

Fuzzy Task Assignment Model of Web Services Supplier in Collaborative Development Environment

Fuzzy Task Assignment Model of Web Services Supplier in Collaborative Development Environment , pp.199-210 http://dx.do.org/10.14257/uesst.2015.8.6.19 Fuzzy Task Assget Model of Web Servces Suppler Collaboratve Developet Evroet Su Ja 1,2, Peg Xu-ya 1, *, Xu Yg 1,3, Wag Pe-e 2 ad Ma Na- 4,2 1. College

More information

A Framework for Intelligent Decision Support System for Traffic Congestion Management System

A Framework for Intelligent Decision Support System for Traffic Congestion Management System Egeerg 2010 2 **-** do:10.4236/eg.2010.24037 Publshed Ole Aprl 2010 (http://www. ScRP.org/jourl/eg) 41 A Frework for Itellget Decso Support Syste for rffc Cogesto Mgeet Syste Abstrct Mohd K. Hs Deprtet

More information

APPENDIX III THE ENVELOPE PROPERTY

APPENDIX III THE ENVELOPE PROPERTY Apped III APPENDIX III THE ENVELOPE PROPERTY Optmzato mposes a very strog structure o the problem cosdered Ths s the reaso why eoclasscal ecoomcs whch assumes optmzg behavour has bee the most successful

More information

Software Size Estimation in Incremental Software Development Based On Improved Pairwise Comparison Matrices

Software Size Estimation in Incremental Software Development Based On Improved Pairwise Comparison Matrices Computer Scece Systems Bology Reserch Artcle Artcle Ocheg d Mwg, 204, 7:3 http://d.do.org/0.472/csb.0004 Ope Ope Access Softwre Sze Estmto Icremetl Softwre Developmet Bsed O Improved Prwse Comprso Mtrces

More information

DISTANCE MEASURE FOR ORDINAL DATA *

DISTANCE MEASURE FOR ORDINAL DATA * ARGUMENTA OECONOMICA No (8) 999 PL ISSN 33-5835 Mre Wes DISTANCE MEASURE FOR ORDINAL DATA * The study cosders the proe of costructo esures of srty for ord dt. The ord chrcter of the dt requred the ppcto

More information

Numerical Comparisons of Quality Control Charts for Variables

Numerical Comparisons of Quality Control Charts for Variables Global Vrtual Coferece Aprl, 8. - 2. 203 Nuercal Coparsos of Qualty Cotrol Charts for Varables J.F. Muñoz-Rosas, M.N. Pérez-Aróstegu Uversty of Graada Facultad de Cecas Ecoócas y Epresarales Graada, pa

More information

IDENTIFICATION OF THE DYNAMICS OF THE GOOGLE S RANKING ALGORITHM. A. Khaki Sedigh, Mehdi Roudaki

IDENTIFICATION OF THE DYNAMICS OF THE GOOGLE S RANKING ALGORITHM. A. Khaki Sedigh, Mehdi Roudaki IDENIFICAION OF HE DYNAMICS OF HE GOOGLE S RANKING ALGORIHM A. Khak Sedgh, Mehd Roudak Cotrol Dvso, Departmet of Electrcal Egeerg, K.N.oos Uversty of echology P. O. Box: 16315-1355, ehra, Ira [email protected],

More information

16. Mean Square Estimation

16. Mean Square Estimation 6 Me Sque stmto Gve some fomto tht s elted to uow qutty of teest the poblem s to obt good estmte fo the uow tems of the obseved dt Suppose epeset sequece of dom vbles bout whom oe set of obsevtos e vlble

More information

1. The Time Value of Money

1. The Time Value of Money Corporate Face [00-0345]. The Tme Value of Moey. Compoudg ad Dscoutg Captalzato (compoudg, fdg future values) s a process of movg a value forward tme. It yelds the future value gve the relevat compoudg

More information

An IMM Algorithm for Tracking Maneuvering Vehicles in an Adaptive Cruise Control Environment

An IMM Algorithm for Tracking Maneuvering Vehicles in an Adaptive Cruise Control Environment 31 Itertol Jourl of Cotrol, Yog-Shk Automto, Km d Keum-Shk d Systems, Hog vol. 2, o. 3, pp. 31-318, September 24 A IMM Algorthm for Trckg Meuverg Vehcles Adptve Cruse Cotrol Evromet Yog-Shk Km d Keum-Shk

More information

IMPLEMENTATION IN PUBLIC ADMINISTRATION OF MEXICO GOVERNMENT USING GAMES THEORY AND SOLVING WITH LINEAR PROGRAMMING

IMPLEMENTATION IN PUBLIC ADMINISTRATION OF MEXICO GOVERNMENT USING GAMES THEORY AND SOLVING WITH LINEAR PROGRAMMING Itertol Jourl of Advces Egeerg & Techolog, J., 05. IJAET ISSN: 96 IMPLEMENTATION IN PUBLIC ADMINISTRATION OF MEICO GOVERNMENT USING GAMES THEORY AND SOLVING WITH LINEAR PROGRAMMING Frcsco Zrgoz Huert.

More information

ANOVA Notes Page 1. Analysis of Variance for a One-Way Classification of Data

ANOVA Notes Page 1. Analysis of Variance for a One-Way Classification of Data ANOVA Notes Page Aalss of Varace for a Oe-Wa Classfcato of Data Cosder a sgle factor or treatmet doe at levels (e, there are,, 3, dfferet varatos o the prescrbed treatmet) Wth a gve treatmet level there

More information

Stock Index Modeling using EDA based Local Linear Wavelet Neural Network

Stock Index Modeling using EDA based Local Linear Wavelet Neural Network Stoc Idex odelg usg EDA bsed Locl Ler Wvelet Neurl Networ Yuehu Che School of Iformto Scece d Egeerg J Uversty Jwe rod 06, J 250022, P.R.Ch E-ml: [email protected] Xohu Dog School of Iformto Scece d Egeerg

More information

CHAPTER 2. Time Value of Money 6-1

CHAPTER 2. Time Value of Money 6-1 CHAPTER 2 Tme Value of Moey 6- Tme Value of Moey (TVM) Tme Les Future value & Preset value Rates of retur Autes & Perpetutes Ueve cash Flow Streams Amortzato 6-2 Tme les 0 2 3 % CF 0 CF CF 2 CF 3 Show

More information

Simple Linear Regression

Simple Linear Regression Smple Lear Regresso Regresso equato a equato that descrbes the average relatoshp betwee a respose (depedet) ad a eplaator (depedet) varable. 6 8 Slope-tercept equato for a le m b (,6) slope. (,) 6 6 8

More information

THE well established 80/20 rule for client-server versus

THE well established 80/20 rule for client-server versus IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, ACCEPTED FOR PUBLICATION 1 Optml Fuctolty Plcemet for Multply Servce Provder Archtectures Ios Pppgotou, Studet Member, IEEE, Mtths Fler, Member, IEEE,

More information

A Fast Clustering Algorithm to Cluster Very Large Categorical Data Sets in Data Mining

A Fast Clustering Algorithm to Cluster Very Large Categorical Data Sets in Data Mining A Fast Clusterg Algorth to Cluster Very Large Categorcal Data Sets Data Mg Zhexue Huag * Cooperatve Research Cetre for Advaced Coputatoal Systes CSIRO Matheatcal ad Iforato Sceces GPO Box 664, Caberra

More information

Statistical Pattern Recognition (CE-725) Department of Computer Engineering Sharif University of Technology

Statistical Pattern Recognition (CE-725) Department of Computer Engineering Sharif University of Technology I The Name of God, The Compassoate, The ercful Name: Problems' eys Studet ID#:. Statstcal Patter Recogto (CE-725) Departmet of Computer Egeerg Sharf Uversty of Techology Fal Exam Soluto - Sprg 202 (50

More information

Abraham Zaks. Technion I.I.T. Haifa ISRAEL. and. University of Haifa, Haifa ISRAEL. Abstract

Abraham Zaks. Technion I.I.T. Haifa ISRAEL. and. University of Haifa, Haifa ISRAEL. Abstract Preset Value of Autes Uder Radom Rates of Iterest By Abraham Zas Techo I.I.T. Hafa ISRAEL ad Uversty of Hafa, Hafa ISRAEL Abstract Some attempts were made to evaluate the future value (FV) of the expected

More information

Optimal multi-degree reduction of Bézier curves with constraints of endpoints continuity

Optimal multi-degree reduction of Bézier curves with constraints of endpoints continuity Computer Aded Geometrc Desg 19 (2002 365 377 wwwelsevercom/locate/comad Optmal mult-degree reducto of Bézer curves wth costrats of edpots cotuty Guo-Dog Che, Guo-J Wag State Key Laboratory of CAD&CG, Isttute

More information

ADAPTATION OF SHAPIRO-WILK TEST TO THE CASE OF KNOWN MEAN

ADAPTATION OF SHAPIRO-WILK TEST TO THE CASE OF KNOWN MEAN Colloquum Bometrcum 4 ADAPTATION OF SHAPIRO-WILK TEST TO THE CASE OF KNOWN MEAN Zofa Hausz, Joaa Tarasńska Departmet of Appled Mathematcs ad Computer Scece Uversty of Lfe Sceces Lubl Akademcka 3, -95 Lubl

More information

Polyphase Filters. Section 12.4 Porat 1/39

Polyphase Filters. Section 12.4 Porat 1/39 Polyphase Flters Secto.4 Porat /39 .4 Polyphase Flters Polyphase s a way of dog saplg-rate coverso that leads to very effcet pleetatos. But ore tha that, t leads to very geeral vewpots that are useful

More information

Green Master based on MapReduce Cluster

Green Master based on MapReduce Cluster Gree Master based o MapReduce Cluster Mg-Zh Wu, Yu-Chag L, We-Tsog Lee, Yu-Su L, Fog-Hao Lu Dept of Electrcal Egeerg Tamkag Uversty, Tawa, ROC Dept of Electrcal Egeerg Tamkag Uversty, Tawa, ROC Dept of

More information

The Gompertz-Makeham distribution. Fredrik Norström. Supervisor: Yuri Belyaev

The Gompertz-Makeham distribution. Fredrik Norström. Supervisor: Yuri Belyaev The Gompertz-Makeham dstrbuto by Fredrk Norström Master s thess Mathematcal Statstcs, Umeå Uversty, 997 Supervsor: Yur Belyaev Abstract Ths work s about the Gompertz-Makeham dstrbuto. The dstrbuto has

More information

Numerical Methods with MS Excel

Numerical Methods with MS Excel TMME, vol4, o.1, p.84 Numercal Methods wth MS Excel M. El-Gebely & B. Yushau 1 Departmet of Mathematcal Sceces Kg Fahd Uversty of Petroleum & Merals. Dhahra, Saud Araba. Abstract: I ths ote we show how

More information

Maintenance Scheduling of Distribution System with Optimal Economy and Reliability

Maintenance Scheduling of Distribution System with Optimal Economy and Reliability Egeerg, 203, 5, 4-8 http://dx.do.org/0.4236/eg.203.59b003 Publshed Ole September 203 (http://www.scrp.org/joural/eg) Mateace Schedulg of Dstrbuto System wth Optmal Ecoomy ad Relablty Syua Hog, Hafeg L,

More information

The impact of service-oriented architecture on the scheduling algorithm in cloud computing

The impact of service-oriented architecture on the scheduling algorithm in cloud computing Iteratoal Research Joural of Appled ad Basc Sceces 2015 Avalable ole at www.rjabs.com ISSN 2251-838X / Vol, 9 (3): 387-392 Scece Explorer Publcatos The mpact of servce-oreted archtecture o the schedulg

More information

Integrating Production Scheduling and Maintenance: Practical Implications

Integrating Production Scheduling and Maintenance: Practical Implications Proceedgs of the 2012 Iteratoal Coferece o Idustral Egeerg ad Operatos Maagemet Istabul, Turkey, uly 3 6, 2012 Itegratg Producto Schedulg ad Mateace: Practcal Implcatos Lath A. Hadd ad Umar M. Al-Turk

More information

10.5 Future Value and Present Value of a General Annuity Due

10.5 Future Value and Present Value of a General Annuity Due Chapter 10 Autes 371 5. Thomas leases a car worth $4,000 at.99% compouded mothly. He agrees to make 36 lease paymets of $330 each at the begg of every moth. What s the buyout prce (resdual value of the

More information

We will begin this chapter with a quick refresher of what an exponent is.

We will begin this chapter with a quick refresher of what an exponent is. .1 Exoets We will egi this chter with quick refresher of wht exoet is. Recll: So, exoet is how we rereset reeted ultilictio. We wt to tke closer look t the exoet. We will egi with wht the roerties re for

More information

Load and Resistance Factor Design (LRFD)

Load and Resistance Factor Design (LRFD) 53:134 Structural Desg II Load ad Resstace Factor Desg (LRFD) Specfcatos ad Buldg Codes: Structural steel desg of buldgs the US s prcpally based o the specfcatos of the Amerca Isttute of Steel Costructo

More information

A New Bayesian Network Method for Computing Bottom Event's Structural Importance Degree using Jointree

A New Bayesian Network Method for Computing Bottom Event's Structural Importance Degree using Jointree , pp.277-288 http://dx.do.org/10.14257/juesst.2015.8.1.25 A New Bayesa Network Method for Computg Bottom Evet's Structural Importace Degree usg Jotree Wag Yao ad Su Q School of Aeroautcs, Northwester Polytechcal

More information

Co-author: Jakub Mikolášek Institute of Economic Studies, Faculty of Social Sciences, Charles University, Prague.

Co-author: Jakub Mikolášek Institute of Economic Studies, Faculty of Social Sciences, Charles University, Prague. tle: Soclly Optml to of Bds Correspodg uthor: Krel Jd Fculty of Fce d Accoutg, Uversty of Ecoomcs, rgue, Isttute of Ecoomc Studes, Fculty of Socl Sceces, Chrles Uversty, rgue, d CERGE-EI. Address for correspodece:

More information

Preprocess a planar map S. Given a query point p, report the face of S containing p. Goal: O(n)-size data structure that enables O(log n) query time.

Preprocess a planar map S. Given a query point p, report the face of S containing p. Goal: O(n)-size data structure that enables O(log n) query time. Computatoal Geometry Chapter 6 Pot Locato 1 Problem Defto Preprocess a plaar map S. Gve a query pot p, report the face of S cotag p. S Goal: O()-sze data structure that eables O(log ) query tme. C p E

More information

Generalized solutions for the joint replenishment problem with correction factor

Generalized solutions for the joint replenishment problem with correction factor Geerzed soutos for the ot repeshet proe wth correcto fctor Astrct Erc Porrs, Roert Deer Ecooetrc Isttute, erge Isttute, Ersus Uversty Rotterd, P.O. Box 73, 3 DR Rotterd, he etherds Ecooetrc Isttute Report

More information

Chapter 3. AMORTIZATION OF LOAN. SINKING FUNDS R =

Chapter 3. AMORTIZATION OF LOAN. SINKING FUNDS R = Chapter 3. AMORTIZATION OF LOAN. SINKING FUNDS Objectves of the Topc: Beg able to formalse ad solve practcal ad mathematcal problems, whch the subjects of loa amortsato ad maagemet of cumulatve fuds are

More information

Automated Event Registration System in Corporation

Automated Event Registration System in Corporation teratoal Joural of Advaces Computer Scece ad Techology JACST), Vol., No., Pages : 0-0 0) Specal ssue of CACST 0 - Held durg 09-0 May, 0 Malaysa Automated Evet Regstrato System Corporato Zafer Al-Makhadmee

More information

of the relationship between time and the value of money.

of the relationship between time and the value of money. TIME AND THE VALUE OF MONEY Most agrbusess maagers are famlar wth the terms compoudg, dscoutg, auty, ad captalzato. That s, most agrbusess maagers have a tutve uderstadg that each term mples some relatoshp

More information

Chapter 3 0.06 = 3000 ( 1.015 ( 1 ) Present Value of an Annuity. Section 4 Present Value of an Annuity; Amortization

Chapter 3 0.06 = 3000 ( 1.015 ( 1 ) Present Value of an Annuity. Section 4 Present Value of an Annuity; Amortization Chapter 3 Mathematcs of Face Secto 4 Preset Value of a Auty; Amortzato Preset Value of a Auty I ths secto, we wll address the problem of determg the amout that should be deposted to a accout ow at a gve

More information

DECISION MAKING WITH THE OWA OPERATOR IN SPORT MANAGEMENT

DECISION MAKING WITH THE OWA OPERATOR IN SPORT MANAGEMENT ESTYLF08, Cuecas Meras (Meres - Lagreo), 7-9 de Septembre de 2008 DECISION MAKING WITH THE OWA OPERATOR IN SPORT MANAGEMENT José M. Mergó Aa M. Gl-Lafuete Departmet of Busess Admstrato, Uversty of Barceloa

More information

Projection model for Computer Network Security Evaluation with interval-valued intuitionistic fuzzy information. Qingxiang Li

Projection model for Computer Network Security Evaluation with interval-valued intuitionistic fuzzy information. Qingxiang Li Iteratoal Joural of Scece Vol No7 05 ISSN: 83-4890 Proecto model for Computer Network Securty Evaluato wth terval-valued tutostc fuzzy formato Qgxag L School of Software Egeerg Chogqg Uversty of rts ad

More information

A Parallel Transmission Remote Backup System

A Parallel Transmission Remote Backup System 2012 2d Iteratoal Coferece o Idustral Techology ad Maagemet (ICITM 2012) IPCSIT vol 49 (2012) (2012) IACSIT Press, Sgapore DOI: 107763/IPCSIT2012V495 2 A Parallel Trasmsso Remote Backup System Che Yu College

More information

Chapter Eight. f : R R

Chapter Eight. f : R R Chapter Eght f : R R 8. Itroducto We shall ow tur our atteto to the very mportat specal case of fuctos that are real, or scalar, valued. These are sometmes called scalar felds. I the very, but mportat,

More information

MATHEMATICS FOR ENGINEERING BASIC ALGEBRA

MATHEMATICS FOR ENGINEERING BASIC ALGEBRA MATHEMATICS FOR ENGINEERING BASIC ALGEBRA TUTORIAL - INDICES, LOGARITHMS AND FUNCTION This is the oe of series of bsic tutorils i mthemtics imed t begiers or yoe wtig to refresh themselves o fudmetls.

More information

Security Analysis of RAPP: An RFID Authentication Protocol based on Permutation

Security Analysis of RAPP: An RFID Authentication Protocol based on Permutation Securty Aalyss of RAPP: A RFID Authetcato Protocol based o Permutato Wag Shao-hu,,, Ha Zhje,, Lu Sujua,, Che Da-we, {College of Computer, Najg Uversty of Posts ad Telecommucatos, Najg 004, Cha Jagsu Hgh

More information

Graphs on Logarithmic and Semilogarithmic Paper

Graphs on Logarithmic and Semilogarithmic Paper 0CH_PHClter_TMSETE_ 3//00 :3 PM Pge Grphs on Logrithmic nd Semilogrithmic Pper OBJECTIVES When ou hve completed this chpter, ou should be ble to: Mke grphs on logrithmic nd semilogrithmic pper. Grph empiricl

More information

DlNBVRGH + Sickness Absence Monitoring Report. Executive of the Council. Purpose of report

DlNBVRGH + Sickness Absence Monitoring Report. Executive of the Council. Purpose of report DlNBVRGH + + THE CITY OF EDINBURGH COUNCIL Sickness Absence Monitoring Report Executive of the Council 8fh My 4 I.I...3 Purpose of report This report quntifies the mount of working time lost s result of

More information

A Single-Producer Multi-Retailer Integrated Inventory System with Scrap in Production

A Single-Producer Multi-Retailer Integrated Inventory System with Scrap in Production Research Joural of Appled Sceces, Egeerg ad Techology 5(4): 54-59, 03 ISSN: 040-7459; e-issn: 040-7467 Maxwell Scetfc Orgazato, 03 Subtted: July 09, 0 Accepted: August 08, 0 Publshed: February 0, 03 A

More information

A. Description: A simple queueing system is shown in Fig. 16-1. Customers arrive randomly at an average rate of

A. Description: A simple queueing system is shown in Fig. 16-1. Customers arrive randomly at an average rate of Queueig Theory INTRODUCTION Queueig theory dels with the study of queues (witig lies). Queues boud i rcticl situtios. The erliest use of queueig theory ws i the desig of telehoe system. Alictios of queueig

More information

Classic Problems at a Glance using the TVM Solver

Classic Problems at a Glance using the TVM Solver C H A P T E R 2 Classc Problems at a Glace usg the TVM Solver The table below llustrates the most commo types of classc face problems. The formulas are gve for each calculato. A bref troducto to usg the

More information

Developing a Fuzzy Search Engine Based on Fuzzy Ontology and Semantic Search

Developing a Fuzzy Search Engine Based on Fuzzy Ontology and Semantic Search 0 IEEE Iteratoal Coferece o Fuzzy Systes Jue 7-30, 0, Tape, Tawa Developg a Fuzzy Search Ege Based o Fuzzy Otology ad Seatc Search Le-Fu La Chao-Ch Wu Pe-Yg L Dept. of Coputer Scece ad Iforato Egeerg Natoal

More information

Banking (Early Repayment of Housing Loans) Order, 5762 2002 1

Banking (Early Repayment of Housing Loans) Order, 5762 2002 1 akg (Early Repaymet of Housg Loas) Order, 5762 2002 y vrtue of the power vested me uder Secto 3 of the akg Ordace 94 (hereafter, the Ordace ), followg cosultato wth the Commttee, ad wth the approval of

More information

On Error Detection with Block Codes

On Error Detection with Block Codes BULGARIAN ACADEMY OF SCIENCES CYBERNETICS AND INFORMATION TECHNOLOGIES Volume 9, No 3 Sofa 2009 O Error Detecto wth Block Codes Rostza Doduekova Chalmers Uversty of Techology ad the Uversty of Gotheburg,

More information

3 The Utility Maximization Problem

3 The Utility Maximization Problem 3 The Utility Mxiiztion Proble We hve now discussed how to describe preferences in ters of utility functions nd how to forulte siple budget sets. The rtionl choice ssuption, tht consuers pick the best

More information

STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS. x, where. = y - ˆ " 1

STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS. x, where. = y - ˆ  1 STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS Recall Assumpto E(Y x) η 0 + η x (lear codtoal mea fucto) Data (x, y ), (x 2, y 2 ),, (x, y ) Least squares estmator ˆ E (Y x) ˆ " 0 + ˆ " x, where ˆ

More information

An Approach to Evaluating the Computer Network Security with Hesitant Fuzzy Information

An Approach to Evaluating the Computer Network Security with Hesitant Fuzzy Information A Approach to Evaluatg the Computer Network Securty wth Hestat Fuzzy Iformato Jafeg Dog A Approach to Evaluatg the Computer Network Securty wth Hestat Fuzzy Iformato Jafeg Dog, Frst ad Correspodg Author

More information

Fault Tree Analysis of Software Reliability Allocation

Fault Tree Analysis of Software Reliability Allocation Fault Tree Aalyss of Software Relablty Allocato Jawe XIANG, Kokch FUTATSUGI School of Iformato Scece, Japa Advaced Isttute of Scece ad Techology - Asahda, Tatsuokuch, Ishkawa, 92-292 Japa ad Yaxag HE Computer

More information

Public Auditing Based on Homomorphic Hash Function in

Public Auditing Based on Homomorphic Hash Function in Publc Audtg Bsed o Homomorhc Hsh Fucto Secure Cloud Storge Shufe NIU, Cfe Wg, Xo DU Publc Audtg Bsed o Homomorhc Hsh Fucto Secure Cloud Storge Shufe NIU, Cfe Wg, 3 Xo DU, College of Comuter Scece d Egeerg,

More information

Approximation Algorithms for Scheduling with Rejection on Two Unrelated Parallel Machines

Approximation Algorithms for Scheduling with Rejection on Two Unrelated Parallel Machines (ICS) Iteratoal oural of dvaced Comuter Scece ad lcatos Vol 6 No 05 romato lgorthms for Schedulg wth eecto o wo Urelated Parallel aches Feg Xahao Zhag Zega Ca College of Scece y Uversty y Shadog Cha 76005

More information

n. We know that the sum of squares of p independent standard normal variables has a chi square distribution with p degrees of freedom.

n. We know that the sum of squares of p independent standard normal variables has a chi square distribution with p degrees of freedom. UMEÅ UNIVERSITET Matematsk-statstska sttutoe Multvarat dataaalys för tekologer MSTB0 PA TENTAMEN 004-0-9 LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK Multvarat dataaalys för tekologer B, 5 poäg.

More information

Constrained Cubic Spline Interpolation for Chemical Engineering Applications

Constrained Cubic Spline Interpolation for Chemical Engineering Applications Costraed Cubc Sple Iterpolato or Chemcal Egeerg Applcatos b CJC Kruger Summar Cubc sple terpolato s a useul techque to terpolate betwee kow data pots due to ts stable ad smooth characterstcs. Uortuatel

More information

On formula to compute primes and the n th prime

On formula to compute primes and the n th prime Joural's Ttle, Vol., 00, o., - O formula to compute prmes ad the th prme Issam Kaddoura Lebaese Iteratoal Uversty Faculty of Arts ad ceces, Lebao Emal: [email protected] amh Abdul-Nab Lebaese Iteratoal

More information

The analysis of annuities relies on the formula for geometric sums: r k = rn+1 1 r 1. (2.1) k=0

The analysis of annuities relies on the formula for geometric sums: r k = rn+1 1 r 1. (2.1) k=0 Chapter 2 Autes ad loas A auty s a sequece of paymets wth fxed frequecy. The term auty orgally referred to aual paymets (hece the ame), but t s ow also used for paymets wth ay frequecy. Autes appear may

More information

Curve Fitting and Solution of Equation

Curve Fitting and Solution of Equation UNIT V Curve Fttg ad Soluto of Equato 5. CURVE FITTING I ma braches of appled mathematcs ad egeerg sceces we come across epermets ad problems, whch volve two varables. For eample, t s kow that the speed

More information

Using Phase Swapping to Solve Load Phase Balancing by ADSCHNN in LV Distribution Network

Using Phase Swapping to Solve Load Phase Balancing by ADSCHNN in LV Distribution Network Iteratoal Joural of Cotrol ad Automato Vol.7, No.7 (204), pp.-4 http://dx.do.org/0.4257/jca.204.7.7.0 Usg Phase Swappg to Solve Load Phase Balacg by ADSCHNN LV Dstrbuto Network Chu-guo Fe ad Ru Wag College

More information

SHAPIRO-WILK TEST FOR NORMALITY WITH KNOWN MEAN

SHAPIRO-WILK TEST FOR NORMALITY WITH KNOWN MEAN SHAPIRO-WILK TEST FOR NORMALITY WITH KNOWN MEAN Wojcech Zelńsk Departmet of Ecoometrcs ad Statstcs Warsaw Uversty of Lfe Sceces Nowoursyowska 66, -787 Warszawa e-mal: wojtekzelsk@statystykafo Zofa Hausz,

More information

Cyber Journals: Multidisciplinary Journals in Science and Technology, Journal of Selected Areas in Telecommunications (JSAT), January Edition, 2011

Cyber Journals: Multidisciplinary Journals in Science and Technology, Journal of Selected Areas in Telecommunications (JSAT), January Edition, 2011 Cyber Jourals: Multdscplary Jourals cece ad Techology, Joural of elected Areas Telecommucatos (JAT), Jauary dto, 2011 A ovel rtual etwork Mappg Algorthm for Cost Mmzg ZHAG hu-l, QIU Xue-sog tate Key Laboratory

More information

Optimal Packetization Interval for VoIP Applications Over IEEE 802.16 Networks

Optimal Packetization Interval for VoIP Applications Over IEEE 802.16 Networks Optmal Packetzato Iterval for VoIP Applcatos Over IEEE 802.16 Networks Sheha Perera Harsha Srsea Krzysztof Pawlkowsk Departmet of Electrcal & Computer Egeerg Uversty of Caterbury New Zealad [email protected]

More information

m n Use technology to discover the rules for forms such as a a, various integer values of m and n and a fixed integer value a.

m n Use technology to discover the rules for forms such as a a, various integer values of m and n and a fixed integer value a. TIth.co Alger Expoet Rules ID: 988 Tie required 25 iutes Activity Overview This ctivity llows studets to work idepedetly to discover rules for workig with expoets, such s Multiplictio d Divisio of Like

More information

Chapter 04.05 System of Equations

Chapter 04.05 System of Equations hpter 04.05 System of Equtios After redig th chpter, you should be ble to:. setup simulteous lier equtios i mtrix form d vice-vers,. uderstd the cocept of the iverse of mtrix, 3. kow the differece betwee

More information

Proceedings of the 2010 Winter Simulation Conference B. Johansson, S. Jain, J. Montoya-Torres, J. Hugan, and E. Yücesan, eds.

Proceedings of the 2010 Winter Simulation Conference B. Johansson, S. Jain, J. Montoya-Torres, J. Hugan, and E. Yücesan, eds. Proceedgs of the 21 Wter Smulato Coferece B. Johasso, S. Ja, J. Motoya-Torres, J. Huga, ad E. Yücesa, eds. EMPIRICAL METHODS OR TWO-ECHELON INVENTORY MANAGEMENT WITH SERVICE LEVEL CONSTRAINTS BASED ON

More information

Measuring the Quality of Credit Scoring Models

Measuring the Quality of Credit Scoring Models Measur the Qualty of Credt cor Models Mart Řezáč Dept. of Matheatcs ad tatstcs, Faculty of cece, Masaryk Uversty CCC XI, Edurh Auust 009 Cotet. Itroducto 3. Good/ad clet defto 4 3. Measur the qualty 6

More information

Bayesian Network Representation

Bayesian Network Representation Readgs: K&F 3., 3.2, 3.3, 3.4. Bayesa Network Represetato Lecture 2 Mar 30, 20 CSE 55, Statstcal Methods, Sprg 20 Istructor: Su-I Lee Uversty of Washgto, Seattle Last tme & today Last tme Probablty theory

More information

Helicopter Theme and Variations

Helicopter Theme and Variations Helicopter Theme nd Vritions Or, Some Experimentl Designs Employing Pper Helicopters Some possible explntory vribles re: Who drops the helicopter The length of the rotor bldes The height from which the

More information

10.6 Applications of Quadratic Equations

10.6 Applications of Quadratic Equations 10.6 Applictions of Qudrtic Equtions In this section we wnt to look t the pplictions tht qudrtic equtions nd functions hve in the rel world. There re severl stndrd types: problems where the formul is given,

More information

Credibility Premium Calculation in Motor Third-Party Liability Insurance

Credibility Premium Calculation in Motor Third-Party Liability Insurance Advaces Mathematcal ad Computatoal Methods Credblty remum Calculato Motor Thrd-arty Lablty Isurace BOHA LIA, JAA KUBAOVÁ epartmet of Mathematcs ad Quattatve Methods Uversty of ardubce Studetská 95, 53

More information

An Integrated Honeypot Framework for Proactive Detection, Characterization and Redirection of DDoS Attacks at ISP level

An Integrated Honeypot Framework for Proactive Detection, Characterization and Redirection of DDoS Attacks at ISP level Jourl of Iformto Assurce Securty 1 (28) 1-15 A Itegrte Hoeypot Frmework for Proctve Detecto, Chrcterzto Rerecto of DDoS Attcks t ISP level Ajl Sr R. C. Josh 1 1 I Isttute of Techology Roorkee, Roorkee,

More information

MDM 4U PRACTICE EXAMINATION

MDM 4U PRACTICE EXAMINATION MDM 4U RCTICE EXMINTION Ths s a ractce eam. It does ot cover all the materal ths course ad should ot be the oly revew that you do rearato for your fal eam. Your eam may cota questos that do ot aear o ths

More information

6.7 Network analysis. 6.7.1 Introduction. References - Network analysis. Topological analysis

6.7 Network analysis. 6.7.1 Introduction. References - Network analysis. Topological analysis 6.7 Network aalyss Le data that explctly store topologcal formato are called etwork data. Besdes spatal operatos, several methods of spatal aalyss are applcable to etwork data. Fgure: Network data Refereces

More information

Applications of Support Vector Machine Based on Boolean Kernel to Spam Filtering

Applications of Support Vector Machine Based on Boolean Kernel to Spam Filtering Moder Appled Scece October, 2009 Applcatos of Support Vector Mache Based o Boolea Kerel to Spam Flterg Shugag Lu & Keb Cu School of Computer scece ad techology, North Cha Electrc Power Uversty Hebe 071003,

More information