An IMM Algorithm for Tracking Maneuvering Vehicles in an Adaptive Cruise Control Environment
|
|
|
- Godwin Gibson
- 10 years ago
- Views:
Transcription
1 31 Itertol Jourl of Cotrol, Yog-Shk Automto, Km d Keum-Shk d Systems, Hog vol. 2, o. 3, pp , September 24 A IMM Algorthm for Trckg Meuverg Vehcles Adptve Cruse Cotrol Evromet Yog-Shk Km d Keum-Shk Hog* Abstrct: I ths pper, usceted Klm flter () for curvler motos terctg multple model (IMM) lgorthm to trck meuverg vehcle o rod s vestgted. Drvg ptters of vehcles o rod re modeled s stochstc hybrd systems. I order to trck the meuverg vehcles, two kemtc models re derved: A costt velocty model for ler motos d costt-speed tur model for curvler motos. For the costt-speed tur model, s used becuse of the drwbcks of the exteded Klm flter oler systems. The suggested lgorthm reduces the root me squres error for ler motos d rpdly detects possble turg motos. Keywords: Adptve cruse cotrol, costt-speed tur model, exteded Klm flter, hybrd estmto, terctg multple model, oler flterg, usceted Klm flter. 1. INTRODUCTON Recetly, the mjorty of utomoble compes re developg vrous drver ssstce systems to crese vehcle sfety d llevte drver worklod. The drver ssstce systems clude dptve cruse cotrol (ACC), le-keepg support, collso wrg d collso vodce, d sssted le chges. The effectveess of these drver ssstt systems depeds o the terpretto of the formto rrvg from sesors, whch provde detls of the surroudg vehcle evromet d of the drver-sssted vehcle tself. I prtculr, ll these systems rely o the detecto d subsequet trckg of objects roud the vehcle. Such detecto formto s provded by rdr, ldr, d vso sesor. The ssstce systems metoed bove hve cert objectves tht ther cotrollers try to meet. Before cotroller c mke decso tht ebles the drver to feel turl, the moto of the surroudg object must be properly terpreted from the vlble sesor formto [2]. Muscrpt receved Mrch 1, 24; revsed July 1, 24; ccepted July 2, 24. Recommeded by Edtor-- Chef Myug J Chug. Ths work ws supported by the Mstry of Scece d Techology of Kore uder progrm of the Ntol Reserch Lbortory, grt umber NRL M J Yog-Shk Km s wth the Deprtmet of Mechcl d Itellget Systems Egeerg, Pus Ntol Uversty, S 3 Jgjeo-dog Gumjeog-gu, Bus , Kore (e-ml: [email protected]). Keum-Shk Hog s wth the School of Mechcl Egeerg, Pus Ntol Uversty, S 3 Jgjeodog Gumjeog-gu, Bus , Kore (e-ml: [email protected]). * Correspodg uthor. Fg. 1 shows the cofgurto of ACC system. The ACC system cossts of drver terfce, rdr sesor whch mesures both the dstce d speed of precedg vehcles, cotroller whch cotrols both throttle d brke ctutors, d ctutors [17]. The blty to ccurtely predct the moto of precedg vehcles the ACC evromet c mprove the cotroller s blty to dpt smoothly to the behvor of those vehcles precedg t. Ths blty to predct motos s depedet o how well the rdr of ACC vehcle c trck other vehcles. I order to trck other vehcles usg the object formto obted from multple sesors, trckg techques bsed o the Byes pproch re usully used [1]. The trckg of meuverg trget s lredy wellestblshed topc the trget trckg lterture. Techques for trckg meuverg trgets re used my trckg d survellce systems s well s pplctos where relblty s the m cocer [1,6,13,14]. I prtculr, trckg meuverg trget usg multple models c provde better performce th usg sgle model. A umber of multple model techques to trck meuverg trget hve bee proposed the lterture: the multple-model lgorthms [13], the terctg multple model (IMM) lgorthm [1,14,, 23], the dptve IMM [7,18], the fuzzy IMM [3,16], Sesor (MMW Rdr) Reltve Velocty Reltve Dstce ACC Vehcle Speed Trget-Trckg Techque (IMM Algorthm) Drver Iterfce (Swtch/LCD) ACC Vehcle Cotroller Brke Actutor Fg. 1. Cofgurto of the ACC system. Throttle Actutor
2 A IMM Algorthm for Trckg Meuverg Vehcles Adptve Cruse Cotrol Evromet 311 d others. Geerlly, trget moto models c be dvded to two subctegores: the uform moto model d the meuverg model. A meuverg trget movg t costt tur-rte d speed s usully modeled s meuverg model, d clled coordted tur model [1,4,5,7,14,18]. For pplcto to r trffc cotrol, fxed structure IMM lgorthm wth sgle costt velocty model d two coordted tur models ws lyzed [14]. Ad, for the trckg of meuverg trget, vldto method of ew type of flght mode ws preseted [19]. Nb d Bshop [19] vldted o-costt speed coordted tur rcrft meuver model by comprg ther model wth the clssc Sger meuver model d costt-speed coordted tur model usg ctul trjectores. Semerdjev d Mhylov [22] dscussed vrble- d fxed-structure ugmeted IMM lgorthms, wheres fxed-structure lgorthm oly ws dscussed [14], d ppled to meuverg shp trckg problem by ugmetg the tur rte error. The drwbcks of the terctg multple model lgorthms usg exteded Klm flters (IMM-) re s follows. Frst, the pproxmtes o- Guss desty wth Guss desty [24]. Secod, the IMM pproxmtes the Guss mxture wth sgle Guss desty. If these ssumptos brek dow, the IMM- my dverge. I ths pper, becuse of these drwbcks of the IMM-, usceted Klm flter () [8,21], replcg the, s used for the curvler model. The lgorthm tself uses the sme IMM logc, but the modelmtched s replced by the model-mtched. The objectve of ths pper s to desg for curvler motos IMM lgorthm to trck meuverg vehcle for the drvg of ACC vehcle o rod. The cotrbutos of ths pper re s follows. Frst, the IMM lgorthm s provded s drvg lgorthm for ACC vehcle drvg o rod. Secod, two kemtc models for the possble drvg ptters of vehcles re derved: A costt velocty model for ler motos d costt-speed tur model for curvler motos re dscussed. Thrd, for the costt-speed tur model, s used becuse of the drwbcks of the. Fourth, the suggested lgorthm reduces the root me squres error the cse of rectler motos d detects the occurrece of meuverg quckly the cse of turg motos. Ths pper s orgzed s follows: I Secto 2, we provde the vrous drvg ptters of vehcles. A stochstc hybrd system s formulted, d two kemtc models re dscussed. I Secto 3, we compre wth for costt- speed tur model IMM lgorthm. I Secto 4, we evlute the performce of these flters usg Mote Crlo smulto uder the vrous drvg ptters. Secto 5 cocludes the pper. 2. PROBLEM FORMULATION I ths secto, fter lyzg the drvg ptters of vehcle o rod, stochstc hybrd system the form of IMM lgorthm for trckg the precedg vehcle usg sesors (rdr, ldr, sor, vso, etc) s formulted. Also, two kemtc models represetg the lyzed drvg ptters re troduced Drvg ptters Fg. 2 depcts the vrous drvg ptters of vehcle: strght le d curve, cut-/out, u-tur, d terchge. All of these ptters c be represeted by combto of costt-velocty rectler moto, costt-ccelerto rectler moto, costt gulr velocty curvler moto, d costt gulr ccelerto curvler moto. As kemtc models for descrbg these motos, two stochstc models wll be vestgted: oe for rectler moto d the other for curvler moto. These typcl drvg ptters re descrbed brefly s follows: ) Strght le d curve: I ths stuto, the ACC vehcle trcks precedg vehcle tht follows strght les d curves o curved rod [1,2]. ) Cut-/out: The cut-/out dctes the stuto whch meuverg vehcle cuts (or out) to (or from) the le whle the ACC vehcle s trckg other vehcle. I ths stuto, the trckg of up to three surroudg vehcles s ssumed: oe frot, oe to the left, d oe to the rght. I ths cse, the trget vehcle chges ts moto from rectler moto to curvler moto d the bck to rectler moto. ) U-tur: Ths stuto occurs whe the trget vehcle chges ts drvg drecto by 18. The u- tur cossts of three routes s follows: The trget vehcle moves rectlerly, udergoes uform crculr turg of up to 18 wth costt yw rte, d the coverts to rectler moto the opposte drecto. v) Iterchge: Whe the ACC vehcle s pssg through terchge, the trget vehcle udergoes 3-dmesol moto. The trget vehcle moves rectlerly, udergoes uform crculr turg of up to 27 wth costt yw rte, d the coverts to rectler moto. I ths pper, pssg terchge wll be smplfed by 2-dmesol moto. It wll be show the sequel tht costtvelocty model wll cpture both costt velocty d ccelerto rectler motos wthout d wth
3 312 Yog-Shk Km d Keum-Shk Hog ACC vehcle Meuverg vehcle #2 ACC vehcle Pssg vehcle ACC vehcle ACC vehcle Pssg vehcle Meuverg vehcle () strght le d curve Pssg vehcle Pssg vehcle Meuverg vehcle Pssg vehcle (b) cut-/out (c) u-tur Meuverg vehcle (d) terchge Fg. 2. Vrous drvg ptters of vehcles. Meuverg vehcle #1 27. Pssg vehcle ddtol ose term, respectvely. O the other hd, costt-speed tur model wll cover both costt gulr velocty d gulr ccelerto curvler motos wthout d wth ose term, respectvely Stochstc hybrd system Followg the work of L d Br-shlom [14], stochstc hybrd system wth ddtve ose s cosdered s follows: x( k) = f [ k 1, x( k 1), m( k)] + g[ k 1, x( k 1), ν[ k 1, m( k)], m( k)] (1) wth osy mesuremets z( k) = h[ k, x( k), m( k)] + w [ k, m( k)], (2) where xk ( ) R x s the stte vector cludg the posto, velocty, d yw rte of the vehcle t dscrete tme k, m(k) s the sclr-vlued modl stte (drvg mode dex) t stt k, whch s homogeeous Mrkov ch wth probbltes of trsto gve by Pm { j( k+ 1) m( k)} = πj, m, mj M, (3) where P{} deotes the probblty d M s the set of modl sttes, tht s, costt velocty, costt ccelerto, costt gulr rte turg wth costt rdus of curvture, etc. The cosdered system s hybrd sce the dscrete evet m(k) ppers the system. I the drvg of ACC vehcle, m(k) deotes the drvg mode of the precedg vehcle, effect durg the smplg perod edg t k, tht s, the tme perod ( tk 1, tk]. The evet for whch mode m s effect t tme k s deoted s j m ( k) = { m( k) = m }. (4) j j zk ( ) R z s the vector-vlued osy mesuremet from the sesor t tme k, whch s mode-depedet. ν[ k 1, m( k)] R ν s the mode-depedet process ose sequece wth me ν [ k 1, m( k)] d covrce Q[k-1, m(k)]. w [ k, m( k)] R z s the mode-depedet mesuremet ose sequece wth me wk [, mk ( )] d covrce R[k, m(k)]. Flly f, g, d h re oler vector-vlued fuctos Two kemtc models The cocept of usg ose-drve kemtc models comes from the fct tht oses wth dfferet levels of vrce c represet dfferet motos. A model wth hgh vrce ose c cpture meuverg motos, whle model wth low vrce ose represets uform motos. The multple-models pproch ssumes tht model c mmedtely cpture the complex system behvor better th others. Two kemtc models for rectler d curvler motos re ow derved. Frst, ssumg tht ccelertos the stedy stte re qute smll (brupt motos lke sudde stop or collso re ot covered), ler ccelertos or decelertos c be
4 A IMM Algorthm for Trckg Meuverg Vehcles Adptve Cruse Cotrol Evromet 313 resobly well covered by process oses wth the costt velocty model. Tht s, the costt velocty model plus zero-me ose wth pproprte covrce represetg the mgtude of ccelerto c hdle uform motos o the rod. I dscretetme, the costt velocty model wth ose s gve by T T 2 1 T xk ( ) = xk ( 1) + ν ( k 1) 1 T 1 2, (5) T 2 1 T where T s the smplg tme (.e.,.1 sec ths pper), x(k) s the stte vector cludg the posto d velocty of the precedg vehcle the logtudl (ξ ) d lterl (η ) drectos t dscrete tme k, tht s, x( k) = [ ξ( k) ξ( k) η( k) η ( k)] (6) wth ξ d η deotg the orthogol coordtes of the horzotl ple; d ν s zero-me Guss whte ose represetg the ccelertos wth pproprte covrce Q. If ν ( k) s the ccelerto cremet durg the k th smplg perod, the velocty durg ths perod s clculted by ν ( kt ), 2 d the posto s ltered by ν ( kt ) /2. Secod, dscrete-tme model for turg s derved from cotuous-tme model for the coordted tur moto [1, p. 183]. A costt speed tur s tur wth costt yw rte log rod of costt rdus of curvture. However, the curvtures of ctul rods re ot costt. Hece, frly smll ose s dded to costt-speed tur model for the purpose of cpturg the vrto of the rod curvture. The ose the model represets the modelg error, such s the presece of gulr ccelerto d o-costt rdus of curvture. For vehcle turg wth costt gulr rte d movg wth costt speed (the mgtude of the velocty vector s costt), the kemtc equtos the ( ξ, η ) ple re ξ () t = ωη () t, η () t = ωξ () t, (7) where ξ () t s the orml (logtudl) ccelerto d η ( t) deotes the tgetl ccelerto, d ω s the costt yw rte ( ω > mples couterclockwse tur). The tgetl compoet of the ccelerto s equl to the rte of chge of the speed, tht s, η( t) = d η( t) / dt = d( ωξ( t)) / dt, d the orml compoet s defed s the squre of the speed the tgetl drecto dvded by the rdus of the curvture of the pth, tht s, ξ () t = η ()/ t ξ() t = ω ξ ()/ t ξ() t where η ( t) = ωξ () t. The stte spce represetto of (7) wth the stte vector defed by x() t = [ ξ() t ξ() t η() t η ()] t becomes x () t = Ax() t, (8) where 1 ω A =. 1 ω The stte trset mtrx of the system (8) s gve by sωt 1 cosωt 1 ω ω At cosωt sωt e = 1 cosωt sωt. (9) 1 ω ω sωt cosωt It hs bee remrked tht f the gulr rte ω (7) s tme-vryg, (9) would be o loger true. I the sequel, followg the pproch [1, p. 466], erly costt- speed tur model dscrete-tme dom s troduced. I ths pproch, the model tself s motvted from (9), but the gulr rte s llowed to vry. A ew stte vector by ugmetg the gulr rte ω ( k) to the stte vector of (7) s defed s follows: x ( k) = [ ξ( k) ξ( k) η( k) η( k) ω ( k)], (1) where superscrpt deotes the ugmeted vlue. The, the erly costt-speed tur model s defed s follows [1, p. 467]: s ω( k 1) T 1 cos ω( k 1) T 1 ω( k 1) ω( k 1) cos ω( k 1) T s ω( k 1) T x ( k) = 1 cos ω( k 1) T s ω( k 1) T 1 ω( k 1) ω( k 1) s ω( k 1) T cos ω( k 1) T 1 2 T 2 T ( 1) 2 x k + ( k 1) T ν. (11) 2 T T Evdetly, both (5) d (11) re specl forms of (1). I ddto, t s resoble to ssume tht the trsto betwee the drvg modes of ACC vehcle hs the Mrkov probblty govered by (3). Cosequetly, the kemtc behvors of ACC vehcle c be sutbly descrbed the frmework of the stochstc hybrd systems.
5 314 Yog-Shk Km d Keum-Shk Hog 3. IMM ALGORITHM FOR TRACKING 3.1. The IMM lgorthm I order to ccurtely trck the moto of precedg vehcles the ACC evromet, IMM lgorthm s used ths pper. The cocept (structure) of the IMM lgorthm durg oe cycle s gve [1, p.454] d [14]. I ths pper two models of the IMM lgorthm re used: oe for rectler moto d the other for curvler moto. The trckg procedure of the vehcle rectler moto usg (5) s crred out by the stdrd Klm flter, whch s ot dscussed ths pper. However, for trckg curvler motos, whch requres the estmto of ω wth ew ugmeted model (8) Secto 2, s used. () Remrk 1: Whe trget dymcs re descrbed by multple-swtchg models, the posteror desty of the stte vector s mxture desty [1]. The pproxmtes the mxture compoets wth the Guss probblty desty fucto. The gol of the IMM lgorthm s to merge ll mxture compoets to sgle Guss dstrbuto such wy tht the frst d the secod momets re mtched. The m pot s tht for ech dymc model seprte flter s used. I ths pper, we use two Klm- bsed flters for two stochstc models: oe for rectler moto d the other for curvler moto. The results of these two model-mtched flters re mxed before flterg. The outputs of the model-mtched Klm-bsed flters t tme t k clude: the stte estmte xˆ ( k k ), covrce P ( k k ) d the model probblty µ ( k). The overll output of the IMM lgorthm s the clculted usg the Guss mxture equtos. The drwbcks of the IMM lgorthm usg re s follows. Frst, the pproxmtes o-guss desty by Guss desty [24]. Secod, the IMM lgorthm pproxmtes the Guss mxture by sgle Guss desty. If these ssumptos brek dow, the IMM lgorthm usg my dverge The for the costt-speed tur model The erly costt-speed tur model of (11) c be rewrtte s follows: x ( k) = f [ x ( k 1), ω( k 1)] + G( k 1) ν ( k 1), (12) where the fucto f ( ) s kow d rems uchged durg the estmto procedure. The ose trsto mtrx G(k-1) s the sme form s tht gve (11). Becuse of the well-kow drwbcks of the, the for the costt-speed tur model s used [8,21]. Smlrly to the, the s recursve mmum me squre error estmtor. But ulke the, whch oly uses the frst-order terms the Tylor seres expso of the o-ler mesuremet equto, the uses the true mesuremet model d pproxmtes the dstrbuto of the stte vector. Ths stte dstrbuto s stll represeted by Guss desty, but t s specfed wth set of determstclly chose smple (or sgm) pots. The smple pots completely cpture the true me d covrce of the Guss rdom vector. Whe propgted though y o-ler system, the smple pots cpture the posteror me d covrce ccurtely to the secod order. The m buldg block of the s the usceted trsform, descrbed below. The usceted trsform s method for clcultg the sttstcs of rdom vector whch udergoes o-ler trsformto. Let x R x be rdom y vector, p : R x R o-ler trsformto d y = p(x). Assume tht the me d the covrce of x re x d P x, respectvely. The procedure for clcultg the frst two momets of y usg the usceted trsform s s follows [8]. 1) Compute ( x + 1) sgm pots weghts W : κ χ = x, W = + κ, =, x χ d ther 1 χ = x + ( ( x + κ) Px), W =, 2( x + κ ) = 1,, x, 1 χ = x ( ( x + κ) Px), W =, 2( x + κ ) = x + 1,,x, (13) where κ s sclg prmeter for fe tug the hgher order momets of the pproxmto d ( ( x + κ ) Px) s the th row or colum of the mtrx squre root of ( x + κ ) Px. 2) Propgte ech sgm pot through the oler fucto ζ = p( χ) ( =,,2 x). (14) 3) Clculte the me d covrce of y s follows: x y = Wζ, x y ζ ζ P = W ( y)( y). () Usg the usceted trsformto, the equtos for the costt-speed tur model re gve Fg. 3. Note tht the requres the computto of mtrx squre root (13), whch c be performed usg the Cholesky fctorzto.
6 A IMM Algorthm for Trckg Meuverg Vehcles Adptve Cruse Cotrol Evromet 3 Remrk 2: I the usceted trsformto, o whch the s bsed, set of weghted sgm pots re determstclly chose so tht cert propertes of these pots mtch those of the pror dstrbuto. Ech pot s the propgted through o-ler fucto d the propertes of the trsformed set re clculted. Wth ths set of pots, the usceted trsform gurtees the sme performce s the tructed secod order Guss flter, wth the sme order of clcultos s but wthout the eed to clculte Jcobs. 4. SIMULATIONS RESULTS As descrbed ths secto, we cosdered stte estmto problem of vehcle two dmesos. Smultos were executed to compre the performce of both IMM lgorthms wth the d the, respectvely, for curvler motos. The performce of the two lgorthms ws compred wth the use of Mote Crlo smultos. The meuverg vehcle trjectores were geerted usg the vrous ptters metoed Secto 2.1. Two kemtc models were used to trck the meuverg vehcle: A costtvelocty model for rectler moto d costtspeed tur model for curvler moto. We the compre the performce of two dfferet IMM lgorthms wth these two models The drvg sceros It ws ssumed tht the vehcle moves rectlerly the begg. The trget tl postos d veloctes were dfferetly set for ech scero. The sgle-trget trck of the meuverg vehcle ws lso ssumed to hve bee prevously tlzed d tht trck mtece ws the gol of the IMM lgorthms. The results for 4 selected sceros re preseted, ccordg to the drvg ptters, Fg. 2. ) Scero for strght le d curve: The trget tl postos d veloctes were ( x = m, y = m, x = 28 m/s, y = 28 m/s, ω = ). Its trjectory ws costt velocty betwee s d 19 s wth speed of 28 m/s; tur wth costt yw rte of ω = 3.74 /s betwee 2 s d 59 s; costt velocty betwee 6 s d 89 s; tur wth costt yw rte of ω = 3.74 /s betwee 9 s d 129 s; costt velocty betwee 13 s d 149 s; tur wth costt yw rte of ω = 3.74 /s betwee s d 2 s. ) Cut-/out scero: The trget tl postos d veloctes were ( x = m, y = 2 m, x = 28 m/s, y = m/s, ω = ). Its trjectory ws strght le betwee s d 19 s wth speed of 28 m/s; tur wth costt yw rte of ω = 3.74 /s betwee 2 s d 39 s; costt velocty betwee 4 s d 41 s wth speed of 28 m/s; tur betwee 42 s d 63 s wth yw rte of ω = 3.74 /s ; strght le betwee 64 s d 134 s wth speed of 28 m/s; tur wth costt yw rte of ω = 3.74 /s betwee 135 s d 4 s; costt velocty betwee 5 s d 9 s wth speed of 28 m/s; tur betwee 16 s d 179 s wth yw rte of ω = 3.74 /s d strght le betwee 18 s d 2 s. ) U-tur scero: The trget tl postos d veloctes were ( x = 1 m, y = 1 m, x = 28 m/s, y = m/s, ω = ). Ths scero cluded Itlzto: x ˆ ( ), P ( ) wth k = 1 Sgm pots d weghts: χ ( k 1 k 1), W ( =,,) Tme-updte equtos: predcted sgm pots χ( k k 1) = f [ χ( k 1 k 1), ω( k 1)] predcted me d covrce xˆ ( k k 1) = Wχ ( k k 1), P ( k k 1) = Q + W[ χ ( k k 1) x ( k k 1)][ χ ( k k 1) x ( k k 1)] predcted mesuremet sgm pots I( k k 1) = h[ χ( k k 1), ω( k)] predcted mesuremet zˆ ( k k 1) = WI ( k k 1) Mesuremet-updte equtos: mesuremet covrce zz P = R( k) + W[ I ( k k 1) zˆ ( k k 1)] xz χ I [ ( k k 1) zˆ ( k k 1)] P = W[ ( k k 1) xˆ ( k k 1)] [ I ( k k 1) zˆ ( k k 1)] flter g 1 K ( k) = Pxz ( Pzz ) me d covrce xˆ ( k k) = xˆ ( k k 1) + K ( k)[ z( k) zˆ ( k k 1)] P ( k k) = P ( k k 1) K ( k) P K ( k) Fg. 3. equtos for the costt speed tur model. zz
7 316 Yog-Shk Km d Keum-Shk Hog o-meuverg drvg mode durg scs from 1 s to 6 s wth speed of 28 m/s, 18 -tur, lstg from sc 61 s to 145 s wth yw rte of ω = 3.74 /s, d o-meuverg drvg mode from sc 146 s to 2 s. v) Iterchge scero: The trget tl postos d veloctes were ( x = m, y = m, x = 28 m/s, y = m/s, ω = ). Ths scero cluded o-meuverg drvg mode durg scs from 1 s to 4 s wth speed of 28 m/s, 27 -tur, lstg from sc 41 s to 168 s wth yw rte of ω = 3.74 /s, d o-meuverg drvg mode from sc 169 s to 2 s. The meuverg vehcle speed ws 28 m/s Prmeters used the desg The prmeters used the desg re lsted here. Subscrpts CV d CST std for costt velocty d costt speed tur, respectvely. The tl yw rte of the drvg sceros ws ω () = 3 /s. The error covrces of the tl stte d covrces of process ose were s follows: CV mode: P KF () = dg{ }, KF 2 Q = (.1) I, CST mode: P () = P () 2 = dg{ }, σ ω Q = Q = dg{(.25) (.25) (.25) (.25) σ ω } where σ ω = (.1) /s. The mesuremet ose covrce mtrx ws clculted s σ = 1m d σ η = 1m. The trsto probbltes for the IMM lgorthms usg the d the, respectvely, were represeted the Mrkov ch trsto mtrx.95.5 πj = πj = πj The tl mode probblty vectors µ were chose s follows: µ = µ = Performce evluto d lyss The RMSE of ech stte compoet ws chose s the mesure of performce. The performce of the IMM lgorthm wth d tht of the IMM lgorthm wth re show Fg. 4 - Fg. 11, where the RMSE the posto d the velocty re plotted. The results preseted here re bsed o 1 Mote Crlo rus. Frst of ll, t s evdet tht the suggested lgorthm hs lmost equl posto d velocty estmto ccurcy for ll sceros. The ξ RMS posto error (m) RMS velocty error (m/s) Fg. 5. Comprso of the velocty errors the cse of strght les d curves. RMS posto error (m) Fg. 4. Comprso of the posto errors the cse of strght les d curves Fg. 6. Comprso of the posto errors the cse of cut-/out. RMS velocty error (m/s) Fg. 7. Comprso of the velocty errors the cse of cut-/out.
8 A IMM Algorthm for Trckg Meuverg Vehcles Adptve Cruse Cotrol Evromet 317 RMS posto error (m) RMS posto error (m) Fg. 1. Comprso of the posto errors the cse of terchge. RMS velocty error (m/s) Fg. 8. Comprso of the posto errors the cse of u-tur. RMS velocty error (m/s) Fg. 9. Comprso of the velocty errors the cse of u-tur Fg. 11. Comprso of the velocty errors the cse of terchge. posto RMSE of the IMM wth s evdetly superor to tht of the IMM wth. Ths s becuse, ulkely, does ot pproxmte oler fuctos but drectly propgtes me d covrce through the oler system equto. I ddto, the IMM lgorthm wth s chrcterzed by lower-pek dymc errors d shorter respose tme. These coclusos were cofrmed by the RMSE plot preseted Fgs. 4-11, respectvely. 5. CONCLUSIONS I ths pper, terctg multple model lgorthm wth, s trckg lgorthm, to trck meuverg vehcles o rod ws desged. As models to trck the meuverg vehcles, two kemtc models were derved: The costt velocty model for ler moto d the costt-speed tur model for curvler moto. For costt-speed tur model, usceted Klm flter ws used becuse of the drwbcks of the exteded Klm flter oler systems. The suggested lgorthm reduced the root me squre error for ler motos, d t could rpdly detect possble turg motos. REFERENCES [1] Y. Br-Shlom, X. L, d T. Krubrj, Estmto wth Applctos to Trckg d Nvgto, Joh Wley & Sos, INC, New York, Chpter 11, pp , 21. [2] D. S. Cveey, Multple Trget Trckg the Adptve Cruse Cotrol Evromet Usg Multple Models d Probblstc Dt Assocto, M. S. Thess, Uversty of Clfor, Berkeley, U. S. A., [3] Z. Dg, H. Leug, K. Ch, d Z. Zhu, Model-set dptto usg fuzzy Klm flter, Mthemtcl d Computer Modellg, vol. 34, o. 7-8, pp , October 21. [4] F. Dufour d M. Mrto, Pssve sesor dt fuso d meuverg trget trckg, : Y. Br-Shlom (Ed.), Multtrget-Multsesor Trckg: Applctos d Advces, Artech House, Norwood, MA, Chpter 3, pp , [5] J. P. Helferty, Improved trckg of meuverg trgets: The use of tur-rte dstrbutos for ccelerto modelg, IEEE Trs. o Aerospce d Electroc Systems, vol. 32, o. 4, pp , October [6] A. Houles d Y. Br-Shlom, Multsesor trckg of meuverg trget clutter, IEEE Trs. o Aerospce d Electroc Systems, vol. 25, o. 2, pp , Mrch [7] V. P. Jlkov, D. S. Agelov, TZ. A. Semerdjev, Desg d comprso of mode-set dptve
9 318 Yog-Shk Km d Keum-Shk Hog IMM lgorthms for meuverg trget trckg, IEEE Trs. o Aerospce d Electroc Systems, vol. 35, o. 1, pp , Jury [8] S. J. Juler, J. K. Uhlm, d H. F. Durrt- Whyte, A ew method for the oler trsformto of mes d covrces flters d estmtors, IEEE Trs. o Automtc Cotrol, vol. 45, o. 3, pp , Mrch 2. [9] Y. S. Km d K. S. Hog, A suboptml lgorthm of the optml Byes flter bsed o the recedg horzo strtegy, Itertol Jourl of Cotrol, Automto, d Systems, vol. 1, o. 2, pp , Jue 23. [1] J. Ph. Luffeburger, M. Bsset, F. Coff, d G. L. Gssger, Drver-d system usg pthplg for lterl vehcle cotrol, Cotrol Egeerg Prctce, vol. 11, o. 2, pp , Februry 23. [11] B. J. Lee, Y. H. Joo, d J. B. Prk, A Itellget trckg method for meuverg trget, Itertol Jourl of Cotrol, Automto, d Systems, vol. 1, o. 1, pp. 93-1, Mrch 23. [12] T. G. Lee, Cetrlzed Klm flter wth dptve mesuremet fuso: ts pplcto to GPS/SDINS tegrto system wth ddtol sesor, Itertol Jourl of Cotrol, Automto, d Systems, vol. 1, o. 4, pp , December 23. [13] X. L d Y. Br-Shlom, Multple-model estmto wth vrble structure, IEEE Trs. o Automtc Cotrol, vol. 41, o. 4, pp , Aprl [14] X. L d Y. Br-Shlom, Desg of terctg multple model lgorthm for r trffc cotrol trckg, IEEE Trs. o Cotrol Systems Techology, vol. 1, o. 3, pp , September [] E. Mzor, A. Averbuch, Y. Br-Shlom, d J. Dy, Iterctg multple model methods trget trckg: A survey, IEEE Trs. o Aerospce d Electroc Systems, vol. 34, o. 1, pp , Jury [16] S. McGty d G. W. Irw, Fuzzy logc pproch to moeuvrg trget trckg, IEE Proceedgs o Rdr, Sor, d Nvgto, vol. 145, o. 6, pp , December [17] I. K. Moo d K. S. Y, Vehcle tests of logtudl cotrol lw for pplcto to stopd-go cruse cotrol, KSME Itertol Jourl, vol. 16, o. 9, pp , 22. [18] A. Mur d D. P. Atherto, Adptve terctg multple model lgorthm for trckg moeuvrg trget, IEE Proceedgs o Rdr, Sor, d Nvgto, vol. 142, o. 1, pp , Februry [19] N. Nb d R. H. Bshop, Vldto d comprso of coordted tur rcrft meuver models, IEEE Trs. o Aerospce d Electroc Systems, vol. 36, o. 1, pp , Jury 2. [2] R. Rjm, C. Zhu, d L. Alexder, Lterl cotrol of bckwrd drve fot-steerg vehcle, Cotrol Egeerg Prctce, vol. 11, o. 5, pp , My 23. [21] B. Rstc d M. S. Arulmplm, Trckg moeuvrg trget usg gle-oly mesuremets: lgorthms d performce, Sgl Processg, vol. 83, o. 6, pp , Jue 23. [22] E. Semerdjev d L. Mhylov, Vrble- d fxed-structure ugmeted terctg multplemodel lgorthms for moeuvrg shp trckg bsed o ew shp models, Itertol Jourl of Appled Mthemtcs d Computer Scece, vol. 1, o. 3, pp , 2. [23] I. Smeoov d T. Semerdjev, Specfc fetures of IMM trckg flter desg, A Itertol Jourl of Iformto d Securty, vol. 9, pp , 22. [24] W. I. Tm, K. N. Pltots, d D. Htzkos, A dptve Guss sum lgorthm for rdr trckg, Sgl Processg, vol. 77, o. 1, pp , August Yog-Shk Km ws bor Bus, Kore, o November 24, 197. He receved the B.S. degree Mechcl Egeerg from Dog Uversty, Bus, Kore, 1994 d the M.S. degree Mechcl d Itellget Systems Egeerg from Pus Ntol Uversty, Bus, Kore, 2. He s ow Ph.D. cddte the Deprtmet of Mechcl d Itellget Systems Egeerg t Pus Ntol Uversty, Bus, Kore. Hs reserch terests clude estmto theory, trgettrckg systems, sesor fuso, d fult detecto. Keum-Shk Hog, for photogrph d bogrphy, see p. 67 of the Mrch 24 ssue of ths jourl.
Sequences and Series
Secto 9. Sequeces d Seres You c thk of sequece s fucto whose dom s the set of postve tegers. f ( ), f (), f (),... f ( ),... Defto of Sequece A fte sequece s fucto whose dom s the set of postve tegers.
16. Mean Square Estimation
6 Me Sque stmto Gve some fomto tht s elted to uow qutty of teest the poblem s to obt good estmte fo the uow tems of the obseved dt Suppose epeset sequece of dom vbles bout whom oe set of obsevtos e vlble
Stock Index Modeling using EDA based Local Linear Wavelet Neural Network
Stoc Idex odelg usg EDA bsed Locl Ler Wvelet Neurl Networ Yuehu Che School of Iformto Scece d Egeerg J Uversty Jwe rod 06, J 250022, P.R.Ch E-ml: [email protected] Xohu Dog School of Iformto Scece d Egeerg
Statistical Pattern Recognition (CE-725) Department of Computer Engineering Sharif University of Technology
I The Name of God, The Compassoate, The ercful Name: Problems' eys Studet ID#:. Statstcal Patter Recogto (CE-725) Departmet of Computer Egeerg Sharf Uversty of Techology Fal Exam Soluto - Sprg 202 (50
Abraham Zaks. Technion I.I.T. Haifa ISRAEL. and. University of Haifa, Haifa ISRAEL. Abstract
Preset Value of Autes Uder Radom Rates of Iterest By Abraham Zas Techo I.I.T. Hafa ISRAEL ad Uversty of Hafa, Hafa ISRAEL Abstract Some attempts were made to evaluate the future value (FV) of the expected
Software Size Estimation in Incremental Software Development Based On Improved Pairwise Comparison Matrices
Computer Scece Systems Bology Reserch Artcle Artcle Ocheg d Mwg, 204, 7:3 http://d.do.org/0.472/csb.0004 Ope Ope Access Softwre Sze Estmto Icremetl Softwre Developmet Bsed O Improved Prwse Comprso Mtrces
APPENDIX III THE ENVELOPE PROPERTY
Apped III APPENDIX III THE ENVELOPE PROPERTY Optmzato mposes a very strog structure o the problem cosdered Ths s the reaso why eoclasscal ecoomcs whch assumes optmzg behavour has bee the most successful
IDENTIFICATION OF THE DYNAMICS OF THE GOOGLE S RANKING ALGORITHM. A. Khaki Sedigh, Mehdi Roudaki
IDENIFICAION OF HE DYNAMICS OF HE GOOGLE S RANKING ALGORIHM A. Khak Sedgh, Mehd Roudak Cotrol Dvso, Departmet of Electrcal Egeerg, K.N.oos Uversty of echology P. O. Box: 16315-1355, ehra, Ira [email protected],
1. The Time Value of Money
Corporate Face [00-0345]. The Tme Value of Moey. Compoudg ad Dscoutg Captalzato (compoudg, fdg future values) s a process of movg a value forward tme. It yelds the future value gve the relevat compoudg
IMPLEMENTATION IN PUBLIC ADMINISTRATION OF MEXICO GOVERNMENT USING GAMES THEORY AND SOLVING WITH LINEAR PROGRAMMING
Itertol Jourl of Advces Egeerg & Techolog, J., 05. IJAET ISSN: 96 IMPLEMENTATION IN PUBLIC ADMINISTRATION OF MEICO GOVERNMENT USING GAMES THEORY AND SOLVING WITH LINEAR PROGRAMMING Frcsco Zrgoz Huert.
Public Auditing Based on Homomorphic Hash Function in
Publc Audtg Bsed o Homomorhc Hsh Fucto Secure Cloud Storge Shufe NIU, Cfe Wg, Xo DU Publc Audtg Bsed o Homomorhc Hsh Fucto Secure Cloud Storge Shufe NIU, Cfe Wg, 3 Xo DU, College of Comuter Scece d Egeerg,
A Study of Unrelated Parallel-Machine Scheduling with Deteriorating Maintenance Activities to Minimize the Total Completion Time
Joural of Na Ka, Vol. 0, No., pp.5-9 (20) 5 A Study of Urelated Parallel-Mache Schedulg wth Deteroratg Mateace Actvtes to Mze the Total Copleto Te Suh-Jeq Yag, Ja-Yuar Guo, Hs-Tao Lee Departet of Idustral
ANOVA Notes Page 1. Analysis of Variance for a One-Way Classification of Data
ANOVA Notes Page Aalss of Varace for a Oe-Wa Classfcato of Data Cosder a sgle factor or treatmet doe at levels (e, there are,, 3, dfferet varatos o the prescrbed treatmet) Wth a gve treatmet level there
THE well established 80/20 rule for client-server versus
IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, ACCEPTED FOR PUBLICATION 1 Optml Fuctolty Plcemet for Multply Servce Provder Archtectures Ios Pppgotou, Studet Member, IEEE, Mtths Fler, Member, IEEE,
A New Bayesian Network Method for Computing Bottom Event's Structural Importance Degree using Jointree
, pp.277-288 http://dx.do.org/10.14257/juesst.2015.8.1.25 A New Bayesa Network Method for Computg Bottom Evet's Structural Importace Degree usg Jotree Wag Yao ad Su Q School of Aeroautcs, Northwester Polytechcal
Newton-Raphson Method of Solving a Nonlinear Equation Autar Kaw
Newton-Rphson Method o Solvng Nonlner Equton Autr Kw Ater redng ths chpter, you should be ble to:. derve the Newton-Rphson method ormul,. develop the lgorthm o the Newton-Rphson method,. use the Newton-Rphson
Optimal multi-degree reduction of Bézier curves with constraints of endpoints continuity
Computer Aded Geometrc Desg 19 (2002 365 377 wwwelsevercom/locate/comad Optmal mult-degree reducto of Bézer curves wth costrats of edpots cotuty Guo-Dog Che, Guo-J Wag State Key Laboratory of CAD&CG, Isttute
An Integrated Honeypot Framework for Proactive Detection, Characterization and Redirection of DDoS Attacks at ISP level
Jourl of Iformto Assurce Securty 1 (28) 1-15 A Itegrte Hoeypot Frmework for Proctve Detecto, Chrcterzto Rerecto of DDoS Attcks t ISP level Ajl Sr R. C. Josh 1 1 I Isttute of Techology Roorkee, Roorkee,
Automated Event Registration System in Corporation
teratoal Joural of Advaces Computer Scece ad Techology JACST), Vol., No., Pages : 0-0 0) Specal ssue of CACST 0 - Held durg 09-0 May, 0 Malaysa Automated Evet Regstrato System Corporato Zafer Al-Makhadmee
6.7 Network analysis. 6.7.1 Introduction. References - Network analysis. Topological analysis
6.7 Network aalyss Le data that explctly store topologcal formato are called etwork data. Besdes spatal operatos, several methods of spatal aalyss are applcable to etwork data. Fgure: Network data Refereces
Green Master based on MapReduce Cluster
Gree Master based o MapReduce Cluster Mg-Zh Wu, Yu-Chag L, We-Tsog Lee, Yu-Su L, Fog-Hao Lu Dept of Electrcal Egeerg Tamkag Uversty, Tawa, ROC Dept of Electrcal Egeerg Tamkag Uversty, Tawa, ROC Dept of
An Approach to Evaluating the Computer Network Security with Hesitant Fuzzy Information
A Approach to Evaluatg the Computer Network Securty wth Hestat Fuzzy Iformato Jafeg Dog A Approach to Evaluatg the Computer Network Securty wth Hestat Fuzzy Iformato Jafeg Dog, Frst ad Correspodg Author
of the relationship between time and the value of money.
TIME AND THE VALUE OF MONEY Most agrbusess maagers are famlar wth the terms compoudg, dscoutg, auty, ad captalzato. That s, most agrbusess maagers have a tutve uderstadg that each term mples some relatoshp
Banking (Early Repayment of Housing Loans) Order, 5762 2002 1
akg (Early Repaymet of Housg Loas) Order, 5762 2002 y vrtue of the power vested me uder Secto 3 of the akg Ordace 94 (hereafter, the Ordace ), followg cosultato wth the Commttee, ad wth the approval of
Simple Linear Regression
Smple Lear Regresso Regresso equato a equato that descrbes the average relatoshp betwee a respose (depedet) ad a eplaator (depedet) varable. 6 8 Slope-tercept equato for a le m b (,6) slope. (,) 6 6 8
MATHEMATICS FOR ENGINEERING BASIC ALGEBRA
MATHEMATICS FOR ENGINEERING BASIC ALGEBRA TUTORIAL - INDICES, LOGARITHMS AND FUNCTION This is the oe of series of bsic tutorils i mthemtics imed t begiers or yoe wtig to refresh themselves o fudmetls.
A Parallel Transmission Remote Backup System
2012 2d Iteratoal Coferece o Idustral Techology ad Maagemet (ICITM 2012) IPCSIT vol 49 (2012) (2012) IACSIT Press, Sgapore DOI: 107763/IPCSIT2012V495 2 A Parallel Trasmsso Remote Backup System Che Yu College
The analysis of annuities relies on the formula for geometric sums: r k = rn+1 1 r 1. (2.1) k=0
Chapter 2 Autes ad loas A auty s a sequece of paymets wth fxed frequecy. The term auty orgally referred to aual paymets (hece the ame), but t s ow also used for paymets wth ay frequecy. Autes appear may
CHAPTER 2. Time Value of Money 6-1
CHAPTER 2 Tme Value of Moey 6- Tme Value of Moey (TVM) Tme Les Future value & Preset value Rates of retur Autes & Perpetutes Ueve cash Flow Streams Amortzato 6-2 Tme les 0 2 3 % CF 0 CF CF 2 CF 3 Show
10.5 Future Value and Present Value of a General Annuity Due
Chapter 10 Autes 371 5. Thomas leases a car worth $4,000 at.99% compouded mothly. He agrees to make 36 lease paymets of $330 each at the begg of every moth. What s the buyout prce (resdual value of the
Average Price Ratios
Average Prce Ratos Morgstar Methodology Paper August 3, 2005 2005 Morgstar, Ic. All rghts reserved. The formato ths documet s the property of Morgstar, Ic. Reproducto or trascrpto by ay meas, whole or
Security Analysis of RAPP: An RFID Authentication Protocol based on Permutation
Securty Aalyss of RAPP: A RFID Authetcato Protocol based o Permutato Wag Shao-hu,,, Ha Zhje,, Lu Sujua,, Che Da-we, {College of Computer, Najg Uversty of Posts ad Telecommucatos, Najg 004, Cha Jagsu Hgh
Applications of Support Vector Machine Based on Boolean Kernel to Spam Filtering
Moder Appled Scece October, 2009 Applcatos of Support Vector Mache Based o Boolea Kerel to Spam Flterg Shugag Lu & Keb Cu School of Computer scece ad techology, North Cha Electrc Power Uversty Hebe 071003,
Chapter 3. AMORTIZATION OF LOAN. SINKING FUNDS R =
Chapter 3. AMORTIZATION OF LOAN. SINKING FUNDS Objectves of the Topc: Beg able to formalse ad solve practcal ad mathematcal problems, whch the subjects of loa amortsato ad maagemet of cumulatve fuds are
How To Value An Annuity
Future Value of a Auty After payg all your blls, you have $200 left each payday (at the ed of each moth) that you wll put to savgs order to save up a dow paymet for a house. If you vest ths moey at 5%
Numerical Methods with MS Excel
TMME, vol4, o.1, p.84 Numercal Methods wth MS Excel M. El-Gebely & B. Yushau 1 Departmet of Mathematcal Sceces Kg Fahd Uversty of Petroleum & Merals. Dhahra, Saud Araba. Abstract: I ths ote we show how
On Error Detection with Block Codes
BULGARIAN ACADEMY OF SCIENCES CYBERNETICS AND INFORMATION TECHNOLOGIES Volume 9, No 3 Sofa 2009 O Error Detecto wth Block Codes Rostza Doduekova Chalmers Uversty of Techology ad the Uversty of Gotheburg,
n. We know that the sum of squares of p independent standard normal variables has a chi square distribution with p degrees of freedom.
UMEÅ UNIVERSITET Matematsk-statstska sttutoe Multvarat dataaalys för tekologer MSTB0 PA TENTAMEN 004-0-9 LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK Multvarat dataaalys för tekologer B, 5 poäg.
T = 1/freq, T = 2/freq, T = i/freq, T = n (number of cash flows = freq n) are :
Bullets bods Let s descrbe frst a fxed rate bod wthout amortzg a more geeral way : Let s ote : C the aual fxed rate t s a percetage N the otoal freq ( 2 4 ) the umber of coupo per year R the redempto of
Chapter 3 0.06 = 3000 ( 1.015 ( 1 ) Present Value of an Annuity. Section 4 Present Value of an Annuity; Amortization
Chapter 3 Mathematcs of Face Secto 4 Preset Value of a Auty; Amortzato Preset Value of a Auty I ths secto, we wll address the problem of determg the amout that should be deposted to a accout ow at a gve
Integrating Production Scheduling and Maintenance: Practical Implications
Proceedgs of the 2012 Iteratoal Coferece o Idustral Egeerg ad Operatos Maagemet Istabul, Turkey, uly 3 6, 2012 Itegratg Producto Schedulg ad Mateace: Practcal Implcatos Lath A. Hadd ad Umar M. Al-Turk
ECONOMIC CHOICE OF OPTIMUM FEEDER CABLE CONSIDERING RISK ANALYSIS. University of Brasilia (UnB) and The Brazilian Regulatory Agency (ANEEL), Brazil
ECONOMIC CHOICE OF OPTIMUM FEEDER CABE CONSIDERING RISK ANAYSIS I Camargo, F Fgueredo, M De Olvera Uversty of Brasla (UB) ad The Brazla Regulatory Agecy (ANEE), Brazl The choce of the approprate cable
Projection model for Computer Network Security Evaluation with interval-valued intuitionistic fuzzy information. Qingxiang Li
Iteratoal Joural of Scece Vol No7 05 ISSN: 83-4890 Proecto model for Computer Network Securty Evaluato wth terval-valued tutostc fuzzy formato Qgxag L School of Software Egeerg Chogqg Uversty of rts ad
Load and Resistance Factor Design (LRFD)
53:134 Structural Desg II Load ad Resstace Factor Desg (LRFD) Specfcatos ad Buldg Codes: Structural steel desg of buldgs the US s prcpally based o the specfcatos of the Amerca Isttute of Steel Costructo
Dynamic Two-phase Truncated Rayleigh Model for Release Date Prediction of Software
J. Software Egeerg & Applcatos 3 63-69 do:.436/jsea..367 Publshed Ole Jue (http://www.scrp.org/joural/jsea) Dyamc Two-phase Trucated Raylegh Model for Release Date Predcto of Software Lafe Qa Qgchua Yao
Study on prediction of network security situation based on fuzzy neutral network
Avalable ole www.ocpr.com Joural of Chemcal ad Pharmaceutcal Research, 04, 6(6):00-06 Research Artcle ISS : 0975-7384 CODE(USA) : JCPRC5 Study o predcto of etwork securty stuato based o fuzzy eutral etwork
CH. V ME256 STATICS Center of Gravity, Centroid, and Moment of Inertia CENTER OF GRAVITY AND CENTROID
CH. ME56 STTICS Ceter of Gravt, Cetrod, ad Momet of Ierta CENTE OF GITY ND CENTOID 5. CENTE OF GITY ND CENTE OF MSS FO SYSTEM OF PTICES Ceter of Gravt. The ceter of gravt G s a pot whch locates the resultat
10/19/2011. Financial Mathematics. Lecture 24 Annuities. Ana NoraEvans 403 Kerchof [email protected] http://people.virginia.
Math 40 Lecture 24 Autes Facal Mathematcs How ready do you feel for the quz o Frday: A) Brg t o B) I wll be by Frday C) I eed aother week D) I eed aother moth Aa NoraEvas 403 Kerchof [email protected] http://people.vrga.edu/~as5k/
Real-Time Scheduling Models: an Experimental Approach
Real-Tme Schedulg Models: a Expermetal Approach (Techcal Report - Nov. 2000) Atóo J. Pessoa de Magalhães [email protected] Fax: 22 207 4247 SAI DEMEGI Faculdade de Egehara da Uversdade do Porto -
Preprocess a planar map S. Given a query point p, report the face of S containing p. Goal: O(n)-size data structure that enables O(log n) query time.
Computatoal Geometry Chapter 6 Pot Locato 1 Problem Defto Preprocess a plaar map S. Gve a query pot p, report the face of S cotag p. S Goal: O()-sze data structure that eables O(log ) query tme. C p E
Polyphase Filters. Section 12.4 Porat 1/39
Polyphase Flters Secto.4 Porat /39 .4 Polyphase Flters Polyphase s a way of dog saplg-rate coverso that leads to very effcet pleetatos. But ore tha that, t leads to very geeral vewpots that are useful
CSSE463: Image Recognition Day 27
CSSE463: Image Recogto Da 27 Ths week Toda: Alcatos of PCA Suda ght: roject las ad relm work due Questos? Prcal Comoets Aalss weght grth c ( )( ) ( )( ( )( ) ) heght sze Gve a set of samles, fd the drecto(s)
ADAPTATION OF SHAPIRO-WILK TEST TO THE CASE OF KNOWN MEAN
Colloquum Bometrcum 4 ADAPTATION OF SHAPIRO-WILK TEST TO THE CASE OF KNOWN MEAN Zofa Hausz, Joaa Tarasńska Departmet of Appled Mathematcs ad Computer Scece Uversty of Lfe Sceces Lubl Akademcka 3, -95 Lubl
How To Make A Profit From A Website
Mg Koledge-Shrg Stes for Vrl Mretg Mtthe Rchrdso d edro Dogos Deprtet of Coputer Scece d Egeerg Uversty of Wshgto Box 3535 Settle, WA 9895-35 {ttr,pedrod}@cs.shgto.edu ABSTRACT Vrl retg tes dvtge of etors
FUZZY PERT FOR PROJECT MANAGEMENT
Itertol Jourl of dvces Egeerg & Techology Sept. 04. IJET ISSN: 96 FUZZY PERT FOR PROJECT MNGEMENT Ther hed Sdoo l S Rd M. Ro l Brhe ssst. Prof ssstt Lecturer College of dstrto d Ecoocs Mgeet Iforto Systes
Chapter 04.05 System of Equations
hpter 04.05 System of Equtios After redig th chpter, you should be ble to:. setup simulteous lier equtios i mtrix form d vice-vers,. uderstd the cocept of the iverse of mtrix, 3. kow the differece betwee
Credibility Premium Calculation in Motor Third-Party Liability Insurance
Advaces Mathematcal ad Computatoal Methods Credblty remum Calculato Motor Thrd-arty Lablty Isurace BOHA LIA, JAA KUBAOVÁ epartmet of Mathematcs ad Quattatve Methods Uversty of ardubce Studetská 95, 53
A MODEL FOR AIRLINE PASSENGER AND CARGO FLIGHT SCHEDULING
A MODEL FOR AIRLINE PASSENGER AND CARGO FLIGHT SCHEDULING Shgyo YAN Yu-Hsu CHEN Professor Mster Deprtet of Cvl Egeerg Deprtet of Cvl Egeerg Ntol Cetrl Uversty Ntol Cetrl Uversty No300, Jhogd Rd, Jhogl
Software Reliability Index Reasonable Allocation Based on UML
Sotware Relablty Idex Reasoable Allocato Based o UML esheg Hu, M.Zhao, Jaeg Yag, Guorog Ja Sotware Relablty Idex Reasoable Allocato Based o UML 1 esheg Hu, 2 M.Zhao, 3 Jaeg Yag, 4 Guorog Ja 1, Frst Author
Discrete-Event Simulation of Network Systems Using Distributed Object Computing
Dscrete-Evet Smulato of Network Systems Usg Dstrbuted Object Computg Welog Hu Arzoa Ceter for Itegratve M&S Computer Scece & Egeerg Dept. Fulto School of Egeerg Arzoa State Uversty, Tempe, Arzoa, 85281-8809
Approximation Algorithms for Scheduling with Rejection on Two Unrelated Parallel Machines
(ICS) Iteratoal oural of dvaced Comuter Scece ad lcatos Vol 6 No 05 romato lgorthms for Schedulg wth eecto o wo Urelated Parallel aches Feg Xahao Zhag Zega Ca College of Scece y Uversty y Shadog Cha 76005
Fractal-Structured Karatsuba`s Algorithm for Binary Field Multiplication: FK
Fractal-Structured Karatsuba`s Algorthm for Bary Feld Multplcato: FK *The authors are worg at the Isttute of Mathematcs The Academy of Sceces of DPR Korea. **Address : U Jog dstrct Kwahadog Number Pyogyag
Fault Tree Analysis of Software Reliability Allocation
Fault Tree Aalyss of Software Relablty Allocato Jawe XIANG, Kokch FUTATSUGI School of Iformato Scece, Japa Advaced Isttute of Scece ad Techology - Asahda, Tatsuokuch, Ishkawa, 92-292 Japa ad Yaxag HE Computer
STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS. x, where. = y - ˆ " 1
STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS Recall Assumpto E(Y x) η 0 + η x (lear codtoal mea fucto) Data (x, y ), (x 2, y 2 ),, (x, y ) Least squares estmator ˆ E (Y x) ˆ " 0 + ˆ " x, where ˆ
IP Network Topology Link Prediction Based on Improved Local Information Similarity Algorithm
Iteratoal Joural of Grd Dstrbuto Computg, pp.141-150 http://dx.do.org/10.14257/jgdc.2015.8.6.14 IP Network Topology Lk Predcto Based o Improved Local Iformato mlarty Algorthm Che Yu* 1, 2 ad Dua Zhem 1
The impact of service-oriented architecture on the scheduling algorithm in cloud computing
Iteratoal Research Joural of Appled ad Basc Sceces 2015 Avalable ole at www.rjabs.com ISSN 2251-838X / Vol, 9 (3): 387-392 Scece Explorer Publcatos The mpact of servce-oreted archtecture o the schedulg
The Digital Signature Scheme MQQ-SIG
The Dgtal Sgature Scheme MQQ-SIG Itellectual Property Statemet ad Techcal Descrpto Frst publshed: 10 October 2010, Last update: 20 December 2010 Dalo Glgorosk 1 ad Rue Stesmo Ødegård 2 ad Rue Erled Jese
Settlement Prediction by Spatial-temporal Random Process
Safety, Relablty ad Rs of Structures, Ifrastructures ad Egeerg Systems Furuta, Fragopol & Shozua (eds Taylor & Fracs Group, Lodo, ISBN 978---77- Settlemet Predcto by Spatal-temporal Radom Process P. Rugbaapha
Optimal Packetization Interval for VoIP Applications Over IEEE 802.16 Networks
Optmal Packetzato Iterval for VoIP Applcatos Over IEEE 802.16 Networks Sheha Perera Harsha Srsea Krzysztof Pawlkowsk Departmet of Electrcal & Computer Egeerg Uversty of Caterbury New Zealad [email protected]
A particle Swarm Optimization-based Framework for Agile Software Effort Estimation
The Iteratoal Joural Of Egeerg Ad Scece (IJES) olume 3 Issue 6 Pages 30-36 204 ISSN (e): 239 83 ISSN (p): 239 805 A partcle Swarm Optmzato-based Framework for Agle Software Effort Estmato Maga I, & 2 Blamah
The Gompertz-Makeham distribution. Fredrik Norström. Supervisor: Yuri Belyaev
The Gompertz-Makeham dstrbuto by Fredrk Norström Master s thess Mathematcal Statstcs, Umeå Uversty, 997 Supervsor: Yur Belyaev Abstract Ths work s about the Gompertz-Makeham dstrbuto. The dstrbuto has
Proactive Detection of DDoS Attacks Utilizing k-nn Classifier in an Anti-DDos Framework
World Academy of Scece, Egeerg ad Techology Iteratoal Joural of Computer, Electrcal, Automato, Cotrol ad Iformato Egeerg Vol:4, No:3, 2010 Proactve Detecto of DDoS Attacks Utlzg k-nn Classfer a At-DDos
A DISTRIBUTED REPUTATION BROKER FRAMEWORK FOR WEB SERVICE APPLICATIONS
L et al.: A Dstrbuted Reputato Broker Framework for Web Servce Applcatos A DISTRIBUTED REPUTATION BROKER FRAMEWORK FOR WEB SERVICE APPLICATIONS Kwe-Jay L Departmet of Electrcal Egeerg ad Computer Scece
Three Dimensional Interpolation of Video Signals
Three Dmesoal Iterpolato of Vdeo Sgals Elham Shahfard March 0 th 006 Outle A Bref reve of prevous tals Dgtal Iterpolato Bascs Upsamplg D Flter Desg Issues Ifte Impulse Respose Fte Impulse Respose Desged
Repeated multiplication is represented using exponential notation, for example:
Appedix A: The Lws of Expoets Expoets re short-hd ottio used to represet my fctors multiplied together All of the rules for mipultig expoets my be deduced from the lws of multiplictio d divisio tht you
Capacitated Production Planning and Inventory Control when Demand is Unpredictable for Most Items: The No B/C Strategy
SCHOOL OF OPERATIONS RESEARCH AND INDUSTRIAL ENGINEERING COLLEGE OF ENGINEERING CORNELL UNIVERSITY ITHACA, NY 4853-380 TECHNICAL REPORT Jue 200 Capactated Producto Plag ad Ivetory Cotrol whe Demad s Upredctable
Classic Problems at a Glance using the TVM Solver
C H A P T E R 2 Classc Problems at a Glace usg the TVM Solver The table below llustrates the most commo types of classc face problems. The formulas are gve for each calculato. A bref troducto to usg the
A COMPARATIVE STUDY BETWEEN POLYCLASS AND MULTICLASS LANGUAGE MODELS
A COMPARATIVE STUDY BETWEEN POLYCLASS AND MULTICLASS LANGUAGE MODELS I Ztou, K Smaïl, S Delge, F Bmbot To cte ths verso: I Ztou, K Smaïl, S Delge, F Bmbot. A COMPARATIVE STUDY BETWEEN POLY- CLASS AND MULTICLASS
On formula to compute primes and the n th prime
Joural's Ttle, Vol., 00, o., - O formula to compute prmes ad the th prme Issam Kaddoura Lebaese Iteratoal Uversty Faculty of Arts ad ceces, Lebao Emal: [email protected] amh Abdul-Nab Lebaese Iteratoal
Proceeding of the 32nd International Conference on Computers & Industrial Engineering
Proceeg of the 2 Itertol Coferece o Computers & Iustrl Egeerg 44 A GAP ANALYSIS FOR GREEN SUPPLY CHAIN BENCHMARKING Slem Y. Lkhl * Sou H M 2 Assocte professor of Opertos Mgemet; 2 Assstt professor of Mrketg
Chapter Eight. f : R R
Chapter Eght f : R R 8. Itroducto We shall ow tur our atteto to the very mportat specal case of fuctos that are real, or scalar, valued. These are sometmes called scalar felds. I the very, but mportat,
SHAPIRO-WILK TEST FOR NORMALITY WITH KNOWN MEAN
SHAPIRO-WILK TEST FOR NORMALITY WITH KNOWN MEAN Wojcech Zelńsk Departmet of Ecoometrcs ad Statstcs Warsaw Uversty of Lfe Sceces Nowoursyowska 66, -787 Warszawa e-mal: wojtekzelsk@statystykafo Zofa Hausz,
Co-author: Jakub Mikolášek Institute of Economic Studies, Faculty of Social Sciences, Charles University, Prague.
tle: Soclly Optml to of Bds Correspodg uthor: Krel Jd Fculty of Fce d Accoutg, Uversty of Ecoomcs, rgue, Isttute of Ecoomc Studes, Fculty of Socl Sceces, Chrles Uversty, rgue, d CERGE-EI. Address for correspodece:
A. Description: A simple queueing system is shown in Fig. 16-1. Customers arrive randomly at an average rate of
Queueig Theory INTRODUCTION Queueig theory dels with the study of queues (witig lies). Queues boud i rcticl situtios. The erliest use of queueig theory ws i the desig of telehoe system. Alictios of queueig
Present and Future Value Formulae for Uneven Cash Flows Based on Performance of a Business
Itertol Jourl of Bkg d Fce Volue 8 Issue Artcle 0--0 reset d Future Vlue Forule for Ueve Csh Flows Bsed o erforce of Busess Aeh Tefer Tesse Costructo d Busess Bk, Etho, [email protected] Follow ths d ddtol
Raport końcowy Zadanie nr 8:
Opracowae: Polsko- Japońska Wższa Szkoła Techk Komputerowch Wdzał amejscow Iformatk w tomu Raport końcow adae r 8: Przeprowadzee badań opracowae algortmów do projektu: adae 4 Idetfkacja zachowaa terakcj
DECISION MAKING WITH THE OWA OPERATOR IN SPORT MANAGEMENT
ESTYLF08, Cuecas Meras (Meres - Lagreo), 7-9 de Septembre de 2008 DECISION MAKING WITH THE OWA OPERATOR IN SPORT MANAGEMENT José M. Mergó Aa M. Gl-Lafuete Departmet of Busess Admstrato, Uversty of Barceloa
ANALYTICAL MODEL FOR TCP FILE TRANSFERS OVER UMTS. Janne Peisa Ericsson Research 02420 Jorvas, Finland. Michael Meyer Ericsson Research, Germany
ANALYTICAL MODEL FOR TCP FILE TRANSFERS OVER UMTS Jae Pesa Erco Research 4 Jorvas, Flad Mchael Meyer Erco Research, Germay Abstract Ths paper proposes a farly complex model to aalyze the performace of
The simple linear Regression Model
The smple lear Regresso Model Correlato coeffcet s o-parametrc ad just dcates that two varables are assocated wth oe aother, but t does ot gve a deas of the kd of relatoshp. Regresso models help vestgatg
