Master Thesis Mathematical Modeling and Simulation On Fuzzy linear programming problems solved with Fuzzy decisive set method
|
|
|
- Dinah Richards
- 9 years ago
- Views:
Transcription
1 008:05 Mster Thess Mthemt Modeg d Smuto O Fuzzy er progrmmg proems soved wth Fuzzy desve set method Author shd Mehmood Thess for the degree Mster of Mthemt Modeg d Smuto 5 redt pots 5 ECTS redts Bekge Isttute of Tehoogy Shoo of Egeerg Deprtmet of Mthemts d See Supervsor: Prof. Eseth kus-adersso
2 Astrt I the thess there re two kds of fuzzy er progrmmg proems oe of them s er progrmmg proem wth fuzzy tehoog oeffets d the seod s er progrmmg proem whh oth the rght-hd sde d the tehoog oeffets re fuzzy umers. I sove the fuzzy er progrmmg proems wth fuzzy desve set method.
3 ACKNOWLEDGEMENT I the me of Ah who s the most grous d merfu. Frst d foremost I woud ke to thk my supervsor Dr. Eseth kus- Adersso for her gude d ptee through out of ths thess perod. Her supportve d kd tttude mkes t posse for me to ompete t. I kowedge her otrutos to ehe my kowedge o the suet. I m so thkfu to my freds espey Muhmmd Srfrz Iq for sprg ther tme to revew my thess. I m so grtefu pushers d uthors s ther setf terture heped me whe workg o my thess. Fy I must thk my fmy who hs provded ove d support through my study. Ther ove wys rems the key soure of motvto for me.
4 Cotets pges Itroduto 4-6 Fuzzy Desve Set Method. Ler Progrmmg Wth Fuzzy 7-0 Tehoog Coeffets. Lp Proems wth Fuzzy Tehoog 0-4 Coeffets d Fuzzy ght- hd-sde Numers. Empes Couso 5 eferees 0-4
5 Itroduto Before trodug fuzzy er progrmmg we w revew trdto er progrmmg LP. Ler progrmmg s ger method used to sove sets of er equtos. The form methodoogy ws deveoped roud 947. The purpose of er progrmmg s to fd optm soutos for systems whh re modeed y er equtos. I LP shrp ostrts re omed to mt the spe of fese soutos to the er proem eg posed. The vre dmesos of the system eg modeed ssume the form of vetor. The oetves of proem re so modeed wth er equtos. The erty of the ostrts d the oetves ees strght-forwrd souto methods. Vertes of the souto spe orrespod to optmzg vetors. The vetors re optmzg the sese tht o-zero er equtos of the system vres represetg the oetves heve ether mm or mm vues t the vertes of the fese souto spe. There re vrous wys to vsuze how the LP method heves optm souto for er system. Some proems re soved y mkg smpe d ovous hoes etwee sm set of optos. My mportt proems re more ompted; there e mutpe smuteous gos d demms d ompromses heret posse soutos. We requre frmework to detfy optm soutos. Costrts o tos d resoures hve to e detfed. Oetves hve to e defed. There hs to e wy of evutg the degree to whh defe oetves re met. est proems d oetves re ofte oy vguey defed. The proems gve s empes ove rge from trv to sute d ompe d re represettve of re fe proems. 5
6 Fuzzy er progrmmg FLP s refemet of er progrmmg LP whh ws deveoped se the etee-sevetes. The fuzzy oetve futo s hrterzed y ts memershp futo d so re the ostrts. Se we wt to stsfy optmze the oetve futo s we s the ostrt deso fuzzy evromet s defed ogy to o fuzzy evromet s the seeto of tvtes whh smuteousy stsfy the oetve futo d the ostrts. The retoshp etwee the ostrts d the oetve futo fuzzy evromet s therefore fuy symmetr.e. there s o oger dfferee etwee the former d tter. The deso mker my ot tuy wt to mmze or mmze the oetve futo. ther he mght wt to reh some sprto eves whh mght ot eve e defe rspy. Thus he mght wt to mprove the preset ost stuto osdery d so o. The ostrts mght e vgue oe of the foowg wys. The sg mght ot e met the strt mthemt sese ut smer votos mght we e epte. Ths hppe f the ostrts represet sprto eves s metoed ove or f for ste the ostrts represet sesory requremets tste oor sme et. whh ot dequtey e ppromted y rsp ostrt. Of ourse the oeffets of the vetors or or of the mtr A tsef hve fuzzy hrter ether euse they re fuzzy ture or euse perepto of them s fuzzy. The roe of the ostrts e dfferet from tht ss er progrmmg where the voto of y sge ostrt y y mout reders the souto fese. The deso mker mght ept sm votos of dfferet ostrts. Fuzzy er progrmmg offers umer of wys for those types of vgueess [7]. 6
7 Approh d Methods I fuzzy deso mkg proems the oept of mmzg deso ws proposed y Bem d deh []. Ths oept ws dopted to proems of mthemt progrmmg y Tk et.[9]. mmerm [0] preseted fuzzy pproh to mutoetve er progrmmg proems. Fuzzy er progrmmg proem wth fuzzy oeffets ws formuted y Negot [] d ed roust progrmmg. Duos d Prde [] vestgted er fuzzy ostrts. Tk d As [4] so proposed formuto of fuzzy progrmmg wth fuzzy ostrts d gve method for ts souto whh ses o equty retos etwee fuzzy umers. Shoheg [] osdered the fuzzy er progrmmg proem wth fuzzy ostrts d defuzzfted t y frst determg upper oud for the oetve futo. Further the so-oted rsp proem soved y the fuzzy desve set method hs ee trodued y Skw d Y []. Frst osder er progrmmg proems whh oy tehoog oeffets re fuzzy umers d the er progrmmg proems whh oth tehoog oeffets d rghthd sde umers re fuzzy umers. The frst proem s overted to equvet rsp proem. There ests proem of fdg pot whh stsfes the ostrts d the go the go e ompre to oetve futo wth the mmum degree. The de of the pproh s due to Bem d deh [] The rsp proems oted y suh mer e o-er eve o-ove where the o-erty rses ostrts. For sovg these proems we utze the fuzzy desve set method s trodued y Skw d Y []. I ths method omto wth the seto method d the smpe method of er progrmmg s used to ot fese souto. 7
8 . Ler progrmmg wth fuzzy tehoog oeffets m suet 0 to m t est oe > 0.. Assumptos s futo of the foowg fuzzy set. µ d 0 / d f f f < < d d Where ϵ d d > 0 for m For defuzzfto of ths proem we frst fuzzfy the oetve futo. Ths s doe y utg the ower d upper ouds of the optm vues frst. The ouds of the optm vues z d z u re oted y sovg the stdrd er progrmmg proems. 8
9 m suet to m.. d m 0. d.. The oetve futo tkes vues z d z etwee d d. Let ed ower d upper ouds of the optm vues. tehoog oeffets z m z z d z u m z z. The z d Assumpto. The er rsp proems.. d.. hve fte optm vues. I ths se the fuzzy set G of optm vues whh s suset of s defed s see Kr d Yu [5] zu re 9
10 / 0 < < u u u G f f f µ..4 The fuzzy set of the th ostrt C whh s suset of m s defed y < < < u d d / 0 µ..5 Aordg to the defto of the fuzzy deso proposed y Bem d deh [] we ot the fuzzy deso set D hrterzed y the memershp futo stted s the mmum over the fuzzy go G-set d some ostrts C. Provded tht the go d the ostrts e over the sme uverse spe the futo s formzed due to the formu m m C G D µ µ µ..6 0
11 After dptg..6 to the purpose of fdg the memershp degree of the optm fuzzy deso we determe souto of the proem s m µ > 0 D m m µ > 0 G m µ C..7 osequety the proem.. eomes to the foowg optmzto proem mλ µ G 0 λ µ λ C 0 λ < < m..8 I whh λ s prmeter from [0 ]. By usg..4 d..5 the proem..8 e wrtte s m λ λ 0 λ d 0 0 < < m 0 λ...9 Note tht the ostrts proem..9 otg the ross produt terms λ re ot ove. Therefore the souto of ths proem requres the spe pproh dopted for sovg geer oove optmzto proems.
12 . Lp proems wth fuzzy tehoog oeffets d Fuzzy ght- hd-sde umers. m 0 m.. Where t est oe > 0 Assumpto. d re fuzzy umers wth the foowg er Memershp futos: µ d / d 0 f f f < < d d d µ p / 0 p f f f < < p p Where X ϵ d > 0 for defuzzfto of the proem.. we frst ute the ower d upper ouds of the optm vues. The optm vues z d z u e defed y sovg the foowg stdrd er progrmmg proems for whh we ssume tht they hve the fte optm vues.
13 0 m m d.. d 0 m m p.. d 0 m m p d..4 d 0 m 4 m..5
14 Let z m z z z z 4 d z u m z z z z 4 The oetve futo tkes vues etwee z d zu whe tehoog oeffets tke vues etwee d d d the rght-hd sde umers tke vues etwee d p. The fuzzy set of optm vues G whh s suset of Is defed y µ G 0 / u f f f < < u u The fuzzy set of the th ostrt C whh s suset of µ C 0 / d p f f f s defed y < <..6 d d p. p..7 4
15 By usg the method of defuzzfto s for the proem..8 the proem.. s redued to the foowg rsp proem: mλ λ 0 λd 0 λp 0 0 λ. < < m..8 Note tht the proem..8 s so o ove progrmmg proem smr to the proem..9. The gorthm of the fuzzy desve set method Ths method s sed o the de tht for fed vue ofλ the proems..9 d..8 re er progrmmg proems. Otg the optm * souto λ to the proems..9 d..8 s equvet to determg the mmum vue of λ for whh the fese set s oempty. The gorthm of ths method for the proem..9 d..8 s s foows. Agorthm Step Set λ d test whether fese set stsfyg the ostrts of the Proem..9 ests or ot y usg the optmty rtero of the smpe method. If fese set ests set λ otherwse set λ 0 d λ d go to the et step. Step For the vue of λ λ λ / updted the vue of λ d λ usg the seto method s foows: λ λ f fese set s oempty for λ λ λ f fese set s empty for λ Cosequety for eh λ test whether fese set of the proem..9 ests or ot y usg the optmty rtero of the Smpe method d * determe the mmum vue λ stsfyg the ostrts of the proem..9 5
16 . Empe. Sove the optmzto proem [8]. m Tke fuzzy prmeters s d L L L L 4 L4 5 L5 s used y Shoheg[]. Suppose tht e.g. L mes fuzzy set wth pek d d spred. The memershp futo of L s L 4 0 for for for < 4 > 4 6
17 > > p p d d Frst sove foowg two su-proems: M d M Optm soutos of these su proems re: By usg these optm vues the proem e redued to foowg equvet o-er progrmmg proem: 7
18 M λ λ 0 λ λ λ Tht s M λ λ λ 0 λ λ λ λ 4 λ 5 λ. Let sove. y usg the fuzzy desve set method For λ 4 0 Se fese set s empty tkg λ 0 d λ the ew vue of λ 0/ / s pped. For λ /
19 Se fese set s empty tkg λ 0 d λ / the ew vue of λ 0// /4 s pped. For λ /4 0.5 the proem e wrtte s Se fese set s oempty tkg λ /4 d λ / the ew vue of λ /4// /8 s pped. For λ / Se fese set s empty tkg λ /4 d λ /8 the ew vue of λ /4/8/ 5/6 s pped. For λ 5/ Se fese set s oempty tkg λ 5/6 d λ /8 the ew vue of λ 5/6/8/ / s pped. For λ /
20 Se fese set s oempty tkg λ / d λ /8 the ew vue of λ //8/ /64 s pped. For λ / Se fese set s oempty tkg λ /64 d λ /8 the ew vue of λ /64/8/ 47/8 s pped. For λ 47/ Se fese set s empty tkg λ /64 d λ 47/8 the ew vue of λ /6447/8/ 9/56 s pped. For λ 9/ Se fese set s empty tkg λ /64 d λ 9/56 the ew vue of λ /649/56/ 85/5s pped. For λ 85/
21 Se fese set s empty tkg λ /64 d λ 85/5 the ew vue of λ /6485/5/ 69/04 s pped. For λ 69/ Se fese set s empty tkg λ /64 d λ 69/04 the ew vue of λ /6469/04/ 77/048 s pped. For λ 77/ Se fese set s oempty tkg λ 77/048d λ 69/04 the ew vue of λ 77/04869/04/ 475/4096 s pped. For λ 475/ Se fese set s oempty tkg λ 475/4096 d λ 69/04 the ew vue of λ 475/409669/04/ 95/89 s pped. For λ 95/
22 Se fese set s empty tkg λ 475/4096 d λ 95/89 the ew vue of λ 475/409695/89/ 590/684 s pped. For λ 590/ Se fese set s oempty tkg λ 590/684 d λ 95/89 the ew vue of λ 590/68495/89/ 80/768 s pped. For λ 80/ Se fese set s oempty tkg λ 80/768 d λ 95/89 the ew vue of λ 80/76895/89/ 80/768 s pped. For λ 607/ Se fese set s oempty tkg λ 607/6556 d λ 95/89 the ew vue of λ 607/655695/89/ 475/07 s pped. For λ 475/
23 Se fese set s oempty tkg λ 475/07 d λ 95/89 the ew vue of λ 475/0795/89/ 944/644 s pped. For λ 944/ Se fese set s oempty tkg λ 944/644 d λ 95/89 the ew vue of λ 944/64495/89/ 8886/5488 s pped. * For λ 8886/ Frst set the vue of λ put the λ vue. equto fter sovg the equto you see we hve ew futo wrtte eow the. ow frst sove tht futo wth smpe er progrmmg method f the souto vue s ess the wth rght hd sde vue the fese set s empty tkg the λ o d λ or f the vue s greter the fese set s oempty tkg λ d λ 0 ths proess otue ut we ot the optm vue of λ. Chek the dfferee etwee the prevous md d the et md d ompre the soute dfferee to ury ostt ε most equ to zero. For ste f ε0.000 the < Thus the st md o.60 e treted s optm. For updte the λ use ths formu λ λ λ /
24 Empe. Sove the optmzto proem M. Tke fuzzy prmeters s; L d L L L L L > > p p d d Frst sove foowg two su-proems; M d 4
25 0 8 9 M Optm soutos of these su proems re; d d d BY usg these optm vues the proem e redued to foowg equvet o-er progrmmg proem; M λ λ λ λ λ 5
26 Tht s M λ λ λ 0 λ.6 6.5λ λ λ 6 λ 6 λ 0.4 Let sove.4 y usg the fuzzy desve set method For λ Se fese set s empty tkg λ 0 d λ the ew vue of λ 0/ / s pped. For λ / Se fese set s empty tkg λ 0 d λ / the ew vue of λ 0// /4 s pped. For λ /
27 Se fese set s oempty tkg λ /4 d λ / the ew vue of λ /4 // /8 s pped. For λ / Se fese set s empty tkg λ /4 d λ /8 the ew vue of λ /4 /8/ 5/6 s pped. For λ 5/ Se fese set s oempty tkg λ 5/6 d λ /8 the ew vue of λ 5/6 /8/ / s pped. For λ / Se fese set s oempty tkg λ / d λ /8 the ew vue of λ / /8/ /64 s pped. For λ /
28 Se fese set s empty tkg λ / d λ /64 the ew vue of λ / /64/ 45/8 s pped. For λ 45/ Se fese set s oempty tkg λ 45/8 d λ /64 the ew vue of λ 45/8 /64/ 45/8 s pped. For λ 9/ Se fese set s oempty tkg λ 9/56 d λ /64 the ew vue of λ 9/56 /64/ 8/5 s pped. For λ 8/ Se fese set s empty tkg λ 9/56 d λ 8/5 the ew vue of λ 9/56 8/5/ 65/04 s pped. For λ 65/
29 Se fese set s empty tkg λ 9/56 d λ 65/04 the ew vue of λ 9/56 65/04/ 79/048 s pped. For λ 79/ Se fese set s empty tkg λ 9/56 d λ 79/048 the ew vue of λ 9/56 79/048/ 457/4096 s pped. For λ 457/ Se fese set s empty tkg λ 9/56 d λ 457/4096 the ew vue of λ 9/56 457/4096/ 9/89 s pped. For λ 9/ Se fese set s oempty tkg λ 9/89 d λ 457/4096 the ew vue of λ 9/89 457/4096/ 587/684 s pped. For λ 587/
30 Se fese set s empty tkg λ 9/89 d λ 587/684 The ew vue of λ 9/89 587/684/ 65/768 s pped. For λ 65/ Se fese set s oempty tkg λ 65/768 d λ 587/684 The ew vue of λ 65/ /684/ 07/6556 s pped. For λ 07/ Se fese set s empty tkg λ 65/768 d λ 07/6556 The ew vue of λ 65/768 07/6556/ 07/6556 s pped. * For λ 466/ We ot the optm vue of λ t λ * y usg the fuzzy desve set method. Couso The oetve of ths thess s to fd the optm souto of the proem usg the fuzzy desve set method. The method s sed o the trsformto of fuzzy er progrm to equvet o-fuzzy form otg prmeter λ. By utzg the seto method we oud oth the oetve futo d the ostrs whe fdg the optm vue of the prmeter λ whh wrrts the o-emptess of the souto set. 0
31 eferees Azmov A.Y. Gsmov.N.: O wek ougy wek Su dfferets d duty wth zero-gp o-ove optmzto Iterto Jour of Apped Mthemts Vo Duos D Prde H System of er fuzzy ostrts Fuzzy Sets d Systems Bem.E. deh L.A Deso-mkg fuzzy evromet Mgemet See B4-B64. 4 Kett O. Or M. Equvet formutos of oer teger proems for effet optmzto Mgemet See Vo. 6 No Kr G.J. Yu B. Fuzzy Sets d Fuzzy Log-Theory d Apptos Prete-H I p. 6 L Y-J. Hwg C-L. Fuzzy Mthemt Progrmmg Leture Notes Eooms d Mthemt Systems Sprger-Verg 99 0p. 7 Fuzzy ogs d er progrmmg fd optm souto y Bre Hse Opertos reserh eghth edto y Hmdy A.Th. 9 Tk H. Okud T. As K O fuzzy mthemt progrmmg J. Cyerets mmerm H.J.: Fuzzy mthemt progrmmg Comput. & Ops. es. Vo. 0 No Negot C.V.: Fuzzess mgemet OPSA/TIMS Mm 970. Skw M. Y H. Itertve deso mkg for mut-oetve Ler frto progrmmg proems wth fuzzy prmeters
32 Cyerets Systems Shoheg T. Iterv umer d Fuzzy umer er progrmmg Fuzzy Sets d Systems Tk H. As K. Fuzzy er progrmmg proems wth fuzzy Numers Fuzzy Sets d Systems Sovg fuzzy er progrmmg proems wth peewse er Memershp futos y the determto of rsp mmzg Deso y S. Efft d H. Asy.
Generalized solutions for the joint replenishment problem with correction factor
Geerzed soutos for the ot repeshet proe wth correcto fctor Astrct Erc Porrs, Roert Deer Ecooetrc Isttute, erge Isttute, Ersus Uversty Rotterd, P.O. Box 73, 3 DR Rotterd, he etherds Ecooetrc Isttute Report
Sequences and Series
Secto 9. Sequeces d Seres You c thk of sequece s fucto whose dom s the set of postve tegers. f ( ), f (), f (),... f ( ),... Defto of Sequece A fte sequece s fucto whose dom s the set of postve tegers.
A Hierarchical Fuzzy Linear Regression Model for Forecasting Agriculture Energy Demand: A Case Study of Iran
3rd Iteratoal Coferee o Iformato ad Faal Egeerg IPEDR vol. ( ( IACSIT Press, Sgapore A Herarhal Fuzz Lear Regresso Model for Foreastg Agrulture Eerg Demad: A Case Stud of Ira A. Kazem, H. Shakour.G, M.B.
DISTANCE MEASURE FOR ORDINAL DATA *
ARGUMENTA OECONOMICA No (8) 999 PL ISSN 33-5835 Mre Wes DISTANCE MEASURE FOR ORDINAL DATA * The study cosders the proe of costructo esures of srty for ord dt. The ord chrcter of the dt requred the ppcto
Fuzzy Risk Evaluation Method for Information Technology Service
Fuzzy Rsk Evaluato Method for Iformato Tehology Serve Outsourg Qasheg Zhag Yrog Huag Fuzzy Rsk Evaluato Method for Iformato Tehology Serve Outsourg 1 Qasheg Zhag 2 Yrog Huag 1 Shool of Iformats Guagdog
WHAT HAPPENS WHEN YOU MIX COMPLEX NUMBERS WITH PRIME NUMBERS?
WHAT HAPPES WHE YOU MIX COMPLEX UMBERS WITH PRIME UMBERS? There s n ol syng, you n t pples n ornges. Mthemtns hte n t; they love to throw pples n ornges nto foo proessor n see wht hppens. Sometmes they
ANOVA Notes Page 1. Analysis of Variance for a One-Way Classification of Data
ANOVA Notes Page Aalss of Varace for a Oe-Wa Classfcato of Data Cosder a sgle factor or treatmet doe at levels (e, there are,, 3, dfferet varatos o the prescrbed treatmet) Wth a gve treatmet level there
Preprocess a planar map S. Given a query point p, report the face of S containing p. Goal: O(n)-size data structure that enables O(log n) query time.
Computatoal Geometry Chapter 6 Pot Locato 1 Problem Defto Preprocess a plaar map S. Gve a query pot p, report the face of S cotag p. S Goal: O()-sze data structure that eables O(log ) query tme. C p E
EXAMPLE 1... 1 EXAMPLE 2... 14 EXAMPLE 3... 18 EXAMPLE 4 UNIVERSAL TRADITIONAL APPROACH... 24 EXAMPLE 5 FLEXIBLE PRODUCT... 26
EXAMLE... A. Edowme... B. ure edowme d Term surce... 4 C. Reseres... 8. Bruo premum d reseres... EXAMLE 2... 4 A. Whoe fe... 4 B. Reseres of Whoe fe... 6 C. Bruo Whoe fe... 7 EXAMLE 3... 8 A.ure edowme...
Angles and Triangles
nges nd Tringes n nge is formed when two rys hve ommon strting point or vertex. The mesure of n nge is given in degrees, with ompete revoution representing 360 degrees. Some fmiir nges inude nother fmiir
16. Mean Square Estimation
6 Me Sque stmto Gve some fomto tht s elted to uow qutty of teest the poblem s to obt good estmte fo the uow tems of the obseved dt Suppose epeset sequece of dom vbles bout whom oe set of obsevtos e vlble
Lecture 7. Norms and Condition Numbers
Lecture 7 Norms ad Codto Numbers To dscuss the errors umerca probems vovg vectors, t s usefu to empo orms. Vector Norm O a vector space V, a orm s a fucto from V to the set of o-egatve reas that obes three
Comparing plans is now simple with metal plans. What Does it Mean to Have a 6-Tier Pharmacy Plan? Tie. Individual Health Insurance
Compg p ow mp wth mt p Iu p py 0% 0% Iu p py T T T T T T 0% t to M G - No G B No B Iu p py 0% Iu p py Iu Hth Iu Mt p po you wth ho. Th m wth mt p th ptg you p w gy py o. 0% A Hth O tm. Cot. Cg o you. Wh
IDENTIFICATION OF THE DYNAMICS OF THE GOOGLE S RANKING ALGORITHM. A. Khaki Sedigh, Mehdi Roudaki
IDENIFICAION OF HE DYNAMICS OF HE GOOGLE S RANKING ALGORIHM A. Khak Sedgh, Mehd Roudak Cotrol Dvso, Departmet of Electrcal Egeerg, K.N.oos Uversty of echology P. O. Box: 16315-1355, ehra, Ira [email protected],
FINANCIAL MATHEMATICS 12 MARCH 2014
FINNCIL MTHEMTICS 12 MRCH 2014 I ths lesso we: Lesso Descrpto Make use of logarthms to calculate the value of, the tme perod, the equato P1 or P1. Solve problems volvg preset value ad future value autes.
Average Price Ratios
Average Prce Ratos Morgstar Methodology Paper August 3, 2005 2005 Morgstar, Ic. All rghts reserved. The formato ths documet s the property of Morgstar, Ic. Reproducto or trascrpto by ay meas, whole or
1. The Time Value of Money
Corporate Face [00-0345]. The Tme Value of Moey. Compoudg ad Dscoutg Captalzato (compoudg, fdg future values) s a process of movg a value forward tme. It yelds the future value gve the relevat compoudg
Summation Notation The sum of the first n terms of a sequence is represented by the summation notation i the index of summation
Lesso 0.: Sequeces d Summtio Nottio Def. of Sequece A ifiite sequece is fuctio whose domi is the set of positive rel itegers (turl umers). The fuctio vlues or terms of the sequece re represeted y, 2, 3,...,....
n Using the formula we get a confidence interval of 80±1.64
9.52 The professor of sttistics oticed tht the rks i his course re orlly distributed. He hs lso oticed tht his orig clss verge is 73% with stdrd devitio of 12% o their fil exs. His fteroo clsses verge
Released Assessment Questions, 2015 QUESTIONS
Relesed Assessmet Questios, 15 QUESTIONS Grde 9 Assessmet of Mthemtis Ademi Red the istrutios elow. Alog with this ooklet, mke sure you hve the Aswer Booklet d the Formul Sheet. You my use y spe i this
CSSE463: Image Recognition Day 27
CSSE463: Image Recogto Da 27 Ths week Toda: Alcatos of PCA Suda ght: roject las ad relm work due Questos? Prcal Comoets Aalss weght grth c ( )( ) ( )( ( )( ) ) heght sze Gve a set of samles, fd the drecto(s)
of the relationship between time and the value of money.
TIME AND THE VALUE OF MONEY Most agrbusess maagers are famlar wth the terms compoudg, dscoutg, auty, ad captalzato. That s, most agrbusess maagers have a tutve uderstadg that each term mples some relatoshp
10.5 Future Value and Present Value of a General Annuity Due
Chapter 10 Autes 371 5. Thomas leases a car worth $4,000 at.99% compouded mothly. He agrees to make 36 lease paymets of $330 each at the begg of every moth. What s the buyout prce (resdual value of the
CHAPTER 2. Time Value of Money 6-1
CHAPTER 2 Tme Value of Moey 6- Tme Value of Moey (TVM) Tme Les Future value & Preset value Rates of retur Autes & Perpetutes Ueve cash Flow Streams Amortzato 6-2 Tme les 0 2 3 % CF 0 CF CF 2 CF 3 Show
APPENDIX III THE ENVELOPE PROPERTY
Apped III APPENDIX III THE ENVELOPE PROPERTY Optmzato mposes a very strog structure o the problem cosdered Ths s the reaso why eoclasscal ecoomcs whch assumes optmzg behavour has bee the most successful
Statistical Pattern Recognition (CE-725) Department of Computer Engineering Sharif University of Technology
I The Name of God, The Compassoate, The ercful Name: Problems' eys Studet ID#:. Statstcal Patter Recogto (CE-725) Departmet of Computer Egeerg Sharf Uversty of Techology Fal Exam Soluto - Sprg 202 (50
6.7 Network analysis. 6.7.1 Introduction. References - Network analysis. Topological analysis
6.7 Network aalyss Le data that explctly store topologcal formato are called etwork data. Besdes spatal operatos, several methods of spatal aalyss are applcable to etwork data. Fgure: Network data Refereces
Finite Difference Method
Fte Dfferece Method MEL 87 Computatoa Heat rasfer --4) Dr. Praba audar Assstat Professor Departmet of Mechaca Egeerg II Deh Dscretzato Methods Requred to covert the geera trasport equato to set of agebrac
Chapter 3 0.06 = 3000 ( 1.015 ( 1 ) Present Value of an Annuity. Section 4 Present Value of an Annuity; Amortization
Chapter 3 Mathematcs of Face Secto 4 Preset Value of a Auty; Amortzato Preset Value of a Auty I ths secto, we wll address the problem of determg the amout that should be deposted to a accout ow at a gve
Application of GA with SVM for Stock Price Prediction in Financial Market
Iteratoa Joura of Scece ad Research (IJSR) ISSN (Oe): 39-7064 Impact Factor (0): 3.358 Appcato of GA wth SVM for Stock Prce Predcto Faca Market Om Prakash Jea, Dr. Sudarsa Padhy Departmet of Computer Scece
STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS. x, where. = y - ˆ " 1
STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS Recall Assumpto E(Y x) η 0 + η x (lear codtoal mea fucto) Data (x, y ), (x 2, y 2 ),, (x, y ) Least squares estmator ˆ E (Y x) ˆ " 0 + ˆ " x, where ˆ
Randomized Load Balancing by Joining and Splitting Bins
Radomzed Load Baacg by Jog ad Spttg Bs James Aspes Ytog Y 1 Itoducto Cosde the foowg oad baacg sceao: a ceta amout of wo oad s dstbuted amog a set of maches that may chage ove tme as maches o ad eave the
Chapter Eight. f : R R
Chapter Eght f : R R 8. Itroducto We shall ow tur our atteto to the very mportat specal case of fuctos that are real, or scalar, valued. These are sometmes called scalar felds. I the very, but mportat,
Fractal-Structured Karatsuba`s Algorithm for Binary Field Multiplication: FK
Fractal-Structured Karatsuba`s Algorthm for Bary Feld Multplcato: FK *The authors are worg at the Isttute of Mathematcs The Academy of Sceces of DPR Korea. **Address : U Jog dstrct Kwahadog Number Pyogyag
Chapter 3. AMORTIZATION OF LOAN. SINKING FUNDS R =
Chapter 3. AMORTIZATION OF LOAN. SINKING FUNDS Objectves of the Topc: Beg able to formalse ad solve practcal ad mathematcal problems, whch the subjects of loa amortsato ad maagemet of cumulatve fuds are
We will begin this chapter with a quick refresher of what an exponent is.
.1 Exoets We will egi this chter with quick refresher of wht exoet is. Recll: So, exoet is how we rereset reeted ultilictio. We wt to tke closer look t the exoet. We will egi with wht the roerties re for
Banking (Early Repayment of Housing Loans) Order, 5762 2002 1
akg (Early Repaymet of Housg Loas) Order, 5762 2002 y vrtue of the power vested me uder Secto 3 of the akg Ordace 94 (hereafter, the Ordace ), followg cosultato wth the Commttee, ad wth the approval of
The Time Value of Money
The Tme Value of Moey 1 Iversemet Optos Year: 1624 Property Traded: Mahatta Islad Prce : $24.00, FV of $24 @ 6%: FV = $24 (1+0.06) 388 = $158.08 bllo Opto 1 0 1 2 3 4 5 t ($519.37) 0 0 0 0 $1,000 Opto
THE EQUILIBRIUM MODELS IN OLIGOPOLY ELECTRICITY MARKET
Iteratoal Coferee The Euroea Eletrty Market EEM-4 etember -, 4, Lodz, Polad Proeedg Volume,. 35-4 THE EQUILIBRIUM MODEL IN OLIGOPOLY ELECTRICITY MARKET Agezka Wyłomańka Wrolaw Uverty of Tehology Wrolaw
Swelling and Mechanical Properties of Hydrogels Composed of. Binary Blends of Inter-linked ph-responsive Microgel Particles
Eletroi Supplemetry Mteril (ESI) for Soft Mtter. This jourl is The Royl Soiety of Chemistry 205 SUPPLEMENTARY INFRMATIN Swellig Mehil Properties of Hyrogels Compose of Biry Bles of Iter-like ph-resposive
Simple Linear Regression
Smple Lear Regresso Regresso equato a equato that descrbes the average relatoshp betwee a respose (depedet) ad a eplaator (depedet) varable. 6 8 Slope-tercept equato for a le m b (,6) slope. (,) 6 6 8
Classic Problems at a Glance using the TVM Solver
C H A P T E R 2 Classc Problems at a Glace usg the TVM Solver The table below llustrates the most commo types of classc face problems. The formulas are gve for each calculato. A bref troducto to usg the
Module 5. Three-phase AC Circuits. Version 2 EE IIT, Kharagpur
Module 5 Three-hse A iruits Version EE IIT, Khrgur esson 8 Three-hse Blned Suly Version EE IIT, Khrgur In the module, ontining six lessons (-7), the study of iruits, onsisting of the liner elements resistne,
T = 1/freq, T = 2/freq, T = i/freq, T = n (number of cash flows = freq n) are :
Bullets bods Let s descrbe frst a fxed rate bod wthout amortzg a more geeral way : Let s ote : C the aual fxed rate t s a percetage N the otoal freq ( 2 4 ) the umber of coupo per year R the redempto of
M Official Bologna S e m inar Joint d e gr e e s- A H allm ar k of t h e E u r op e an H igh e r E d u cat ion A r e a? R e s u l t s o f q u e s t i o n n a i r e s e n t t o B o l o g n a F o l l o w
EQUATIONS OF LINES AND PLANES
EQUATIONS OF LINES AND PLANES MATH 195, SECTION 59 (VIPUL NAIK) Corresponding mteril in the ook: Section 12.5. Wht students should definitely get: Prmetric eqution of line given in point-direction nd twopoint
SINCLAIR COMMUNITY COLLEGE DAYTON, OHIO DEPARTMENT SYLLABUS FOR COURSE IN MAT 1355 - INTERMEDIATE ALGEBRA I (3 CREDIT HOURS)
SINCLAIR COMMUNITY COLLEGE DAYTON OHIO DEPARTMENT SYLLABUS FOR COURSE IN MAT 1355 - INTERMEDIATE ALGEBRA I (3 CREDIT HOURS) 1. COURSE DESCRIPTION: Ftorig; opertios with polyoils d rtiol expressios; solvig
How To Value An Annuity
Future Value of a Auty After payg all your blls, you have $200 left each payday (at the ed of each moth) that you wll put to savgs order to save up a dow paymet for a house. If you vest ths moey at 5%
Newton-Raphson Method of Solving a Nonlinear Equation Autar Kaw
Newton-Rphson Method o Solvng Nonlner Equton Autr Kw Ater redng ths chpter, you should be ble to:. derve the Newton-Rphson method ormul,. develop the lgorthm o the Newton-Rphson method,. use the Newton-Rphson
MDM 4U PRACTICE EXAMINATION
MDM 4U RCTICE EXMINTION Ths s a ractce eam. It does ot cover all the materal ths course ad should ot be the oly revew that you do rearato for your fal eam. Your eam may cota questos that do ot aear o ths
Checking Out the Doght Stadard Odors in Polygamy
Cosstey Test o Mass Calbrato of Set of Weghts Class ad Lowers Lus Oar Beerra, Igao Herádez, Jorge Nava, Fél Pezet Natoal Ceter of Metrology (CNAM) Querétaro, Meo Abstrat: O weghts albrato oe by oe there
Chapter 7 Dynamics. 7.1 Newton-Euler Formulation of Equations of Motion
Itroduto to Robots,. arry Asada Chapter 7 Dyams I ths hapter, we aalyze the dyam behavor of robot mehasms. he dyam behavor s desrbed terms of the tme rate of hage of the robot ofgurato relato to the ot
The Digital Signature Scheme MQQ-SIG
The Dgtal Sgature Scheme MQQ-SIG Itellectual Property Statemet ad Techcal Descrpto Frst publshed: 10 October 2010, Last update: 20 December 2010 Dalo Glgorosk 1 ad Rue Stesmo Ødegård 2 ad Rue Erled Jese
How To Make A Supply Chain System Work
Iteratoal Joural of Iformato Techology ad Kowledge Maagemet July-December 200, Volume 2, No. 2, pp. 3-35 LATERAL TRANSHIPMENT-A TECHNIQUE FOR INVENTORY CONTROL IN MULTI RETAILER SUPPLY CHAIN SYSTEM Dharamvr
- DAY 1 - Website Design and Project Planning
Wesite Design nd Projet Plnning Ojetive This module provides n overview of the onepts of wesite design nd liner workflow for produing wesite. Prtiipnts will outline the sope of wesite projet, inluding
The Gompertz-Makeham distribution. Fredrik Norström. Supervisor: Yuri Belyaev
The Gompertz-Makeham dstrbuto by Fredrk Norström Master s thess Mathematcal Statstcs, Umeå Uversty, 997 Supervsor: Yur Belyaev Abstract Ths work s about the Gompertz-Makeham dstrbuto. The dstrbuto has
SOME ASPECTS OF REPRESENTATION OF INDUCTANCE DISTRIBUTIONS IN DQ0-AXES IN A SALIENT POLE SYNCHRONOUS GENERATOR
Zezyty Prolemowe Mzyy Eletryze Nr 4/4 4 87 Krzyztof uwe Kele Uverty of Tehology SOME ASPECTS OF REPRESENTATION OF INDUCTANCE DISTRIBUTIONS IN DQ-AXES IN A SAIENT POE SYNCHRONOUS GENERATOR Atrt: Th pper
Numerical Methods with MS Excel
TMME, vol4, o.1, p.84 Numercal Methods wth MS Excel M. El-Gebely & B. Yushau 1 Departmet of Mathematcal Sceces Kg Fahd Uversty of Petroleum & Merals. Dhahra, Saud Araba. Abstract: I ths ote we show how
RUSSIAN ROULETTE AND PARTICLE SPLITTING
RUSSAN ROULETTE AND PARTCLE SPLTTNG M. Ragheb 3/7/203 NTRODUCTON To stuatos are ecoutered partcle trasport smulatos:. a multplyg medum, a partcle such as a eutro a cosmc ray partcle or a photo may geerate
FAULT TREES AND RELIABILITY BLOCK DIAGRAMS. Harry G. Kwatny. Department of Mechanical Engineering & Mechanics Drexel University
SYSTEM FAULT AND Hrry G. Kwtny Deprtment of Mechnicl Engineering & Mechnics Drexel University OUTLINE SYSTEM RBD Definition RBDs nd Fult Trees System Structure Structure Functions Pths nd Cutsets Reliility
Supply Chain Management Chapter 5: Application of ILP. Unified optimization methodology. Beun de Haas
Supply Cha Maagemet Chapter 5: Ufed Optmzato Methodology for Operatoal Plag Problem What to do whe ILP take too much computato tme? Applcato of ILP Tmetable Dutch Ralway (NS) Bu ad drver chedulg at Coeo,
Measuring the Quality of Credit Scoring Models
Measur the Qualty of Credt cor Models Mart Řezáč Dept. of Matheatcs ad tatstcs, Faculty of cece, Masaryk Uversty CCC XI, Edurh Auust 009 Cotet. Itroducto 3. Good/ad clet defto 4 3. Measur the qualty 6
Conversion of Non-Linear Strength Envelopes into Generalized Hoek-Brown Envelopes
Covero of No-Lear Stregth Evelope to Geeralzed Hoek-Brow Evelope Itroducto The power curve crtero commoly ued lmt-equlbrum lope tablty aaly to defe a o-lear tregth evelope (relatohp betwee hear tre, τ,
n. We know that the sum of squares of p independent standard normal variables has a chi square distribution with p degrees of freedom.
UMEÅ UNIVERSITET Matematsk-statstska sttutoe Multvarat dataaalys för tekologer MSTB0 PA TENTAMEN 004-0-9 LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK Multvarat dataaalys för tekologer B, 5 poäg.
Polyphase Filters. Section 12.4 Porat 1/39
Polyphase Flters Secto.4 Porat /39 .4 Polyphase Flters Polyphase s a way of dog saplg-rate coverso that leads to very effcet pleetatos. But ore tha that, t leads to very geeral vewpots that are useful
ECONOMIC CHOICE OF OPTIMUM FEEDER CABLE CONSIDERING RISK ANALYSIS. University of Brasilia (UnB) and The Brazilian Regulatory Agency (ANEEL), Brazil
ECONOMIC CHOICE OF OPTIMUM FEEDER CABE CONSIDERING RISK ANAYSIS I Camargo, F Fgueredo, M De Olvera Uversty of Brasla (UB) ad The Brazla Regulatory Agecy (ANEE), Brazl The choce of the approprate cable
A MODEL WITH STORAGE LIMITATION AND SIMULATED DEMAND AS FRESH MEAT INVENTORY MANAGEMENT SUPPORT
ISSN 330-74 U 637.5.033.00 A MOEL WITH STORAGE LIMITATION AN SIMULATE EMAN AS FRESH MEAT INVENTORY MANAGEMENT SUPPORT Gord ukć ),. ukć ), M. Ser ) Orgl cetfc pper SUMMARY A mportt pect of retl outlet wc
output voltage and are known as non-zero switching states and the remaining two
SPACE ECTOR MODULATION FOR THREE-LEG OLTAGE SOURCE INERTERS.1 THREE-LEG OLTAGE SOURCE INERTER The toology of three-leg voltge soure iverter is show i Fig..1. Beuse of the ostrit tht the iut lies must ever
On Error Detection with Block Codes
BULGARIAN ACADEMY OF SCIENCES CYBERNETICS AND INFORMATION TECHNOLOGIES Volume 9, No 3 Sofa 2009 O Error Detecto wth Block Codes Rostza Doduekova Chalmers Uversty of Techology ad the Uversty of Gotheburg,
Automated Alignment and Extraction of Bilingual Ontology for Cross-Language Domain-Specific Applications
Automated Agmet ad Extracto of gua Otoogy for Cross-Laguage Doma-Specfc Appcatos Ju-Feg Yeh, Chug-Hse Wu, Mg-Ju Che ad Lag-Chh Yu Departmet of Computer Scece ad Iformato Egeerg Natoa Cheg Kug Uversty,
OPTIMAL KNOWLEDGE FLOW ON THE INTERNET
İstabul Tcaret Üverstes Fe Blmler Dergs Yıl: 5 Sayı:0 Güz 006/ s. - OPTIMAL KNOWLEDGE FLOW ON THE INTERNET Bura ORDİN *, Urfat NURİYEV ** ABSTRACT The flow roblem ad the mmum sag tree roblem are both fudametal
Abraham Zaks. Technion I.I.T. Haifa ISRAEL. and. University of Haifa, Haifa ISRAEL. Abstract
Preset Value of Autes Uder Radom Rates of Iterest By Abraham Zas Techo I.I.T. Hafa ISRAEL ad Uversty of Hafa, Hafa ISRAEL Abstract Some attempts were made to evaluate the future value (FV) of the expected
Session 4: Descriptive statistics and exporting Stata results
Itrduct t Stata Jrd Muñz (UAB) Sess 4: Descrptve statstcs ad exprtg Stata results I ths sess we are gg t wrk wth descrptve statstcs Stata. Frst, we preset a shrt trduct t the very basc statstcal ctets
Spatial Keyframing for Performance-driven Animation
Eurographs/ACSIGGRAPH Symposum o Computer Amato (25) K. Ajyo, P. Faloutsos (Edtors) Spatal Keyframg for Performae-drve Amato T. Igarash,3, T. osovh 2, ad J. F. Hughes 2 The Uversty of Tokyo 2 Brow Uversty
A Study of Unrelated Parallel-Machine Scheduling with Deteriorating Maintenance Activities to Minimize the Total Completion Time
Joural of Na Ka, Vol. 0, No., pp.5-9 (20) 5 A Study of Urelated Parallel-Mache Schedulg wth Deteroratg Mateace Actvtes to Mze the Total Copleto Te Suh-Jeq Yag, Ja-Yuar Guo, Hs-Tao Lee Departet of Idustral
Laws of Exponents. net effect is to multiply with 2 a total of 3 + 5 = 8 times
The Mathematis 11 Competey Test Laws of Expoets (i) multipliatio of two powers: multiply by five times 3 x = ( x x ) x ( x x x x ) = 8 multiply by three times et effet is to multiply with a total of 3
MATHEMATICS FOR ENGINEERING BASIC ALGEBRA
MATHEMATICS FOR ENGINEERING BASIC ALGEBRA TUTORIAL - INDICES, LOGARITHMS AND FUNCTION This is the oe of series of bsic tutorils i mthemtics imed t begiers or yoe wtig to refresh themselves o fudmetls.
Curve Fitting and Solution of Equation
UNIT V Curve Fttg ad Soluto of Equato 5. CURVE FITTING I ma braches of appled mathematcs ad egeerg sceces we come across epermets ad problems, whch volve two varables. For eample, t s kow that the speed
A PRACTICAL SOFTWARE TOOL FOR GENERATOR MAINTENANCE SCHEDULING AND DISPATCHING
West Ida Joural of Egeerg Vol. 30, No. 2, (Jauary 2008) Techcal aper (Sharma & Bahadoorsgh) 57-63 A RACTICAL SOFTWARE TOOL FOR GENERATOR MAINTENANCE SCHEDULING AND DISATCHING C. Sharma & S. Bahadoorsgh
Chapter. Contents: A Constructing decimal numbers
Chpter 9 Deimls Contents: A Construting deiml numers B Representing deiml numers C Deiml urreny D Using numer line E Ordering deimls F Rounding deiml numers G Converting deimls to frtions H Converting
Performance Attribution. Methodology Overview
erformace Attrbuto Methodology Overvew Faba SUAREZ March 2004 erformace Attrbuto Methodology 1.1 Itroducto erformace Attrbuto s a set of techques that performace aalysts use to expla why a portfolo's performace
The simple linear Regression Model
The smple lear Regresso Model Correlato coeffcet s o-parametrc ad just dcates that two varables are assocated wth oe aother, but t does ot gve a deas of the kd of relatoshp. Regresso models help vestgatg
One way to organize workers that lies between traditional assembly lines, where workers are specialists,
MANUFACTURING & SERVICE OPERATIONS MANAGEMENT Vol. 7, No. 2, Sprg 2005, pp. 121 129 ss 1523-4614 ess 1526-5498 05 0702 0121 forms do 10.1287/msom.1040.0059 2005 INFORMS Usg Bucket Brgades to Mgrate from
Mathematics of Finance
CATE Mathematcs of ace.. TODUCTO ths chapter we wll dscuss mathematcal methods ad formulae whch are helpful busess ad persoal face. Oe of the fudametal cocepts the mathematcs of face s the tme value of
AP Statistics 2006 Free-Response Questions Form B
AP Statstcs 006 Free-Respose Questos Form B The College Board: Coectg Studets to College Success The College Board s a ot-for-proft membershp assocato whose msso s to coect studets to college success ad
An SVR-Based Data Farming Technique for Web Application
A SVR-Based Data Farmg Techque for Web Appcato Ja L 1 ad Mjg Peg 2 1 Schoo of Ecoomcs ad Maagemet, Behag Uversty 100083 Bejg, P.R. Cha [email protected] 2 Isttute of Systems Scece ad Techoogy, Wuy Uversty, Jagme
Load and Resistance Factor Design (LRFD)
53:134 Structural Desg II Load ad Resstace Factor Desg (LRFD) Specfcatos ad Buldg Codes: Structural steel desg of buldgs the US s prcpally based o the specfcatos of the Amerca Isttute of Steel Costructo
IMPLEMENTATION IN PUBLIC ADMINISTRATION OF MEXICO GOVERNMENT USING GAMES THEORY AND SOLVING WITH LINEAR PROGRAMMING
Itertol Jourl of Advces Egeerg & Techolog, J., 05. IJAET ISSN: 96 IMPLEMENTATION IN PUBLIC ADMINISTRATION OF MEICO GOVERNMENT USING GAMES THEORY AND SOLVING WITH LINEAR PROGRAMMING Frcsco Zrgoz Huert.
Vectors Summary. Projection vector AC = ( Shortest distance from B to line A C D [OR = where m1. and m
. Slr prout (ot prout): = osθ Vetors Summry Lws of ot prout: (i) = (ii) ( ) = = (iii) = (ngle etween two ientil vetors is egrees) (iv) = n re perpeniulr Applitions: (i) Projetion vetor: B Length of projetion
KEY SKILLS INFORMATION TECHNOLOGY Level 3. Question Paper. 29 January 9 February 2001
KEY SKILLS INFORMATION TECHNOLOGY Level 3 Question Pper 29 Jnury 9 Ferury 2001 WHAT YOU NEED This Question Pper An Answer Booklet Aess to omputer, softwre nd printer You my use ilingul ditionry Do NOT
