Shielding and Radiation Measurements at ESRF



Similar documents
Status of Radiation Safety System at

Damping Wigglers in PETRA III

SOLEIL Current Performances. And. Futur Developments

Status of the SOLEIL project Commissioning from Linac to beamlines

Beam Energy (GeV) 2 Beam Current (ma) 400 Horizontal Emittance (nm)

Zero Degree Extraction using an Electrostatic Separator

Technical specification for the ALBA area radiation monitor network and detectors

The APS Machine Protection System (MPS) *

Undulators and wigglers for the new generation of synchrotron sources

Part D. Radiation Safety Systems. Radiation Safety - JUAS 2014, X. Queralt. 1.Engineering solution 2.Administrative approach

Maintenance Management on LMJ H. GRAILLOT, I. GRANET CEA/CESTA/DLP

Industrial Involvement in the Construction of Synchrotron Light Sources

A Quick primer on synchrotron radiation: How would an MBA source change my x-ray beam. Jonathan Lang Advanced Photon Source

XAFS beamlines for E>2 kev (excluding energy-dispersive setups) [K.Klementiev state of ]

ESRF Upgrade Phase II: le nuove opportunitá per le linee da magnete curvante

Information about the T9 beam line and experimental facilities

MOTEUR / ENGINE TM K9-ES

90 degrees Bremsstrahlung Source Term Produced in Thick Targets by 50 MeV to 10 GeV Electrons

BEPC UPGRADES AND TAU-CHARM FACTORY DESIGN

Wir schaffen Wissen heute für morgen

Cross section, Flux, Luminosity, Scattering Rates

Maintenance & reliability management. H. Rozelot - Workshop Maintenance & Reliability SOLEIL- November 9 & 10

SIMULATIONS OF ELECTRON CLOUD BUILD-UP AND SATURATION IN THE APS *

Status of the HOM Damped Cavity for the Willy Wien Ring

BIG data big problems big opportunities Rudolf Dimper Head of Technical Infrastructure Division ESRF

Frequency Map Experiments at the Advanced Light Source. David Robin Advanced Light Source

FLS 2010 Storage Ring Working Group Session 4: Future ring technology and design issues

World-first Proton Pencil Beam Scanning System with FDA Clearance

Catherine LeCocq, Robert Ruland. February, 2008

Institute of Accelerator Technologies of Ankara University and TARLA Facility

11th International Computational Accelerator Physics Conference (ICAP) August 19 24, 2012, Rostock-Warnemünde (Germany)

The APS and synchrotron facilities in the US and worldwide: a network perspective

Undulators at PETRA: Experience and Perspectives

Relativistic kinematics basic energy, mass and momentum units, Lorents force, track bending, sagitta. First accelerator: cathode ray tube

LIU CABLING & OPTICAL FIBRES STRATEGY. Georgi Minchev Georgiev EN-EL-CF

Manual for simulation of EB processing. Software ModeRTL

Figure 1: Lattice drawing for the APS storage ring.

AUTOMATION OF OPERATIONS ON THE VEPP-4 CONTROL SYSTEM

Calorimetry in particle physics experiments

5.2 ASSESSMENT OF X-RAY TUBE LEAKAGE RADIATION AND X-RAY TUBE OUTPUT TOTAL FILTRATION

Tom Wilson Product Marketing Manager Delivery Systems Varian Medical Systems International AG. CERN Accelerator School, May 2015

Status of the Free Electron Laser

Development of on line monitor detectors used for clinical routine in proton and ion therapy

FCC JGU WBS_v0034.xlsm

Chapter 19 Magnetic Forces and Fields

Physics 30 Worksheet # 14: Michelson Experiment

Running in Luminosity. Mike Lamont Verena Kain

ELECTRON-CLOUD EFFECTS IN THE TESLA AND CLIC POSITRON DAMPING RINGS

Data-analysis scheme and infrastructure at the X-ray free electron laser facility, SACLA

Medical Applications of radiation physics. Riccardo Faccini Universita di Roma La Sapienza

The half cell of the storage ring SESAME looks like: Magnetic length =

Simulation of Electron Cloud Effects in the PETRA Positron Storage Ring

10 Project Costs and Schedule

PHYS 222 Spring 2012 Final Exam. Closed books, notes, etc. No electronic device except a calculator.

MOTEUR / ENGINE COMMISSION INTERNATIONALE DE KARTING FIA FICHE TECHNIQUE D AGRÉMENT APPROVAL TECHNICAL FORM 01/FM/09 FORMULE MONDIALE / WORLD FORMULA

GAZELLE 60cc TaG - FREE

Laser/cavity R&D for a polarised positron source

Status of High Current Ion Sources. Daniela Leitner Lawrence Berkeley National Laboratory

Measurement of Charge-to-Mass (e/m) Ratio for the Electron

In In situ study of multilayers reflectivity upon heat treatment under synchrotron radiation. 27th september 2005 ICXOM_05 Frascati 1

The HEMP Thruster - An Alternative to Conventional Ion Sources?

Undulator Control Systems

Launching DORIS II and ARGUS. Herwig Schopper University Hamburg and CERN

DEMONSTRATION ACCELERATOR DRIVEN COMPLEX FOR EFFECTIVE INCINERATION OF 99 Tc AND 129 I

Proton Radiotherapy. Cynthia Keppel Scientific and Technical Director Hampton University Proton Therapy Institute. Lead Virginia.

HIGH-ENERGY COLLIDER PARAMETERS: e + e Colliders (I)

High Energy Physics. Lecture 4 More kinematics and a picture show of particle collisions

New Machine Layout in IR3 and IR7

FLASH Commissioning and Startup

Status Overview The Australian Synchrotron. Steven Banks Control Systems Group

Introduction to the Monte Carlo method

Insertion Devices Lecture 4 Permanent Magnet Undulators. Jim Clarke ASTeC Daresbury Laboratory

Etudes in situ et ex situ de multicouches C/FePt

Development of Radiation Resistant Quadrupoles Based on High Temperature Superconductors for the Fragment Separator

V K Raina. Reactor Group, BARC

Atomic and Nuclear Physics Laboratory (Physics 4780)

Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory

THE TESLA TEST FACILITY AS A PROTOTYPE FOR THE GLOBAL ACCELERATOR NETWORK

Mechanical Operation and Maintenance Vacuum Group

Instrumenter til E-XFEL. Martin Meedom Nielsen Section for Neutrons and X-rays for Materials Physics

OVERVIEW OF PROTON DRIVERS FOR NEUTRINO SUPER BEAMS AND NEUTRINO FACTORIES*

AS COMPETITION PAPER 2007 SOLUTIONS

Lab 4: Magnetic Force on Electrons

Dose enhancement near metal electrodes in diamond X- ray detectors. A. Lohstroh*, and D. Alamoudi

Brookhaven Magnet Division - Nuclear Physics Program Support Activities

The SYRMA project for clinical Elettra. Safety, Control and Supervision systems

K O M A C. Beam Commissioning of 100-MeV KOMAC Linac. Korea Multi-purpose Accelerator Complex 양 성 자 가 속 기 연 구 센 터

Development and Commissioning of the Orion Laser Facility

Gazelle Age 7, Competition Age, through 11 Weight 230# Carb/Intake HL334B with 19.8mm intake Header/Exhaust Header Part # A60368

SYNCHROTRON RADIATION PROJECTS OF INDUSTRIAL INTEREST

Simulation of Neutron Backgrounds from the ILC Extraction Line Beam Dump. Siva Darbha. Office of Science, SULI Program. University of Toronto

Study of electron cloud at MI and slip stacking process simulation

Condensate water pump with neutralisation system

Spectra of pyroelectric X-ray generator

Beam Instrumentation Group, CERN ACAS, Australian Collaboration for Accelerator Science 3. School of Physics, University of Melbourne 4

Solutions Manufacturing Performance

Rigaku XRD-System Instruction Manual v4/19/03. The Krishnan Group/Wilcox 132, University of Washington

ESRF OPTICAL METROLOGY APPLIED TO BENDABLE OPTICAL SURFACES

Powder diffraction and synchrotron radiation

Transcription:

Shielding and Radiation Measurements at ESRF Radiation Safety Meeting SOLEIL Synchrotron, 18 October 26 P. Berkvens European Synchrotron Radiation Facility Radiation protection policy at the ESRF Storage ring shielding Beamline shielding: bremsstrahlung 1/37

ESRF Accelerator characteristics: E = 6 GeV I = 2 ma L = 843 m Lifetime: Multibunch (2 ma): 75 h 16-bunch (9 ma): 9 h 2/37

Radiation Protection Policy at the ESRF A large number of people come to the ESRF to stay for a relatively short period of time: Users Contractors Visitors 8 % of experiments macromolecular crystallography 6 X-ray imaging material science 4 2 typical duration of experiments at the ESRF 1 3 5 7 9 11 13 15 17 19 21 23 number of 8-hours shifts 3/37

Radiation Protection Policy at the ESRF No radiation workers < 1 msv.y -1 (.5 μsv.h -1 ) Dose rate varies strongly, e.g. during injection and beam trips limit on dose rate not possible 1.8.6.4.2 3 2 1.8.6.4.2 débit de dose(μsv.h -1 ) photon dose rate (μsv.h -1 ) 1 3 2 1 stored faisceau stocké(ma) beam (ma) 1 2 3 4 5 6 temps (jours depuis days le 28/3/3) 4/37

1 2 3 4 5 Radiation Protection Policy at the ESRF No radiation workers < 1 msv.y -1 (.5 μsv.h -1 ) Dose integrated essentially during machine studies and start-up 4 3 2 1 2 2 débit de dose (μsv.h -1 ) photons photons faisceau stocké (ma) integrated dose (μsv) stored beam (ma) neutrons neutrons 12 1 8 6 4 2 limit on annual dose not sufficient 1 1 1 2 3 4 5 temps (jours depuis le 18/1/2) days 5/37

Radiation Protection Policy at the ESRF H 4hours ( ) 1 d dt 4.5μSv. h = 2 μsv No radiation workers < 1 msv.y -1 (.5 μsv.h -1 ) Interlocked radiation monitors: Storage ring: 64 neutron monitors Interlock on injection Beamlines: 1 ionisation chamber per beamline Interlock on front end 6/37

Storage ring shielding 1 cm hall expérimental experimental hall 1 cm 1 cm 1 cm 12 cm 12 cm galerie technique technical gallery 12 cm variable: variable: de 12 cm à 3 cm from 12 to 3 cm 2 cm béton lourd hématite, densité = 3,8 g.cm -3 heavy (haematite) concrete density = 3.8 g.cm -3 7/37

Storage ring shielding 8 7 nsv / kj intercepté nsv (photon) / kj intercepted shielding measurements 6 5 4 3 2 analytical model: 1 21,3 5 e = 2,1 36 29 2 36 higher μsv 1 beam faisceau -12-1 -8-6 -4-2 2 4 6 distance le long de l axe du faisceau [m] distance along beam axis (m) CV-5 ID vessel beam intercepted on vacuum valve CV-5 chambre faisceau intercepté par vanne de vide 8/37

Storage ring shielding shielding measurements 35 débit de dose [µsv/h] ambient dose equivalent (μs/h) analytical model: 3 25 photons: x 2 5 e 1 21,3 2,1 2,3 = 3 msv / h 2 15 neutrons: x 1 23 e 1 17,39 2,1 2,3 Neutrons 1 5 2,7 e + Photons 2,1 2,3 = 3 msv / h 1 Neutrons 5 Photons -12-1 -8-6 -4-2 2 4 6 8 distance along beam-axis (m) distance le long de l axe du faisceau [m].3 kw faisceau beam 9/37

Storage ring shielding shielding measurements electron losses (% of total loss /m) puissance e - perdue [% puissance faisceau / m] 14 12 1 8 6 4 2 calculated calculé débit de dose en neutrons [Sv/h par kw faisceau incident] neutron ambient dose equivalent (Sv/h per kw total loss) calculé mesuré calculated perte localisée measured calculated (point loss) 9 8 7 6 5 4 3 2 1 2 4 6 8 1 12 14 16 18 distance along beam axis (m) distance le long de l axe du faisceau [m] beam faisceau e - beam intercepted on vacuum valve 1/37

Storage ring shielding shielding measurements summary shielding measurements: photons:.8 μsv.kj -1 neutrons: 1.6 μsv.kj -1 injected electron charge 6 5 4 3 2 1 average beam loss power: 12 μc injected per year 275 μc per 2 h at 6 GeV, 165 kj par 2 h (mc) 1999 2 21 22 23 5 1 15 2 3.26 μc per day 5 full current injections per day days since 1/1/99 completely determined by start-up and R&D 11/37

Storage ring shielding des pertes totales 1 shielding measurements summary shielding measurements: photons:.8 μsv.kj -1 neutrons: 1.6 μsv.kj -1 % of total beam losses 1 Injection: 165 kj per 2 h 1 1 % of losses :.1 16.5 kj par 2 h (.8 + 1.6) 16.5 = 4 μsv per 2 h (.2 μsv/h) c1 c2 c3 c4 c5 c6 c7 c8 c9 c1 c11 c12 c13 c14 c15 c16 c17 c18 c19 c2 c21 c22 c23 c24 c25 c26 c27 c28 c29 c3 c31 c32 1 % of losses : 165 kj par 2 h (.8 + 1.6) 165 = 4 μsv per 2 h (.2 μsv/h) numéro de la cellule cell number 12/37

Storage ring shielding 1 local beam losses: injection area cell 5.1.1.1 1.1.1.1 ma 2 cell 4 1 1 2 3 4 days 13/37

Storage ring shielding 1 local beam losses: in-vacuum undulators cell 13.1.1.1 1.1 cell 9.1.1 ma 2 1 1 2 3 4 days 14/37

Storage ring shielding 1 local beam losses: 8 mm ID vessel cell 24.1.1.1 1.1 cell 16.1.1 ma 2 1 1 2 3 4 days 15/37

Storage ring shielding H 4hours 1 ( d ) dt 4.5μSv. h = 2 μsv 64 neutron monitors correction for photon dose 1 cm hall expérimental experimental hall 1 cm 1 cm 1 cm 12 cm 12 cm galerie technique technical gallery 12 cm heavy (haematite) concrete density = 3.8 g.cm -3 variable: variable: de 12 cm à 3 cm from 12 to 3 cm 2 cm béton lourd hématite, densité = 3,8 g.cm -3 16/37

17/37

18/37

photons: net integrated dose (μsv)( 2 15 1 5 neutrons: net integrated dose (μsv) 4 3 2 1 3 2 1 1 2 3 4 days 5 1 2 3 4 5 19/37

14 total dose (μsv) 12 1 8 6 4 cell 13-1 cell 13-2.1 μsv/h 2 25 2 15 1 5 1 2 3 4 5 days 1 2 3 4 5 days 2/37

12 1 cell 27-1 cell 27-2.1 μsv/h total dose (μsv) 8 6 4 2 25 2 15 1 5 1 2 3 4 5 days 1 2 3 4 5 days 21/37

25 2 cell 29-1 cell 29-2.2 μsv/h total dose (μsv) 15 1 5 25 2 15 1 2 3 4 5 6 days 1 5 1 2 3 4 5 6 days 22/37

25 2 cell 29-1 cell 29-2.2 μsv/h total dose (μsv) 15 1 5 25 2 15 1 2 3 4 5 6 days 1 5 1 2 3 4 5 6 days 23/37

Gas-bremsstrahlung gas-bremsstrahlung power: de P = C e dx 2 2 P Ee I ( E ) p I L, L electron stopping power pressure in straight section electron beam intensity length of straight section de dx ( E ) ESRF SRS Diamond Soleil Energy (GeV) 6 2 3 2.75 Current (ma) 2 25 5 5 Straight section (m) 15 3.82 15.75 18.75 7.7 12.4 18.5 Bremsstrahlung power 1.44 1.64 1.95.67 1.9 1.62 (normalised to ESRF) e p E E e e I 24/37

Gas-bremsstrahlung Example: typical ESRF Optics Hutch 6 GeV 2 ma 5 1-9 mbar 1 1 1 1-1 photon effective dose rate (μsv.h -1 ) 1-2 -2 2 4 6 8 1 distance along hutch (cm) mm 3 mm 6 mm 9 mm 12 mm 15 mm 18 mm 21 mm 24 mm 27 mm 3 mm primary slits (Cu) 1 cm Pb screen, 2 cm, 2 x 2 cm 2 monochromator + W beamstop 1 cm, φ 6 cm écran en Pb, épaisseur 2 cm, 2 x 2 cm 2 fentes primaires en Cu mirror miroir en Si(Si) monochromateur avec arrêtoir en W, épaisseur 1 cm, φ 6 cm 12 cm 5 cm 1 cm 15 cm 2 cm 25/37

Gas-bremsstrahlung 1.E+ 1 effective dose rate (μsv.h -1 ) Example: typical ESRF Optics Hutch Sidewall: 3 cm Pb 6 GeV 2 ma 5 1-9 mbar photons neutrons 1.E-1 1-1 1.E-2 1-2 -2 2 4 6 8 1 distance along hutch (cm) primary slits (Cu) 1 cm Pb screen, 2 cm, 2 x 2 cm 2 monochromator + W beamstop 1 cm, φ 6 cm écran en Pb, épaisseur 2 cm, 2 x 2 cm 2 fentes primaires en Cu mirror miroir en Si(Si) monochromateur avec arrêtoir en W, épaisseur 1 cm, φ 6 cm 12 cm 5 cm 1 cm 15 cm 2 cm 26/37

Gas-bremsstrahlung radiation levels outside beamlines 5 dose (μsv) 4 3 2 1 photon sidewall photon backwall neutron sidewall neutron backwall current (ma) 2 1 2 4 6 8 1 12 14 16 18 2 22 days since 23/1/1 27/37

Gas-bremsstrahlung id6 on-axis bremsstrahlung measurements 28/37

Gas-bremsstrahlung Gy/h/mA 2 1.E-4 On-axis bremsstrahlung measurements during initial conditioning of ESRF 5 m long, 8 mm internal height NEG-coated extruded aluminium ID vessels 1.E-5 2 orders of magnitude 1.E-6 factor 2.5 23 days continuous operation at 185 ma 1.E-7.1.1 1 1 1 electron dose (A.h) 29/37

Gas-bremsstrahlung 1.E-3 Gy/h/mA 2 1.E-4 run 26-1 run 25-5 Series3 1.E-5 1.E-6.1 1 1 1 electron dose (A.h) 3/37

Gas-bremsstrahlung 1.2 1..8 photon dose (μsv/h) example: id21 radiation measurements outside optics hutch penning 4 (mbar) 1.6E-8 1.4E-8 1.2E-8 1.E-8.6.4.2 uniform 2 x 1/3 8.E-9 6.E-9 4.E-9 2.E-9. 5 1 15 2 25 3 35 4 45 5 55 6 65 7 75 16-bunch shutdown days.e+ 31/37

Gas-bremsstrahlung.7 photon dose (μsv/h) example: id19 radiation measurements outside optics hutch.6.5 vacuum intervention.4.3.2.1 2 ma 1 5 1 15 2 25 days 32/37

Gas-bremsstrahlung Bending magnet beamlines faisceau electron d électrons beam line source of bremsstrahlung length of trajectory = 24.4 cm source de rayonnement de freinage: longueur de la trajectoire = 24,4 cm absorbeur en cuivre crotch absorber 1 mrad 1 mrad 1 mrad 36 36 o /64 = 5,625 5.625 o o length of trajectory = 2.4 m longueur de la trajectoire = 2,4 m 33/37

Gas-bremsstrahlung μsv.h -1.3.25.2.15 bm8 doserate bm8 dose.7.65.6.55.5.45.4 μsv per 4 hours.35.1.3.25.5.2 2 ma 1 1 2 3 4 5 6 time (days) 34/37

Other sources of bremsstrahlung Other sources of bremsstrahlung have to be considered, in particular bremsstrahlung produced by the scraping of electron beam. This occurs in the case of: Small gap ID vessels In-vacuum undulators At the ESRF, the effect is far less important than the effect of gasbremsstrahlung. The settings of the vertical scrapers is important. 35/37

Radiation monitoring outside optics hutches measured dose rate increased dose rate during injection. D net. D back. D meas time beam decay front end closed or no beam in SR D tot < 2μSv, t 4 t D dt hours t neutrons 2 photons 2 + 8 back meas < D 3 μsv 36/37

Radiation monitoring outside optics hutches 37/37