Equations Involving Lines and Planes Standard equations for lines in space



Similar documents
Section 9.5: Equations of Lines and Planes

Math 241, Exam 1 Information.

LINES AND PLANES CHRIS JOHNSON

= y y 0. = z z 0. (a) Find a parametric vector equation for L. (b) Find parametric (scalar) equations for L.

Section 1.4. Lines, Planes, and Hyperplanes. The Calculus of Functions of Several Variables

Lecture 14: Section 3.3

12.5 Equations of Lines and Planes

9 Multiplication of Vectors: The Scalar or Dot Product

1.3. DOT PRODUCT If θ is the angle (between 0 and π) between two non-zero vectors u and v,

A vector is a directed line segment used to represent a vector quantity.

Section 13.5 Equations of Lines and Planes

MAT 1341: REVIEW II SANGHOON BAEK

Adding vectors We can do arithmetic with vectors. We ll start with vector addition and related operations. Suppose you have two vectors

1.5 Equations of Lines and Planes in 3-D

Section 2.4: Equations of Lines and Planes

L 2 : x = s + 1, y = s, z = 4s Suppose that C has coordinates (x, y, z). Then from the vector equality AC = BD, one has

Section 1.1. Introduction to R n

THREE DIMENSIONAL GEOMETRY

10.5. Click here for answers. Click here for solutions. EQUATIONS OF LINES AND PLANES. 3x 4y 6z 9 4, 2, 5. x y z. z 2. x 2. y 1.

FURTHER VECTORS (MEI)

Section 11.4: Equations of Lines and Planes

5.3 The Cross Product in R 3

(a) We have x = 3 + 2t, y = 2 t, z = 6 so solving for t we get the symmetric equations. x 3 2. = 2 y, z = 6. t 2 2t + 1 = 0,

JUST THE MATHS UNIT NUMBER 8.5. VECTORS 5 (Vector equations of straight lines) A.J.Hobson

Review Sheet for Test 1

11.1. Objectives. Component Form of a Vector. Component Form of a Vector. Component Form of a Vector. Vectors and the Geometry of Space

Section The given line has equations. x = 3 + t(13 3) = t, y = 2 + t(3 + 2) = 2 + 5t, z = 7 + t( 8 7) = 7 15t.

Linear algebra and the geometry of quadratic equations. Similarity transformations and orthogonal matrices

13.4 THE CROSS PRODUCT

Solutions to old Exam 1 problems

a.) Write the line 2x - 4y = 9 into slope intercept form b.) Find the slope of the line parallel to part a

Mathematics 205 HWK 6 Solutions Section 13.3 p627. Note: Remember that boldface is being used here, rather than overhead arrows, to indicate vectors.

Lines and Planes in R 3

Determine whether the following lines intersect, are parallel, or skew. L 1 : x = 6t y = 1 + 9t z = 3t. x = 1 + 2s y = 4 3s z = s

28 CHAPTER 1. VECTORS AND THE GEOMETRY OF SPACE. v x. u y v z u z v y u y u z. v y v z

2.1 Three Dimensional Curves and Surfaces

CHAPTER FIVE. 5. Equations of Lines in R 3

Orthogonal Projections and Orthonormal Bases

Vector Algebra CHAPTER 13. Ü13.1. Basic Concepts

Math 241 Lines and Planes (Solutions) x = 3 3t. z = 1 t. x = 5 + t. z = 7 + 3t

Geometric description of the cross product of the vectors u and v. The cross product of two vectors is a vector! u x v is perpendicular to u and v

Two vectors are equal if they have the same length and direction. They do not

The Dot and Cross Products

LINES AND PLANES IN R 3

discuss how to describe points, lines and planes in 3 space.

Figure 1.1 Vector A and Vector F

α = u v. In other words, Orthogonal Projection

1.(6pts) Find symmetric equations of the line L passing through the point (2, 5, 1) and perpendicular to the plane x + 3y z = 9.

Definition: A vector is a directed line segment that has and. Each vector has an initial point and a terminal point.

Name Class. Date Section. Test Form A Chapter 11. Chapter 11 Test Bank 155

Math 215 HW #6 Solutions

Solutions to Exercises, Section 5.1

A QUICK GUIDE TO THE FORMULAS OF MULTIVARIABLE CALCULUS

Equations of Lines and Planes

Some Comments on the Derivative of a Vector with applications to angular momentum and curvature. E. L. Lady (October 18, 2000)

C relative to O being abc,, respectively, then b a c.

Exam 1 Sample Question SOLUTIONS. y = 2x

MATH 275: Calculus III. Lecture Notes by Angel V. Kumchev

6. Vectors Scott Surgent (surgent@asu.edu)

Geometry of Vectors. 1 Cartesian Coordinates. Carlo Tomasi

Dot product and vector projections (Sect. 12.3) There are two main ways to introduce the dot product

Jim Lambers MAT 169 Fall Semester Lecture 25 Notes

i=(1,0), j=(0,1) in R 2 i=(1,0,0), j=(0,1,0), k=(0,0,1) in R 3 e 1 =(1,0,..,0), e 2 =(0,1,,0),,e n =(0,0,,1) in R n.

Lines and Planes 1. x(t) = at + b y(t) = ct + d

Solutions to Math 51 First Exam January 29, 2015

Example SECTION X-AXIS - the horizontal number line. Y-AXIS - the vertical number line ORIGIN - the point where the x-axis and y-axis cross

Geometry: Unit 1 Vocabulary TERM DEFINITION GEOMETRIC FIGURE. Cannot be defined by using other figures.

Linear Algebra Notes for Marsden and Tromba Vector Calculus

9.4. The Scalar Product. Introduction. Prerequisites. Learning Style. Learning Outcomes

v 1 v 3 u v = (( 1)4 (3)2, [1(4) ( 2)2], 1(3) ( 2)( 1)) = ( 10, 8, 1) (d) u (v w) = (u w)v (u v)w (Relationship between dot and cross product)

(2,4,5).. ...

LINEAR ALGEBRA W W L CHEN

Section 12.6: Directional Derivatives and the Gradient Vector

Vector Notation: AB represents the vector from point A to point B on a graph. The vector can be computed by B A.

Vector Math Computer Graphics Scott D. Anderson

3. INNER PRODUCT SPACES

PYTHAGOREAN TRIPLES KEITH CONRAD

VECTOR ALGEBRA A quantity that has magnitude as well as direction is called a vector. is given by a and is represented by a.

Math 0980 Chapter Objectives. Chapter 1: Introduction to Algebra: The Integers.

Lesson 19: Equations for Tangent Lines to Circles

One advantage of this algebraic approach is that we can write down

MA261-A Calculus III 2006 Fall Homework 3 Solutions Due 9/22/2006 8:00AM

( 1) = 9 = 3 We would like to make the length 6. The only vectors in the same direction as v are those

Solutions to Homework 5

Recall that two vectors in are perpendicular or orthogonal provided that their dot

Parallel and Perpendicular. We show a small box in one of the angles to show that the lines are perpendicular.

Problem set on Cross Product

Geometry and Measurement

ISOMETRIES OF R n KEITH CONRAD

Unified Lecture # 4 Vectors

Problem Set 5 Due: In class Thursday, Oct. 18 Late papers will be accepted until 1:00 PM Friday.

[1] Diagonal factorization

Section 11.1: Vectors in the Plane. Suggested Problems: 1, 5, 9, 17, 23, 25-37, 40, 42, 44, 45, 47, 50

December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B. KITCHENS

Cross product and determinants (Sect. 12.4) Two main ways to introduce the cross product

Solutions for Review Problems

Algebraic expressions are a combination of numbers and variables. Here are examples of some basic algebraic expressions.

Chapter 17. Orthogonal Matrices and Symmetries of Space

Vector has a magnitude and a direction. Scalar has a magnitude

Transcription:

Equations Involving Lines and Planes In this section we will collect various important formulas regarding equations of lines and planes in three dimensional space Reminder regarding notation: any quantity written with an arrow over the top such as v or in angle brackets such as v 1, v 2, v 3 indicates a vector (we may also refer to this vector using the notation v 1 i + v 2 j + v 3 k) Any quantity written in plain notation like v or in parenthesis such as (v 1, v 2, v 3 ) indicates a scalar or a point (unless otherwise noted) A quantity with a bar over the top, like v, indicates a line segment Standard equations for lines in space We can completely describe a line by specifying (1) a point through which the line passes, and (2) the line s direction In two dimensions, the line s direction is given by its slope In three dimensions, we will specify the line s direction using a vector parallel to the line Suppose that the line L passes through the point r 0 = (x 0, y 0, z 0 ) parallel to vector v = a, b, c (with terminal point v = (a, b, c)) We can move v so that it lies along the line by adding r 0 to vs initial and terminal points; the vector with initial point r 0 and terminal point r 0 + v = (a + x 0, b + y 0, c + z 0 ) lies on L: By stretching or shrinking v and adding this vector to r 0, we can reach any point on L Since stretching and shrinking a vector corresponds to scaling the vector (multiplying the vector by a scalar), any point on the line L may be written as r 0 + tv for some scalar t These observations give us a way to write an equation for the line: 1

Vector equation for a line: If the line L passes through the point r 0 = (x 0, y 0, z 0 ) (with position vector r 0 = x 0, y 0, z 0 ) parallel to the vector v = a, b, c, then the line has vector equation r(t) = r 0 + t v, where < t < The numbers a, b, and c are called the direction numbers of the line L Notice that r(t) is a vector; so the vector equation for L actually gives us position vectors whose terminal points lie on L We may also describe the line using the components x, y, and z: Parametric equations for a line: If the line L passes through the point r 0 = (x 0, y 0, z 0 ) (with position vector r 0 = x 0, y 0, z 0 ) parallel to the vector v = a, b, c, then the line may be described by the equations where < t < x = x 0 + ta, y = y 0 + tb, z = z 0 + tc, Another method for specifying the line L is by using symmetric equations If L has parametric equations x = x 0 + ta, y = y 0 + tb, and z = z 0 + tc, then by solving for t in each equation, we have t = x x 0 a, t = y y 0 b, and t = z z 0, c assuming that each of a, b, or c is nonzero Since t is the same in each equation, we have the following description of L: Symmetric equations for a line: If the line L passes through the point r 0 = (x 0, y 0, z 0 ) (with position vector r 0 = x 0, y 0, z 0 ) parallel to the vector v = a, b, c, then the line may be described by the equations x x 0 a = y y 0 b = z z 0 c Example: Find the vector equation and parametric equations for the line passing through the points p 1 = (1, 3, 1) and p 2 = (7, 3, 6) Then paramaterize the line segment p 1 p 2 The two points define a vector p 2 p 1 = 7 1, 3 3, 6 + 1 = 6, 6, 5 which is parallel to the line passing through p 1 and p 2 So a vector equation for the line is r(t) = 1, 3, 1 + t 6, 6, 5, < t < Note that we could have written the equation for the line in many different ways; 1, 3, 1 + s 6, 6, 5, < s < 7, 3, 6 + p 6, 6, 5, < p < 2

and 7, 3, 6 + q 6, 6, 5, < q < are all equivalent vector equations for this line Parametric equations for the line are given by x = 1 + 6t, y = 3 6t, z = 1 5t, < t < Again, there are many different ways to write equivalent conditions for the line To parameterize the segment from p 1 to p 2, we may use the same parametric equations for the line itself, but we must put bounds on t so that we only describe points on the segment from p 1 to p 2 We need to determine the smallest allowable value for t (which will give us the point p 1 ), and the largest value for t, which will give us p 2 Using the x coordinate of the point p 1, if 1 + 6t = 1, then t = 0 It is easy to see that plugging 0 into each coordinate returns the point p 1 So the smallest value for t that we can allow is t = 0 Using the x coordinate of p 2, suppose that 1+6t = 7 Then t = 1 (and again we see that plugging 1 into each equation will indeed return the point p 2 ) So the equations for the line segment p 1 p 2 are x = 1 + 6t, y = 3 6t, z = 1 5t, 0 < t < 1 Distance from a point to a line To measure the distance from a point p 0 to a line L, we look for the point l on L closest to p 0, then determine the distance from l to p 0 In particular, the segment joining l and p 0 should be perpendicular to L In practice, given any point p on L, the process outlined above can be streamlined using some geometry We want to find the length of the side opposite θ in the right triangle below: 3

The length of the hypotenuse is pp 0, so the length of the sides are pp 0 sin θ and pp 0 cos θ In particular, the opposite side has length pp 0 sin θ Recall that the length of the cross product of pp 0 with v is pp 0 v = pp 0 v sin θ Rewriting the above equation as pp 0 v = pp 0 sin θ v gives us a method for finding the length pp 0 sin θ: we can instead calculate pp 0 v v Theorem 001 If the point p lies on the line L, p 0 is any point not on L, and v is a vector parallel to L, then the distance from p 0 to L is given by pp 0 v v Example: Determine the distance from the point p 0 = ( 2, 4, 1) to the line L with vector equation r(t) = 3, 0, 0 + t 4, 1, 1 In order to use the formula pp 0 v, v 4

we must know a point p on the line L and a vector v parallel to L Fortunately, it is easy to find such a v Since L has vector equation the vector r(t) = 3, 0, 0 + t 4, 1, 1, v = 4, 1, 1 is parallel to L We can find a point on L by plugging a value for t into t = 0 Then r(0) = 3, 0, 0 + 0 4, 1, 1 = 3, 0, 0 is a vector whose terminal point lies on L So the point p = (3, 0, 0) is on L The vector pp 0 is given by pp 0 = 5, 4, 1 So to determine the distance from p 0 to L, we must calculate pp 0 v 5, 4, 1 4, 1, 1 = v 4, 1, 1 5, 4, 1 4, 1, 1 = 16 + 1 + 1 = 5 i + j + 21 k 18 r(t); for ease of computation, let s let = 25 + 1 + 441 18 467 = 18 51 units Equation for a plane In order to completely describe a plane P, we must specify (1) a point p 0 that lies on the plane, as well as (2) the tilt of the plane We talk about the plane s tilt or direction using any vector n normal (ie orthogonal) to the plane Notice that, if p 0 is a point on the plane P with normal vector n, then 5

every vector that lies on the plane P is orthogonal to n, and the point p lies on the plane P if and only if the vector pp 0 is orthogonal to n Since vectors are orthogonal if and only if their dot product is 0, we may reformulate the latter idea: point p lies on the plane P if and only if pp 0 n = 0 Let us make the arguments more precise Suppose that a normal vector of the plane P is given by n = a i + b j + c k, and that the point r 0 = (x 0, y 0, z 0 ) lies on P With r = (x, y, z), the dot product rr 0 n is given by rr 0 n = x x 0, y y 0, z z 0 a, b, c = a(x x 0 ) + b(y y 0 ) + c(z z 0 ) Then the point r lies on P if and only if rr 0 n = a(x x 0 ) + b(y y 0 ) + c(z z 0 ) = 0 So P is the set of all points (x, y, z) so that rr 0 n = n 1 (x x 0 ) + n 2 (y y 0 ) + n 3 (z z 0 ) = 0 Theorem 002 If P is a plane passing through the point r 0 = (x 0, y 0, z 0 ) with normal vector n = a i + b j + c k, then P is the set of all points r = (x, y, z) so that (vector equation) n rr 0 = 0 (scalar equation) a(x x 0 ) + b(y y 0 ) + c(z z 0 ) = 0 (modified scalar equation) ax + by + cz = ax 0 + by 0 + cz 0 Examples Find the equation for the plane P passing through the point p = (2, 1, 0) and parallel to the plane P 0 defined by the equation 3x 7y + 4z = 12 Since the plane we want is parallel to the plane 3x 7y + 4z = 12, the two planes have the same normal vector Now P 0 has normal vector 3, 7, 4, so using the form a(x x 0 ) + b(y y 0 ) + c(z z 0 ) = 0, P is defined by 3(x x 0 ) 7(y y 0 ) + 4(z z 0 ) = 0, 6

or 3(x 2) 7(y 1) + 4(z 0) = 0; we may rewrite this equation as 3x 7y + 4z = 1 Find the equation for the plane P passing through the points (4, 0, 3) and (2, 1, 1), and parallel to the line L with parametric equations x = 1 + t, y = 3 3t, z = 12t In order to use the equation a(x x 0 ) + b(y y 0 ) + c(z z 0 ) = 0, we need to find a vector normal to P The plane must be parallel to the line L, which in turn is parallel to the vector v = 1, 3, 12 Since the cross product of a pair of (nonparallel) vectors is normal to both of the original vectors, the cross product of v with any other (nonparallel) vector on P will be a vector normal to P So we need to find another vector on P Since we know two points on P, this is easy to accomplish: u = 2, 1, 2 is parallel to P Then v and u have cross product v u = 1, 3, 12 2, 1, 2 = 6 i + 22 j + 5 k, and this vector is normal to P So we may write the equation for P as 6(x 4) + 22(y 0) + 5(z 3) = 0, or 6x + 22y + 5z = 39 Lines of Intersection A pair of lines is parallel if they have the same slope A pair of planes is parallel if they have the same tilt In 3 dimensions, we measure the tilt of the plane using vectors normal to the plane; so if planes N and M are parallel, there normal vectors must also be parallel If planes N and M are not parallel, then the planes intersect in a line L that lies on both planes; thus L must be perpendicular to the normal vectors of each plane Example Find an equation for the line of intersection of the planes 3x 4y+12z = 14 and x+2y z = 3 Recall that, if we are to write an equation for a line L in 3 dimensional space, we must find a point p on the line and a vector v parallel to the line The vector v is not difficult to find; L is perpendicular to the normal vectors of each plane, so the cross product of the normal vectors will be a vector parallel to L 7

We calculate v using the cross product formula: i j k v = 3 4 12 1 2 1 = i(4 24) j( 3 + 12) + k(6 4) = 20 i 9 j + 2 k Now that we have a vector parallel to the line of intersection of the two planes, we need to find a point on the line of intersection A point on the line of intersection is a point (x 0, y 0, z 0 ) that lies on both planes In other words, this point (x 0, y 0, z 0 ) should satisfy both equations 3x 4y + 12z = 14 and x + 2y z = 3, ie 3x 0 4y 0 + 12z 0 = 14 and x 0 + 2y 0 z 0 = 3 We currently have two equations with three unknowns, but we can reduce the problem to one we can solve (two equations with two unknowns) by making a choice for one variable Since the x value for the line of intersection is clearly not constant, there is some point on the line where x 0 = 0 Let s determine the values for y 0 and z 0 where this occurs If x 0 = 0, we have 4y 0 + 12z 0 = 14 and 2y 0 z 0 = 3 Let s solve this system of equations: Multiply the second line by 2: Now add the two equations to eliminate y 0 : 4y 0 + 12z 0 = 14 2y 0 z 0 = 3 4y 0 + 12z 0 = 14 4y 0 2z 0 = 6 4y 0 + 12z 0 = 14 + 4y 0 2z 0 = 6 10z 0 = 20 So z 0 = 2 Substituting 2 into the second equation and solving for y 0, we have 2y 0 2 = 3 2y 0 = 5 y 0 = 5 2 So the point ( 0, 5 2, 2) is on the line of intersection Thus the parametric equations for L are given by x = 20t, y = 5 9t, z = 2 + 2t 2 Distance from a point to a plane 8

To measure the distance from a point p to a plane P, we will compare the point to the plane s normal vector n: if the initial point of n is p 0, then we may measure the distance from the point p to the plane along the normal vector n by projecting the vector p 0 p onto n Recall from 123 that the length of vector projection of p 0 p onto n is given by proj n p 0 p = n p 0p n So the distance from p to the plane with point p 0 and normal vector n is n p 0 p n Example Find the distance from the point p = ( 2, 1, 5) to the plane P with equation 5x 12y + z = 7 P has normal vector n = 5, 12, 1 ; we will also need a point on the plane; p 0 = (0, 0, 7) will work nicely Finally we need to find the length of the projection of the vector p 0 p = 2, 1, 2 onto n So the distance is given by n p 0 p p 0 p = = 5, 12, 1 2, 1, 2 25 + 144 + 1 10 12 2 170 = 24 170 18 Angles between planes The easiest way to find the angle of intersection of two planes P 1 and P 2 is by noting that the angle of intersection of their normal vectors n 1 and n 2 is precisely the same as the angle of intersection of the planes 9

In particular, the angle θ between vectors n 1 and n 2 can be calculated using the dot product From section 123, we know that angle θ between vectors n 1 and n 2 is ( ) θ = cos 1 n1 n 2 n 1 n 2 Theorem 003 If planes P 1 and P 2 have normal vectors n 1 and n 2 respectively, then the angle θ between P 1 and P 2 is given by ( ) θ = cos 1 n1 n 2 n 1 n 2 10