Contents Stochastic Ray Tracing



Similar documents
Realistic Image Synthesis

Authenticated Encryption. Jeremy, Paul, Ken, and Mike

path tracing computer graphics path tracing 2009 fabio pellacini 1

Gravitation. Definition of Weight Revisited. Newton s Law of Universal Gravitation. Newton s Law of Universal Gravitation. Gravitational Field

Panel Discussion: Evolving DoD Security Requirements for Cloud

Enterprises and OEMs. Securing identity and access.

Problem Solving Session 1: Electric Dipoles and Torque

Physics 110 Spring D Motion Problems: Projectile Motion Their Solutions

Incorporating Statistical Process Control and Statistical Quality Control Techniques into a Quality Assurance Program

The Beer-Bouguer-Lambert law. Concepts of extinction (scattering plus absorption) and emission. Schwarzschild s equation.

What is Candidate Sampling


Traffic Flow Analysis (2)

Defending DoD Missions in the Commercial Cloud

Coverage Assessment and Target Tracking in 3D Domains

No 28 Xianning West Road, Xi an No 70 Yuhua East Road, Shijiazhuang.

Drag force acting on a bubble in a cloud of compressible spherical bubbles at large Reynolds numbers

QUANTITATIVE METHODS CLASSES WEEK SEVEN

Additional File 1 - A model-based circular binary segmentation algorithm for the analysis of array CGH data

Institute of Informatics, Faculty of Business and Management, Brno University of Technology,Czech Republic

Section 3: Logistic Regression

HEAT TRANSFER ANALYSIS OF LNG TRANSFER LINE

Oscar & Associates Photography and Video Services

n + d + q = 24 and.05n +.1d +.25q = 2 { n + d + q = 24 (3) n + 2d + 5q = 40 (2)

"Research Note" APPLICATION OF CHARGE SIMULATION METHOD TO ELECTRIC FIELD CALCULATION IN THE POWER CABLES *

PCA vs. Varimax rotation

The Development of Web Log Mining Based on Improve-K-Means Clustering Analysis

Quantization Effects in Digital Filters

TRUCK ROUTE PLANNING IN NON- STATIONARY STOCHASTIC NETWORKS WITH TIME-WINDOWS AT CUSTOMER LOCATIONS

Support Vector Machines

Complex Numbers. w = f(z) z. Examples

Modern Portfolio Theory (MPT) Statistics

Keywords: Transportation network, Hazardous materials, Risk index, Routing, Network optimization.

GRAVITY DATA VALIDATION AND OUTLIER DETECTION USING L 1 -NORM

How To Write A Storybook

Face Verification Problem. Face Recognition Problem. Application: Access Control. Biometric Authentication. Face Verification (1:1 matching)

LINES ON BRIESKORN-PHAM SURFACES

Luby s Alg. for Maximal Independent Sets using Pairwise Independence

AREA COVERAGE SIMULATIONS FOR MILLIMETER POINT-TO-MULTIPOINT SYSTEMS USING STATISTICAL MODEL OF BUILDING BLOCKAGE

Perturbation Theory and Celestial Mechanics

The OC Curve of Attribute Acceptance Plans

(Semi)Parametric Models vs Nonparametric Models

Goals Rotational quantities as vectors. Math: Cross Product. Angular momentum

A New replenishment Policy in a Two-echelon Inventory System with Stochastic Demand

8.5 UNITARY AND HERMITIAN MATRICES. The conjugate transpose of a complex matrix A, denoted by A*, is given by

Simple Interest Loans (Section 5.1) :

Reputation Management for DHT-based Collaborative Environments *

A hybrid global optimization algorithm based on parallel chaos optimization and outlook algorithm

Path Tracing. Michael Doggett Department of Computer Science Lund university Michael Doggett

Application of Quasi Monte Carlo methods and Global Sensitivity Analysis in finance

STATISTICAL DATA ANALYSIS IN EXCEL

Fluids Lecture 15 Notes

Faraday's Law of Induction

Projections - 3D Viewing. Overview Lecture 4. Projection - 3D viewing. Projections. Projections Parallel Perspective

An Algorithm For Factoring Integers

where the coordinates are related to those in the old frame as follows.

12. Rolling, Torque, and Angular Momentum

Protecting E-Commerce Systems From Online Fraud

Porametr Leegomonchai North Carolina State University Raleigh, NC and

Economic Interpretation of Regression. Theory and Applications

A Novel Lightweight Algorithm for Secure Network Coding

Exam 3: Equation Summary

Electric Potential. otherwise to move the object from initial point i to final point f

Model Question Paper Mathematics Class XII

Mathematics. Mathematics 3. hsn.uk.net. Higher HSN23000

ANALYSIS OF ORDER-UP-TO-LEVEL INVENTORY SYSTEMS WITH COMPOUND POISSON DEMAND

Section 5.3 Annuities, Future Value, and Sinking Funds

Modelling Exogenous Variability in Cloud Deployments

8.4. Annuities: Future Value. INVESTIGATE the Math Annuities: Future Value

Portfolio Loss Distribution

Point cloud to point cloud rigid transformations. Minimizing Rigid Registration Errors

Green's function integral equation methods for plasmonic nanostructures

Efficient Evolutionary Data Mining Algorithms Applied to the Insurance Fraud Prediction

FEE-HELP INFORMATION SHEET FOR DOMESTIC FULL FEE STUDENTS

This circuit than can be reduced to a planar circuit

ERLANG C FORMULA AND ITS USE IN THE CALL CENTERS

The influence of advertising on the purchase of pharmaceutical products

University of Maryland Fraternity & Sorority Life Spring 2015 Academic Report

The Mathematical Derivation of Least Squares

Shielding Equations and Buildup Factors Explained

Carter-Penrose diagrams and black holes

Causal, Explanatory Forecasting. Analysis. Regression Analysis. Simple Linear Regression. Which is Independent? Forecasting

Rotation Kinematics, Moment of Inertia, and Torque

ASCII CODES WITH GREEK CHARACTERS

Logistic Regression. Lecture 4: More classifiers and classes. Logistic regression. Adaboost. Optimization. Multiple class classification

Figure 2. So it is very likely that the Babylonians attributed 60 units to each side of the hexagon. Its resulting perimeter would then be 360!

Factors that Influence Memory

Lecture 2: Single Layer Perceptrons Kevin Swingler

Formulating & Solving Integer Problems Chapter

Question 3: How do you find the relative extrema of a function?

Project Networks With Mixed-Time Constraints

CSE168 Computer Graphics II, Rendering. Spring 2006 Matthias Zwicker

Linear Circuits Analysis. Superposition, Thevenin /Norton Equivalent circuits

The example is taken from Sect. 1.2 of Vol. 1 of the CPN book.

Transcription:

Contnts Stochastc Ray Tacng Kad Bouatouch IRISA Emal: kad@sa.f Mont Calo Intgaton Applcaton to dct lghtng by aa lght soucs Solvng th adanc quaton wth th Mont Calo Mthod Dstbutd Ray Tacng Path Taycng 2 Classcal Ray Tacng Wth Aa ght Soucs On shadow ay by ntscton pont Only pont lght soucs Had shadows: umba 3 Soft shadows Aa lght soucs! pont lght soucs 4

Mo Sampl Ponts on th ght Souc Soluton to th Rndng Equaton V,y V,y Θ θ θ Θ ψ ψ y y θ y θ y y y Analytcal soluton: too much dffcult Us th Mont Calo mthod Appomat th souc by a st of ponts Alasng along th shadows bods 5 y Θ f, Θ Ψ y Ψ V, y dy 2 y A 6 Dct ghtng Dct ghtng V,y Θ θ θ Θ Θ ω ψ ψθ y ψ y y ω θ y Random pont samplng of th aa lght soucs Us ths ponts to valuat th ntgal D y Θ D y dy Θ p y A y y y y Θ f, Θ Ψ y Ψ V, y dy 2 y A 7 shadow ay 9 shadow ays p y AS Θ y As f, Θ Ψ y Ψ Vs, y 2 y 8

Dct ghtng Statfd Samplng Θ 36 shadow ays shadow ays y As f, Θ Ψ y Ψ Vs, y 2 y 9 shadow ays wthout statfcaton 9 shadow ays wth statfcaton 9 Statfd Samplng Statfd Samplng 36 shadow ays no statfcaton 36 shadow ays wth statfcaton shadow ays no statfcaton shadow ays wth statfcaton 2

Multpl ght Soucs Multpl ght Soucs Th ntgal dos not chang : ath than ntgatng ov on lght souc, ntgat ov all th sufacs of th lght soucs y Θ f, Θ Ψ y Ψ V, y dy 2 y Th pdf fo slctng ponts s modfd : fst slct a lght souc S usng pdf ps, thn a pont y on S wth py S p S Φ Φ S T A p ys p y p S p ys As 36 shadow ays p pl n th 2 mags but wth dffnt pdf 3 4 Applcaton to pls: ovsamplng Comput adanc at th cnt of a pl alasng Ovsampl a pl and comput adanc fo sub-pls Us a flt f d Pl valuatd by th Mont Calo mthod. 5 Applcaton to pls: ovsamplng Any samplng mthod f p 6

Applcaton to pls: ovsamplng Implmntaton Compason : ay / pl ays / pl ays / pl 7 cntd ay p pl andom shadow ays p ntscton cntd ays p pl andom shadow ays p ntscton 8 Th Rndng Equaton Evaluaton of th ndng quaton How to wt th ndng quaton and how to valuat t usng Mont Calo ntgaton Whch pdf to us fo th ndng quaton Algothms and sults Th Rndng Equaton Θ Θ + Ψ f, Ψ Θ Ψcos Ψ, n dωψ Θ Θ 9 2

Th Rndng Equaton Θ Θ + f, Ψ Θ Ψcos Ψ, n dωψ Computng Radanc How to valuat Fnd Θ + f cos f Add:, Ψ Θ Ψ cos Ψ, n dω Ψ 2 22 Computng Radanc Computng Radanc How to valuat Mont Calo Intgaton Gnat andom dctons on, usng th pobablty dnsty functon pψ Θ Θ f, Ψ Θ Ψcos Ψ, n dωψ p Ψ f, Ψ Θ Ψ cos Ψ, n Hmsph Samplng π / θn 2 2π ϕn p Θ cos θ cos ξ ϕ 2πξ2 π θ a t Θ θ, ϕ dωθ snθ dθ dϕ p Θ n+ cos 2 2 2 cosnθ θ a ξ n + tϕ πξ π θ n dω Θn ϕ n 23 24

Computng Radanc Gnat a andom dcton Ψ f K Ψ cos K p Ψ Evaluat th BRDF Evaluat th cos Evaluat Ψ Computng Radanc Evaluaton of Ψ Radanc s constant along th popagaton dcton. c, Ψ fst vsbl pont. Ψ c, Ψ Ψ 25 26 Computng Radanc Rcusv Evaluaton Stoppng Rcuson Whn cuson s stoppd Each bounc adds a lvl of ndct lghtng. Th contbutons of hgh od flctons a nglgbl. If w gno thm, th stmats a basd! 27 28

Tmnatng th Rcuson Whn/how do w stop th cuson Whn th ay dosn t ht any objct Can b vy had/mpossbl fo dns scns Whn a mamum dpth s achd Ths s hghly scn dpndnt Pmaly spcula scns qus fa mo bouncs than dffus scns Havng a fd path lngth sults n a basd stmat Whn th contbuton of th ay falls blow a ctan thshold Mo ffcnt than a fd ma dpth, but stll gvs a basd sult Intgal I f d Estmato < Ioultt Russan Roultt > Us Russan oultt to dcd ay s absobd wth pobablty -α sults n unbasd stmato α α f / α α f / α d f < α f > α f α 29 3 Russan Roultt A smpl and unbasd tmnaton cta s Russan oultt: Gvn a unfom andom numb ξ, tmnat th ay f ξ α, othws scal th contbuton of th ay by /α H α є [,] s th absopton pobablty Rcuson stops wth a pobablty of p - α By scalng th contbuton of ays that contnu by / α, th sult mans unbasd Russan oultt s not pactcally usful untl w add dct lght to ou ay tac!! Russan Roultt Eampl p.9, thn α - p. On chanc n that ay s flctd. Th adanc du to on flctd ay s multpld by. nstad of shootng ays, w shoot only, but count th contbuton of ths on tms 3 32

Russan Roultt Cas of n ncdnt ays Θ f, Ψ Θ Ψ cos Ψ, n p Ψ Cas of on ncdnt ay f, D Θ D cos D, n Θ p D R, D. D 33 Russan Roultt Wth Russan oultt th psudo cod now looks lk ths: RGB adancray f hts at fξ < α Gnat nw dcton, D, fom p Ψ and th sufac nomal at Ray ay, D tun + R,D*adancay / α ls tun ls tun backgound 34 Russan Roultt on basd Estmat Th pctd valu s coct Bgg vaanc Algothm Tac ays p pl At ach ntscton pont, tac ay o mo andomly chosn on th hmsph to valuat th ndng quaton End cuson usng th Russan oultt But mo ffcnt 35 36

computimag { fo ach pl,j { stmatdradanc[,j] fo s to #sampls-n-pl { gnat Q n pl,j thta Q E/ Q-E // E s th Ey tace,thta stmatdradanc [,j] + computradanc,-thta stmatdradanc [,j] / # sampls-n-pl computradanc, thta { stmatdradanc bascpt, thta tun stmatdradanc 37 bascpt, thta { stmatdradanc, thta fnot absobd { // ussan oultt fo s to #adancsampls { // ay dctons ps gnat andom dcton on hmsph y tac, ps stmatdradanc + bascpty,-ps * BRDF,ps,thta* cos,ps / pdfps stmatdradanc / #adancsampls tun stmatdradanc/absopton 38 39 4

ay/pl 6 ays/pl 256 ays/pl Vy nosy : null contbuton as long as th path dos not ach a lght souc!! 4 42 n 43 44

n 45 46 n 47 48

.234 49 5 Impov th algothm by dvdng th ntgal nto two pats: dct and ndct Θ + f, Ψ Θ Ψcos Ψ, n dωψ f, Ψ Θ Ψcos Ψ, n dωψ Θ Θ + Θ 5 52

53 Evaluat dffntly th dct and th ndct componnts + Souc f f cos cos 54 Dct Illumnaton, cos cos cos cos 2 y V da y f d y f d f souc Aa y y dct Ψ Θ Ψ Ψ K K K K K K K ω ω da y dω Θ Θ d da y y ω θ Θ cos 2 55 Indct Illumnaton Ψ Ψ Ψ Ψ Θ Θ d n f ω, cos, 56 Indct Illumnaton Ψ Ψ Ψ Ψ Θ Θ d n f ω, cos,

Θ Θ f, Ψ Θ Ψcos Ψ, n dωψ p Ψ f, Ψ Θ Ψ cos Ψ, n Dpnds on how to sampl th hmsph Unfom dstbuton Impotanc samplng : pck p to match ntgal Cosn dstbuton BRDF dstbuton BRDF*cosn dstbuton Θ Unfom dstbuton 2π p Ψ f, Ψ Θ Ψ cos Ψ, n 2π 57 58 Cosn dstbuton Θ p Ψ cos π π f, Ψ θψ Θ Ψ BRDF dstbuton p Ψ f... Θ Ψ cos Ψ, n 59 6

BRDF*cosn dstbuton p Ψ f...ψ Θ Ψ 6 : pl samplng computimag { fo ach pl,j { stmatdradanc[,j] fo s to #sampls-n-pl { gnat Q n pl,j thta Q E/ Q-E tace,thta stmatdradanc [,j] + computradanc,-thta stmatdradanc [,j] / #sampls-n-pl 62 : adanc stmaton computradanc,thta { stmatdradanc,thta stmatdradanc + dctillumnaton, thta stmatdradanc + ndctillumnaton, thta tun stmatdradanc 63 : dct llumnaton dctillumnaton,thta { stmatdradanc fo s to #shadowrays { k pck andom lght y gnat andom pont on lght k ps -y / -y stmatdradanc + _ky,-ps * BRDF,ps,ttha *G,y * V,y /pk*py k stmatradanc / #shadowrays tun stmatdradanc 64

: dct llumnaton dctillumnaton,thta { stmatdradanc fo k to #lghts { fo s to #shadowrays { y gnat andom pont on lght k ps -y / -y stmatdradanc + _ky,-ps * BRDF,ps,ttha *G,y * V,y /py stmatradanc / #shadowrays tun stmatdradanc 65 : ndct llumnaton ndctillumnaton,thta { stmatdradanc f not absobd { // ussan oultt fo s to #ndctdctonsampls { ps gnat andom dcton on hmsph y tac, ps stmatdradanc + computradancy,-ps * BRDF,ps,thta *cos,ps / pdfps stmatdradanc / #ndctdctonsampls tun stmatdradanc /absopton 66 To sum up Fo pmay ays : us many ay sampls at th ntscton pont Us unfom o cosn pdf to sampl th hmsph Fo shadow ays : Us unfom aa-basd pdf to sampl th lght soucs Us many sampls Fo sconday ays Us on o mo sampls Us BRDF basd pdf Tacng ambtan Matals W v alady sn that fo ambtan matals, R s just a constant btwn and To gnat a andom ay dcton, w us th cosn dnsty p θ, φ and two unfom π andom numbs ξ and ξ 2 Usng th tchnqus psntd bfo, w fnd that ξ φ 2πξ 2 67 68

Impfct Spcula Rflctons Pfctly flctng matals a a Usually, th flcton s slghtly blud To achv an mpfct spcula flcton, w can choos th flcton dcton fom a phong dnsty: m+ m ξ p k k 2π φ 2πξ Wh s th mo flcton dcton and θ s th angl btwn and k 2 m+ 69 Tanspant Matals Whn a ay hts a tanspant matal, t s th flctd o tansmttd Whn a ay s tansmttd fom a mdum wth factv nd n to a mdum wth factv nd n t, t s bnd accodng to Snll s law: n snθn t snφ Fo an ncdnt angl of θ, th facton of ncdnt ays that a flctd s Rθ. -Rθ s th facton of tansmttd ays 7 Path tacng At ach ntscton pont on can mak a choc Rflcton o facton If flcton : dffus o spcula 7 Rflcton o Tansmsson Whn stkng a tanspant sufac, w nd to mak a choc: Should th nw ay b a flctd o tansmttd ay W can st a tansmsson pobablty P, and thn pck a andom numb ξ. If ξ<p, th ay s tansmttd, and th contbuton s scald by /P Els, th ay s flctd, and th contbuton s scald by /-P 72

B s aw Whn lght tavls though an mpu mdum, t s adanc s attnuatd accodng to B s law: ln a s I s I H Is s th adanc of a ay at a dstanc s fom th ntfac and a s th RGB attnuaton constant 73 Spcula-Dffus Sufacs Most sufacs flcts lght s som combnaton of spcula and dffus flctons Whn th angl btwn th vw vcto and th nomal ncass, th spcula flcton ncass and th dffus dcass W modl such matals by lnaly combnng a spcula and a dffus matal 74 Spcula-Dffus Sufacs Rsults W can choos th spcula ay wth pobablty P and th dffus ay wth pobablty -P fξ < P tun R,D*adancspcula ay/p ls tun R*adancdffus ay/-p 75 76

77 Rsults 78 Rsults d d 79 Rsults 2.345 d 2.345 d 8 Rsults

Rsults Compason Wthout computng dct lghtng 6 ays/pl Wth dct lghtng computaton 8 82 Compason ay/ pl 4 ays/ pl 6 ays/ pl 256 ays/ pl 83