High-voltage DC distribution is key to increased system efficiency and renewable-energy opportunities



Similar documents
400V DC Microgrid Small Scale Demo System for Telecom and Datacom Applications

Qualitative Analysis of Power Distribution Configurations for Data Centers

From 48 V direct to Intel VR12.0: Saving Big Data $500,000 per data center, per year

Alternative data center power

Is an energy-wasting data center draining your bottom line?

VICOR WHITE PAPER. The Sine Amplitude Converter Topology Provides Superior Efficiency and Power Density in Intermediate Bus Architecture Applications

Residential & Commercial Use Of DC Power

Evaluating the Opportunity for DC Power in the Data Center

Electrical Systems. <Presenter>

Public Overview of the EMerge Alliance Data/Telecom Center Standard Version 1.0

High-Efficiency AC Power Distribution for Data Centers

Server Technology, Inc.

Datacenter Power Delivery Architectures : Efficiency and Annual Operating Costs

HIGH FREQUENCY TRANSFORMER WITH TRANSFORMER SWITCHOVER

Optimizing Infrastructure Support For Storage Area Networks

The Efficiency Challenge

How To Convert A Power Grid To A Direct Current (Dc) Power System

Technical Comparison of On-line vs. Line-interactive UPS designs

Increasing Data Center Efficiency by Using Improved High Density Power Distribution

DC Power Solutions Overview. DC Power Solutions for EVERY Network Application.

ISSUES RELATING TO THE ADOPTION OF HIGHER VOLTAGE DIRECT CURRENT POWER IN THE DATA CENTER

Calculating Total Power Requirements for Data Centers

Switch Fabric Implementation Using Shared Memory

4.0 UPS dedicated to ICT for unmatched energy savings

High Performance ZVS Buck Regulator Removes Barriers To Increased Power Throughput In Wide Input Range Point-Of-Load Applications

Energy Management System (EMS)

Boosting Data Transfer with TCP Offload Engine Technology

AMI and DA Convergence: Enabling Energy Savings through Voltage Conservation

Edison vs Tesla: A rematch in the telecom data center

Power Distribution Considerations for Data Center Racks

The Quest for Energy Efficiency. A White Paper from the experts in Business-Critical Continuity

Fundamentals of Power

380 Vdc Architectures for the Modern Data Center

380VDC Data Center At Duke Energy

Connection method for charging systems a key element for electric vehicles

Cisco Unified IP Phone Power Injector

Intel architecture. Platform Basics. White Paper Todd Langley Systems Engineer/ Architect Intel Corporation. September 2010

EFFICIENT ELECTRICAL ENERGY TRANSMISSION AND DISTRIBUTION INTERNATIONAL ELECTROTECHNICAL COMMISSION

AN-3 SEVEN KEY CONSIDERATIONS BEFORE YOU START YOUR SLIC OR FXS PHONE LINE INTERFACE DESIGN

An Introduction to SIP

HYBRID POWER SYSTEMS for TELECOM applications

Cisco MCS 7825-H3 Unified Communications Manager Appliance

The Different Types of UPS Systems

network infrastructure: getting started with VoIP

Wireless Networks and Power Quality

Cable Discharge Event

SOLAR MICRO INVERTER 260 COMMUNICATION GATEWAY. Apparent Power Control (APC) unique micro inverter with

SECTION 2 TECHNICAL DESCRIPTION OF BPL SYSTEMS

Yam Hong 施 耐 德 電 機 亞 太 日 本 區 (APJ) 三 相 關 鍵 電 源 市 場 開 發 經 理. Schneider Electric - Division - Name Date

Cisco Aironet 1520 Series Lightweight Outdoor Access Points

Trends and Standards In Cabling Systems

Tough Decision: On-Line or Line-Interactive UPS?

Network Design. Yiannos Mylonas

AC Versus DC Power Distribution

Impact of Power-over-Ethernet (PoE) on Industrial-based Networking

Comparison of an Efficient Buck Converter Configuration for the DC Power Distribution Of Future Green Data Centers

How To Get A Great Service From Swersey Electric

[SINGLE CABLE SOLUTION PROVIDES 5PLAY CONVERGENCE FOR COMMERCIAL INSTALLERS]

Power Your Telecom site with olympian Hybrid Power for Telecom Applications Solar Photovoltaic Wind Diesel Battery

Overview of Green Energy Strategies and Techniques for Modern Data Centers

Mixing Sodium and Lead Battery Technologies in Telecom Applications

Open Rack Charter. Authors: Gio Coglitore, Pierluigi Sarti, John Kenevey, Pete Bratach

Data Communications Competence Center

Proper Application of 415V Systems in North American Data Centers. A White Paper from the Experts in Business-Critical Continuity

AFDtek Energy Dashboard

AC COUPLED HYBRID SYSTEMS AND MINI GRIDS

The Different Types of UPS Systems

Phase Modular Finally the benefits of Modular ups are for all

Managing Data Center Power and Cooling

FREE iphone APP Get our FREE OPEX SAVER CALCULATOR iphone App scan code to go direct to App Store.

The Different Types of UPS Systems

5-port / 8-port 10/100BaseTX Industrial Ethernet Switch User Manual

7 Best Practices for Increasing Efficiency, Availability and Capacity. XXXX XXXXXXXX Liebert North America

Power Supply Unit, Primary Switched, Narrow Design MINI-PS-12-24DC/24DC/1

scalable data centre energy management solution

Definition of effective metrics for evaluating the efficiency of hybrid power systems at telecom cell sites

PE10G2T Dual Port Fiber 10 Gigabit Ethernet TOE PCI Express Server Adapter Broadcom based

Electricity Meter in the age of Photovoltaic

Infinity C DC to DC Power System

Convergence: The Foundation for Unified Communications

Solutions for E-Mobility

Electricity and Power Supplies Chapter #4

POWER YOUR TELECOM SITE WITH OLYMPIAN Hybrid Power for Telecom Applications Solar Photovoltaic Wind Diesel Battery

How To Make A Data Center More Efficient

AC/DC Power Supply Reference Design. Advanced SMPS Applications using the dspic DSC SMPS Family

Cisco Nexus 7000 Series Power Supply Modules

AC vs. DC Power Distribution for Data Centers

Opportunity of Energy Saving in electrical path is lesser as compared to other areas

Version Date Author Description Jpo First version Jpo FET output descriptions made clearer

AC vs DC Power Distribution for Data Centers

The following are general terms that we have found being used by tenants, landlords, IT Staff and consultants when discussing facility space.

Data Center Facility Basics

Design of an Auxiliary Power Distribution Network for an Electric Vehicle

MAJORSINE Power Inverter

Redundancy Module QUINT-DIODE/40

Allstream Converged IP Telephony

Universal Wideband Edge QAM Solution. A New Way to Manage the Edge and Future-Proof Your Network

Optimizing Energy Operations with Machine-to-Machine Communications

Distributed Temperature Monitoring of Energy Transmission and Distribution Systems

Creating a Usable Power Supply from a Solar Panel

Transcription:

WHITE White PAPER paper High-voltage distribution is key to increased system efficiency and renewable-energy opportunities Written by: Stephen Oliver Vice President, VI Chip Product Line November 0 A transition to 400 V in power distribution and conversion will help meet greenhouse gas, efficiency, and renewable-energy goals. The pressure throughout the energy supply chain to deliver electrical power more efficiently is intense and growing. Most dramatically, the European Union s response to the Copenhagen Accord puts forth a "0-0-0" Energy Strategy, with goals of a 0% reduction in energy consumption, a 0% reduction in greenhouse gases, and 0% reliance on power from renewable resources by 00. These ambitious objectives are in place despite the enormous growth in major power consumers such as data centers ("server farms") as voice, data, and networks converge and merge, while user demands increase in the range of 5-0% annually. Existing solutions within the AC- conversion-system topology are struggling to provide even a few percentage points of large-scale improvement despite localized improvements in performance. The answer may be to look instead to a very different AC- structure, based on new approaches rather than merely incremental ones. Using high-voltage for power transmission, in conjunction with new conversion approaches, offers tangible and significant benefits for both sourcing options and system end-to-end performance. In fact, some work from France Telecom and China Mobile estimate that between 8% and 0% across the board can be saved by going to distribution. Ironically, this approach circles back to the 9th century and the earliest days of electric-power generation and distribution. Edison favored generation and distribution while Tesla advocated AC, with its availability of transformers for voltage step-up and step-down to reduce transmission (IR) losses. (Transformers were the only practical way to achieve needed voltage conversion despite their efficiency of just 50-80%; cumbersome motor/generator combinations were a far-inferior alternative). The battle was big and the stakes were high, with technical, economic, and political consequences. As we all know, AC won that battle. But new technical developments in components and devices, along with additional power-system objectives, are acting as catalysts to make -based systems a better and available alternative. These developments include innovative conversion, control, and distribution approaches, much of which is enabled by advanced semiconductors and conversion topologies which function effectively in ways not previously possible. As a result, high-voltage (HV) systems are now practical for distribution and use within a building, office park, warehouse, school, and factory. Why use at all? Why consider high-voltage (380 V nominal/400 V peak) instead of traditional AC, which is well established and field proven for over 00 years? There are several aspects to the answer. does not require source synchronization as AC does, and can draw upon wind, solar, and the grid as each source is available. There are no phase balancing or harmonic issues, and no "stranded" equipment issues, all costly investments in infrastructure which may become obsolete or redundant. offers a lower total cost of ownership (TCO) in building wiring, copper, and connectors, along with an increase in efficiency of between 8 and 0% truly significant. A properly configured system offers higher efficiency and more potential for power extraction from multiple available sources. There are also benefits which are not as immediately apparent. Most backup-energy sources, such as batteries and flywheels, are inherently. Further, telecom and server loads run on, so there are fewer intermediate, efficiency-robbing stages, along with greater reliability due to fewer potential points of failure with a -based approach. vicorpower.com Applications Engineering: 800 97.9474 Page

The HV approach is not just a speculative dream or laboratory curiosity. It has industry-wide support from critical component vendors, of course. It is also supported by industry consortia which are developing essential standards and interoperability specifications, such as the G+C [ Components and Grid] consortium, the ITU [International Telecommunications Union] via standard L.00, ETSI [European Telecommunications Standards Institute] via EN 300 3-3-, the IEC [International Electrotechnical Commission], NTT/Japan [Nippon Telegraph and Telephone], and the IEEE. Topology makes a difference Before looking at the topology and implementation of a 400 V distribution approach, first look at the existing approaches used for major power consumers such as data centers or telecom central offices. In the data center, Figure, an incoming high-voltage AC line is stepped down, and then converted to so it can be paralleled with a battery-backup system. The is then converted back to high-voltage AC for distribution within the building, then converted yet again from AC down to lower-voltage, and then to voltages for the circuitry rails via - converters. Thus, there are four major conversion stages from incoming AC to final. Figure. A typical data center has four major conversion stages from incoming AC line to final rails. AC System UPS Battery AC 00 ~ 00 V Conversion Steps: 4 3 4 / ICT eq. CPU For the existing telecom system, there are just two major stages but with major points of inefficiency, Figure. The line AC is converted to 48 V and combined with the backup batteries; this 48 V line then supplies an array of - converters which provide the local, low-voltage rails needed for the circuitry. The HV system also has just two major conversion stages, but there is more to the end-to-end performance metric than the number of stages alone, as the efficiency of each stage is also critical. In the HV approach, the stages are both more efficient and more reliable. Figure. For existing telecom systems, the two major stages of current telecom systems are major points of inefficiency. System (48 V) 48 V Conversion Steps: / CPU Battery ICT eq. vicorpower.com Applications Engineering: 800 97.9474 Page

V V The HV topology begins with the line AC rectified to 380 V- (nominal), with the battery backup also operating at that voltage, Figure 3. The voltage is then distributed throughout the facility and stepped down by local - converters to supply the rails of the processor and various loads. The system can draw on the outside AC line, batteries, and even onsite renewable sources such as wind and solar simultaneously or individually, in case there is a failure (such as grid problems due to a storm). Figure 3. The line AC is rectified to 380 V (nominal), while the battery backup also operates at that voltage in the HV topology. High efficiency (Few conversion steps) High reliability (Batteries directly supply power) t HV System (380 V) 380 V Conversion Steps: / CPU Low Copper (Small current) Flexibility for placing ICT equipment (Long distance) Battery ICT eq. t Getting down to single volts The reality is that most circuitry operates from voltages below V, and even down to the V region. The challenge for any distribution/conversion system is to develop and deliver those low voltages (and their high currents) efficiently and reliably. HV can meet this requirement, as well, using several available building blocks. One is a Sine Amplitude Converter (SAC ), used in the form of a BCM Bus Converter, which is an isolated, nonregulated - converter which uses a Zero-Voltage/Zero-Current Switching architecture, Figure 4. The SAC is like a traditional AC transformer except that it is input/output, and has an input/output voltage ratio which is fixed by design. For example, with a transformer ratio (K) of /8, it produces a 50 V output from a 400 V input, and 47.5 V from a 380 V input. Figure 4. To support the HV topology, designers can use a Sine Amplitude Converter (SAC ) or BCM Bus Converter (an isolated, non-regulated - converter). +IN T T Q Q T Q5 T Q3 T T +OUT OUT Frequency Lock/Control T T Q4 Q6 T IN vicorpower.com Applications Engineering: 800 97.9474 Page 3

The SAC reaches over 96% efficiency partially due to its fixed, high frequency (> MHz), soft-switching topology. The result is a power density of 70 W/cm3 ; a Vicor full-chip bus converter measuring just 3.5. 0.67 cm (.8 0.87.65 in.) comparable to a standard RJ-45 Ethernet plug, Figure 5 can deliver up to 330 W. The second block is the non-isolated buck-boost regulator, also using Zero-Voltage Switching and MHz operation, Figure 6, resulting in small size and high efficiency of 97%. Figure 5. This Vicor bus converter is the size of a standard RJ-45 Ethernet plug, yet deliver up to 330 W. Figure 6. Using Zero-Voltage Switching at MHz operation, the non-isolated buck-boost regulator offers small size and 97% efficiency. +IN I L +OUT ZVS B-B Control GND GND Working together, the SBCM and buck-boost regulator provide an equalizer (adapter) function over the full span of input voltages for the normal service range as defined by ETSI, Figure 7. At the normal 380 V point, the bus converter can drop the line down to 48 V, with the equalizer operating in a powerthrough mode (with a bypassed buck-boost). Thus, system efficiency is enhanced because the unit converts only when needed. If the voltage from the line or battery drops towards 60 V, the buckboost converter "kicks in" and maintains the fixed 48 V rail. In either case, the architecture maintains high efficiency and allows for seamless, dynamic use of multiple sources a rectified line, battery, and renewables as they become available. vicorpower.com Applications Engineering: 800 97.9474 Page 4

Figure 7. Meeting the normal service range, as defined by ETSI, requires understanding of corner-case design considerations and uses multiple functional blocks. 40 V 400 V 380 V 350 V 300 V Normal Service Range (60 V 400 V) Abnormal Range (400 40 V) 380 V +/- tolerance Normal operating voltage If... 365 400 V BCM /8 45-50 V 98% Adapter If... 60 365 V 3-50 V BCM /8 98% Adapter Buck-Boost Equalizer Buck-Boost Equalizer 98% 98% 48 V +/ 5% (~45-50 V) 96% 48 V +/ 5% (~45-50 V) 60 V 0 V Abnormal Range (0 60 V) Legacy equipment is fully supported as well, starting with today's architecture of AC to 48 V rectification, followed by a 48 V power-distribution unit (PDU), and then - and -AC modules for the lower voltages as needed, Figure 8. In the transition phase, Figure 9, the rectification would be at line voltage producing 380 V, followed by a HV PDU, and then a mix of 380 V, 48 V, and lowervoltage AC (if needed) outputs, along with 48 V/ V (or 9.6V) bus converters for the final rails. Figure 8. The use of multiple modules ensures that legacy equipment is supported AC Switch board 48 V PDU D/A (48 Vdc) (48 Vdc) (AC input) } Current Status Figure 9. The transition phase uses a combination of rectifier, step-up, and step-down stages. AC Switch board 380 V PDU D/D D/A (380 Vdc) (48 Vdc) (AC input) } Transient Status vicorpower.com Applications Engineering: 800 97.9474 Page 5

In this way, HV can be phased in without ripping "everything" out, which would be a costly and impractical requirement. After the transitional period, the intermediate voltage conversion after the PDU could be unnecessary: the 380 V would go directly to the loads to be converted down to the final needed voltages in a single step, Figure 0. Figure 0. As the technology and approach becomes established and accepted, the 380 V high voltage would go directly to the loads, and then converted to the lower-voltage rails in a single stage. AC Switch board 380 V PDU (380 Vdc) (380 Vdc) (380 input) } 00% 380 Vdc Loads A tangible demonstration Block diagrams and proposed architectures are good, but a working model is better, as shown by a complete 400 V system built using available, appropriate connectors, fuses, and distribution, Figures and. This collaboration between Emerson, Vicor, Anderson Electric, and Fujitsu powered multiple loads including an Intel VR processor, a LAN switch, a U server, a PC, and a monitor. As further testimony to the concept's validity, the 48 V was directly down-converted using a buck-boost plus busconverter-like unit to V without additional intermediate steps for the processor, yielding about 5% greater efficiency than the traditional approach. Figure &. This working model shows a complete 400 V system built using commercially available connectors, fuses, and distribution cabling. 0 V, 5 A wall outlet Converter FUJITSU 400 V power strip EMERSON Network Power ANDERSON Connectors A A 380 V - 400 V VICOR HV IBC :8 HV IBC :3 380 V - 400 V LED Lighting fixtures Equalizer ZVS-BB ZVS B-B 0-55 V 0.7-. V SAC WLAN Switch U Server Industrial PC 4 LED Monitor Un-regulated Regulated Standard Standard Intel VR CPU/memory VICOR 380 V Load Un-regulated LED monitor VICOR Intel VR.0 reference design LED lighting fixture U Server Emerson Network Power Ac- Converter VICOR Test Board WLAN Switch Industrial PC vicorpower.com Applications Engineering: 800 97.9474 Page 6

The challenges and opportunities ahead A combination of factors is making high voltage a very attractive solution to the energy consumption dilemma. The merging of voice-centric telecom with data-centric networking (voice, video, data) is driving increased power usage from information sources through end users. At the same time, we face climate-change issues, limits on fossil fuels, and a need to integrate renewable sources. Initiatives such as the Kyoto Protocol (997), the Copenhagen Accord (009) and the European Council 0-0-0 Energy Strategy provide a regulatory framework and set of ambitious goals for reducing emissions of greenhouse gases, lowering energy consumption, and increasing use of renewable sources. The electronics industry will be a big part of responding to these initiatives and meeting these goals. It must be inventive, with radical, dramatic solutions rather than just incremental upgrades. It must be proactive, at the leading edge of the transition, while using proven, safe, demonstrable technologies which can shorten time to market. It must also collaborate on an industry-wide basis with alliances among various vendors and organizations to set comprehensive standards, define commonalities, and minimize barriers to adoption. At the same time, the plan, process, and products must be commercially viable to encourage worldwide involvement and adoption. Yes, these big challenges require big thinking and transformations, but this industry has repeatedly shown it can act to meet and even lead them, as demonstrated by its many radical transitions in process, products, and implementation over the years. About the author Stephen Oliver is Vice President of VI Chip Product Line for Vicor Corporation. Steve has been in the electronics industry for eighteen years, with experience as an applications engineer, product development, manufacturing and strategic product marketing in the AC-, telecom, defense, processor power and automotive markets. Previously with International Rectifier, Philips Electronics and Motorola, Steve holds a BSEE degree from Manchester University, U.K. and an MBA in Global Strategy and Marketing from UCLA and holds several power-electronics patents. The Power Behind Performance Rev. 09/3 vicorpower.com Applications Engineering: 800 97.9474 Page 7