Calculation of Eigenmodes in Superconducting Cavities



Similar documents
Calculation of Eigenfields for the European XFEL Cavities

Numerical Calculation of Beam Coupling Impedances in the Frequency Domain using the Finite Integration Technique

Coupling Impedance of SIS18 and SIS100 beampipe CERN-GSI-Webmeeting

11th International Computational Accelerator Physics Conference (ICAP) August 19 24, 2012, Rostock-Warnemünde (Germany)

The waveguide adapter consists of a rectangular part smoothly transcending into an elliptical part as seen in Figure 1.

Investigations on Critical Higher Order Modes in CEBAF Upgrade Cavities

Design of 2D waveguide networks for the study of fundamental properties of Quantum Graphs

RF FRONT END FOR HIGH BANDWIDTH BUNCH ARRIVAL TIME MONITORS IN FREE-ELECTRON LASERS AT DESY

RF-thermal-structural-RF coupled analysis on the travelling wave disk-loaded accelerating structure

Introduction to antenna and near-field simulation in CST Microwave Studio software

Co-simulation of Microwave Networks. Sanghoon Shin, Ph.D. RS Microwave

GPR Polarization Simulation with 3D HO FDTD

C.-K. Ng. Stanford Linear Accelerator Center. and. T. Weiland. University oftechnology. FB18, Schlossgartenstr. 8. D64289, Darmstadt, Germany.

Dispersion diagrams of a water-loaded cylindrical shell obtained from the structural and acoustic responses of the sensor array along the shell

INTEGRAL METHODS IN LOW-FREQUENCY ELECTROMAGNETICS

How To Simulate An Antenna On A Computer Or Cell Phone

WAVES AND FIELDS IN INHOMOGENEOUS MEDIA

State of Stress at Point

The BESSY HOM Damped Cavity with Ferrite Absorbers. Review of prototype cavity test results, taperedwaveguidesvshomogenouswaveguides

CAVITY DESIGN REPORT

X-Ray Free Electron Lasers

Project 1: Rectangular Waveguide (HFSS)

Today s handsets have to meet tough ELECTROMAGNETIC SIMULATION OF MOBILE PHONE ANTENNA PERFORMANCE

ANALYSIS AND VERIFICATION OF A PROPOSED ANTENNA DESIGN FOR AN IMPLANTABLE. RFID TAG AT 915 MHz RAHUL BAKORE

OpenFOAM Optimization Tools

MINIMUM USAGE OF FERRITE TILES IN ANECHOIC CHAMBERS

ASEN Structures. MDOF Dynamic Systems. ASEN 3112 Lecture 1 Slide 1

3-D WAVEGUIDE MODELING AND SIMULATION USING SBFEM

ACCELERATING COMMERCIAL LINEAR DYNAMIC AND NONLINEAR IMPLICIT FEA SOFTWARE THROUGH HIGH- PERFORMANCE COMPUTING

TESLA Report

THE TESLA TEST FACILITY AS A PROTOTYPE FOR THE GLOBAL ACCELERATOR NETWORK

Simulation of Mobile Phone Antenna Performance

Wake Field Calculations at DESY

CONTROL ROOM ACCELERATOR PHYSICS

Quad-Band U-Slot Antenna for Mobile Applications

Copyright 1996 IEEE. Reprinted from IEEE MTT-S International Microwave Symposium 1996

An Overview of the Finite Element Analysis

by the matrix A results in a vector which is a reflection of the given

Fluid structure interaction of a vibrating circular plate in a bounded fluid volume: simulation and experiment

1. The Slotted Line. ECE 584 Microwave Engineering Laboratory Experiments. Introduction:

Overview. also give you an idea of ANSYS capabilities. In this chapter, we will define Finite Element Analysis and. Topics covered: B.

Electromagnetic Sensor Design: Key Considerations when selecting CAE Software

Tuning a Monopole Antenna Using a Network Analyzer

Introduction to the Finite Element Method

High Bandwidth Wall Current Monitor

Bandwidth analysis of multimode fiber passive optical networks (PONs)

SCHWEITZER ENGINEERING LABORATORIES, COMERCIAL LTDA.

Development and optimization of a hybrid passive/active liner for flow duct applications

Electrical Engineering and Information Technology Department

Comparison of electromagnetic field solvers for the 3D analysis of plasmonic nano antennas

2/20/ Transmission Lines and Waveguides.doc 1/3. and Waveguides. Transmission Line A two conductor structure that can support a TEM wave.

State of the Art in EM Software for Microwave Engineers

AN INTRODUCTION TO NUMERICAL METHODS AND ANALYSIS

Finite Element Method (ENGC 6321) Syllabus. Second Semester

VBA Macro for construction of an EM 3D model of a tyre and part of the vehicle

Complete Technology and RFID

STUDY OF DAM-RESERVOIR DYNAMIC INTERACTION USING VIBRATION TESTS ON A PHYSICAL MODEL

High Performance Computing in CST STUDIO SUITE

CONCEPT-II. Overview of demo examples

Software for Design NMR Probes Using the Shielded Split Ring and the Shielded Symmetrical Band Resonators

An Efficient Finite Element Analysis on an RF Structure Used to Evaluate the Effect of Microwave Radiation on Uveal Melanoma Cells

ME6130 An introduction to CFD 1-1

Copyright 2011 Casa Software Ltd.

DYNAMIC ANALYSIS ON STEEL FIBRE

La simulation en CEM et Hyperfréquences IEEE P CAD interlaboratory comparison

Progress In Electromagnetics Research C, Vol. 38, 67 78, 2013

Efficient numerical simulation of time-harmonic wave equations

How High a Degree is High Enough for High Order Finite Elements?

An 8-channel RF Transceive Coil For Parallel Imaging at 7T/298MHz

Finite Element Formulation for Plates - Handout 3 -

Performance of Dynamic Load Balancing Algorithms for Unstructured Mesh Calculations

10 Project Costs and Schedule

APPLIED MATHEMATICS ADVANCED LEVEL

Simulation in design of high performance machine tools

A wave lab inside a coaxial cable

Frequency-dependent underground cable model for electromagnetic transient simulation

High-fidelity electromagnetic modeling of large multi-scale naval structures

Spin Tracking with COSY INFINITY and its Benchmarking

Finite Elements for 2 D Problems

Forum R.F.& Wireless, Roma il 21 Ottobre 2008 Dr. Emmanuel Leroux Country Manager for Italy

Back to Elements - Tetrahedra vs. Hexahedra

Review Paper for Broadband CPW-Fed T-Shape Slot Antenna

Solution of the Electric Field Integral Equation When It Breaks Down

Bench Measurements and Simulations of Beam Coupling Impedance

Impedance 50 (75 connectors via adapters)

MODELING OF PLANAR METAMATERIAL STRUCTURE AND ITS EFFECTIVE PARAMETER EXTRACTION

Agilent De-embedding and Embedding S-Parameter Networks Using a Vector Network Analyzer. Application Note

Preface Acknowledgments Acronyms

National Laboratory of Antennas and Microwave Technology Xidian University Xi an, Shaanxi , China

NEAR-FIELD RADIATION FROM COMMERCIAL CELLULAR PHONES USING A TEM CELL

Vector Network Analyzer Techniques to Measure WR340 Waveguide Windows

An octave bandwidth dipole antenna

Wide-Band T-Shaped Microstrip-Fed Twin-Slot Array Antenna

Introduction to CFD Analysis

Applications in EMC testing. Outline. Antennas for EMC Testing. Terminology

Experiment 7: Familiarization with the Network Analyzer

Solving Simultaneous Equations and Matrices

Franz Hirtenfelder and Stephen Murray, CST Computer Simulation Technology and W. L. Gore and Associates (Gore) March 5, 2015

Transcription:

Calculation of Eigenmodes in Superconducting Cavities W. Ackermann, C. Liu, W.F.O. Müller, T. Weiland Institut für Theorie Elektromagnetischer Felder, Technische Universität Darmstadt Status Meeting December 17, 2012 DESY, Hamburg December 19, 2012 TU Darmstadt Fachbereich 18 Institut Theorie Elektromagnetischer Felder Wolfgang Ackermann 1

Outline Motivation Computational model - Problem formulation in 3-D - Problem formulation in 2-D (boundary condition) Numerical examples - 1.3 GHz structure, single cavity - 3.9 GHz structure, string of four cavities (preliminary,without bellows) Summary / Outlook December 19, 2012 TU Darmstadt Fachbereich 18 Institut Theorie Elektromagnetischer Felder Wolfgang Ackermann 2

Outline Motivation Computational model - Problem formulation in 3-D - Problem formulation in 2-D (boundary condition) Numerical examples - 1.3 GHz structure, single cavity - 3.9 GHz structure, string of four cavities (preliminary, without bellows) Summary / Outlook December 19, 2012 TU Darmstadt Fachbereich 18 Institut Theorie Elektromagnetischer Felder Wolfgang Ackermann 3

Motivation Particle accelerators - FLASH at DESY, Hamburg RF Gun Diagnostics Accelerating Structures Collimator Undulators Laser Bunch Compressor Bunch Compressor 250 m http://www.desy.de TESLA 1.3 GHz TESLA 3.9 GHz December 19, 2012 TU Darmstadt Fachbereich 18 Institut Theorie Elektromagnetischer Felder Wolfgang Ackermann 4

Motivation Linac: Cavities - Photograph - Numerical model http://newsline.linearcollider.org upstream downstream CST Studio Suite 2012 19. Dezember 2012 TU Darmstadt Fachbereich 18 Institut Theorie Elektromagnetischer Felder Wolfgang Ackermann 5

Motivation Superconducting resonator 9-cell cavity Input coupler Upstream higher order mode coupler Downstream higher order mode coupler December 19, 2012 TU Darmstadt Fachbereich 18 Institut Theorie Elektromagnetischer Felder Wolfgang Ackermann 6

Motivation Superconducting resonator 9-cell cavity Input coupler Variation: Penetration depth Variation: Coupler orientation Upstream higher order mode coupler Downstream higher order mode coupler December 19, 2012 TU Darmstadt Fachbereich 18 Institut Theorie Elektromagnetischer Felder Wolfgang Ackermann 7

Outline Motivation Computational model - Problem formulation in 3-D - Problem formulation in 2-D (boundary condition) Numerical examples - 1.3 GHz structure, single cavity - 3.9 GHz structure, string of four cavities (without bellows) Summary / Outlook December 19, 2012 TU Darmstadt Fachbereich 18 Institut Theorie Elektromagnetischer Felder Wolfgang Ackermann 8

Computational Model Problem formulation - Time domain Efficient algorithms available (explicit method, coupled S-parameter) Field excitation to discriminate unknown mode polarizations - Frequency domain (driven problem) Efficient algorithms available (coupled S-parameter) Field excitation to discriminate unknown mode polarizations - Frequency domain (eigenmode formulation) Expensive algorithms Field distributions available including mode polarization Localized mode patterns with weak coupling naturally included December 19, 2012 TU Darmstadt Fachbereich 18 Institut Theorie Elektromagnetischer Felder Wolfgang Ackermann 9

Computational Model Problem formulation - Local Ritz approach + boundary conditions continuous eigenvalue problem Galerkin vectorial function scalar coefficient global index number of DOFs discrete eigenvalue problem December 19, 2012 TU Darmstadt Fachbereich 18 Institut Theorie Elektromagnetischer Felder Wolfgang Ackermann 10

Computational Model Eigenvalue formulation - Fundamental equation - Matrix properties Notation: A - stiffness matrix B - mass matrix C - damping matrix - Fundamental properties for proper chosen scalar and vector basis functions static or dynamic December 19, 2012 TU Darmstadt Fachbereich 18 Institut Theorie Elektromagnetischer Felder Wolfgang Ackermann 11

Computational Model Fundamental properties - Number of eigenvalues Matrix B nonsingular: matrix polynomial is regular 2n finite eigenvalues Notation: A - stiffness matrix B - mass matrix C - damping matrix - Orthogonality relation If the vectors and are no longer B-orthogonal: December 19, 2012 TU Darmstadt Fachbereich 18 Institut Theorie Elektromagnetischer Felder Wolfgang Ackermann 12

Computational Model Geometrical model 9-cell cavity Upstream HOM coupler Downstream HOM coupler Beam tube Input coupler High precision cavity simulations for closed structures December 19, 2012 TU Darmstadt Fachbereich 18 Institut Theorie Elektromagnetischer Felder Wolfgang Ackermann 13

Outline Motivation Computational model - Problem formulation in 3-D - Problem formulation in 2-D (boundary condition) Numerical examples - 1.3 GHz structure, single cavity - 3.9 GHz structure, string of four cavities (preliminary, without bellows) Summary / Outlook December 19, 2012 TU Darmstadt Fachbereich 18 Institut Theorie Elektromagnetischer Felder Wolfgang Ackermann 14

Computational Model Port boundary condition Port face, fundamental coupler December 19, 2012 TU Darmstadt Fachbereich 18 Institut Theorie Elektromagnetischer Felder Wolfgang Ackermann 15

Computational Model Port boundary condition Port face, HOM coupler December 19, 2012 TU Darmstadt Fachbereich 18 Institut Theorie Elektromagnetischer Felder Wolfgang Ackermann 16

Computational Model Problem formulation - Local Ritz approach Port face vectorial function scalar coefficient global index Mixed 2-D vector and scalar basis number of DOFs December 19, 2012 TU Darmstadt Fachbereich 18 Institut Theorie Elektromagnetischer Felder Wolfgang Ackermann 17

Computational Model Problem formulation - Local Ritz approach + boundary conditions continuous eigenvalue problem, loss-free Galerkin vectorial function scalar coefficient global index number of DOFs discrete eigenvalue problem December 19, 2012 TU Darmstadt Fachbereich 18 Institut Theorie Elektromagnetischer Felder Wolfgang Ackermann 18

Computational Model Wave propagation in the applied coaxial lines - Main coupler 60.0 mm 12.5 mm Dispersion relation 200 f 0 = 1.3 GHz 150 TEM 100 50 TE 11 TE 21 0 0 2 4 6 8 10 - HOM coupler 16.0 mm 3.4 mm propagation damping 400 300 200 f 0 = 1.3 GHz TEM 100 TE 11 TE 21 0 0 5 10 15 20 December 19, 2012 TU Darmstadt Fachbereich 18 Institut Theorie Elektromagnetischer Felder Wolfgang Ackermann 19

Computational Model Problem formulation - Determine propagation constant for a fixed frequency algebraic eigenvalue problem eigenvector and eigenvalue December 19, 2012 TU Darmstadt Fachbereich 18 Institut Theorie Elektromagnetischer Felder Wolfgang Ackermann 20

Computational Model Problem formulation - Determine propagation constant for a fixed frequency algebraic eigenvalue problem eigenvector and eigenvalue Mode 1 Mode 2 Mode 3 Mode 4 December 19, 2012 TU Darmstadt Fachbereich 18 Institut Theorie Elektromagnetischer Felder Wolfgang Ackermann 21

Computational Model Memory requirement for waveguide formulations - Ports with 2-D eigenmodes - Impedance boundary condition Port mode series expansion Projection of the port fields on the set of 3-D basis functions results in a dense matrix block Same population pattern as PMC (natural boundary condition) December 19, 2012 TU Darmstadt Fachbereich 18 Institut Theorie Elektromagnetischer Felder Wolfgang Ackermann 22

Computational Model Memory requirement for waveguide formulations - Example 1: 1.119.219 tetrahedrons - Example 2: 1.218.296 tetrahedrons TESLA 1.3 GHz Refined port mesh area - General rule: NNZ = number of non-zero elements b = mean bandwidth of sparse system matrix h = mean grid step size December 19, 2012 TU Darmstadt Fachbereich 18 Institut Theorie Elektromagnetischer Felder Wolfgang Ackermann 23

Computational Model Waveguide ports implementation options - Standard approach: Incorporate dense matrix blocks into sparse system matrix Port mode series expansion - Memory-efficient approach: Utilize that system matrix is dense but of low rank Dyadic product of modified port mode vectors December 19, 2012 TU Darmstadt Fachbereich 18 Institut Theorie Elektromagnetischer Felder Wolfgang Ackermann 24

Outline Motivation Computational model - Problem formulation in 3-D - Problem formulation in 2-D (boundary condition) Numerical examples - 1.3 GHz structure, single cavity - 3.9 GHz structure, string of four cavities (preliminary, without bellows) Summary / Outlook December 19, 2012 TU Darmstadt Fachbereich 18 Institut Theorie Elektromagnetischer Felder Wolfgang Ackermann 25

Numerical Examples Problem definition - Geometry TESLA 9-cell cavity Port boundary conditions PEC boundary condition - Task Port boundary conditions Search for the field distribution, resonance frequency and quality factor December 19, 2012 TU Darmstadt Fachbereich 18 Institut Theorie Elektromagnetischer Felder Wolfgang Ackermann 26

Numerical Examples Computational model 9-cell cavity Input coupler Beam cube Distribute computational load on multiple processes Upstream HOM coupler December 19, 2012 TU Darmstadt Fachbereich 18 Institut Theorie Elektromagnetischer Felder Wolfgang Ackermann 27

Numerical Examples Simulation results - Accelerating mode (monopole #9) - Higher-order mode (dipole #37) December 19, 2012 TU Darmstadt Fachbereich 18 Institut Theorie Elektromagnetischer Felder Wolfgang Ackermann 28

Numerical Examples Simulation results Accelerating mode (monopole #9) Beam tube Higher-order mode (dipole #37) Beam tube Coaxial line Coaxial input coupler Coaxial input coupler HOM coupler HOM coupler December 19, 2012 TU Darmstadt Fachbereich 18 Institut Theorie Elektromagnetischer Felder Wolfgang Ackermann 29

Imaginary Numerical Examples Controlling the Jacobi-Davidson eigenvalue solver - Evaluation in the complex frequency plane - Select best suited eigenvalues in circular region around user-specified complex target 0.04 0.03 Monopole Dipole Real and imaginary part of the complex frequency 0.02 Quadrupole 0.01 Sextupole 100 200 0.00 500 1000 50002000 2.46 2.48 2.50 2.52 2.54 2.56 2.58 2.60 Real December 19, 2012 TU Darmstadt Fachbereich 18 Institut Theorie Elektromagnetischer Felder Wolfgang Ackermann 30

Numerical Examples Quality factor versus frequency Calculations kindly performed by Cong Liu December 19, 2012 TU Darmstadt Fachbereich 18 Institut Theorie Elektromagnetischer Felder Wolfgang Ackermann 31

Numerical Examples Field distribution of selected mode - First/second dipole passband (mode 17) E B E B December 19, 2012 TU Darmstadt Fachbereich 18 Institut Theorie Elektromagnetischer Felder Wolfgang Ackermann 32

Outline Motivation Computational model - Problem formulation in 3-D - Problem formulation in 2-D (boundary condition) Numerical examples - 1.3 GHz structure, single cavity - 3.9 GHz structure, string of four cavities (preliminary, without bellows) Summary / Outlook December 19, 2012 TU Darmstadt Fachbereich 18 Institut Theorie Elektromagnetischer Felder Wolfgang Ackermann 33

Numerical Examples (preliminary) 3.9 GHz structure (3 rd harmonic cavity) - String of four cavities Bellows omitted for the time being 4 main coupler, 8 HOM coupler and 2 beam pipes = 14 ports - Field distribution for selected modes 1.040.212 tetrahedrons 6.349.532 complex DOF December 19, 2012 TU Darmstadt Fachbereich 18 Institut Theorie Elektromagnetischer Felder Wolfgang Ackermann 34

Summary / Outlook Summary: Request for precise modeling of electromagnetic fields within resonant structures including small geometric details - Geometric modeling with curved tetrahedral elements - Port boundary conditions with curved triangles - Memory-efficient implementation to evaluate the port fields now available Outlook: - Application to 1.3 GHz and 3.9 GHz structure and strings December 19, 2012 TU Darmstadt Fachbereich 18 Institut Theorie Elektromagnetischer Felder Wolfgang Ackermann 35