INTEGRAL METHODS IN LOW-FREQUENCY ELECTROMAGNETICS
|
|
|
- Noah Wells
- 9 years ago
- Views:
Transcription
1 INTEGRAL METHODS IN LOW-FREQUENCY ELECTROMAGNETICS I. Dolezel Czech Technical University, Praha, Czech Republic P. Karban University of West Bohemia, Plzeft, Czech Republic P. Solin University of Nevada, Reno, U.S.A. Academy of Sciences of the Czech Republic, Praha, Czech Republic WILEY A JOHN WILEY & SONS, INC., PUBLICATION
2 CONTENTS List of Figures List of Tables Preface Acknowledgments XI xxiii XXV xxvii 1 Electromagnetic Fields and their Basic Characteristics 1.1 Fundamentals 1.1 Maxwell's equations in integral form 1.2 Maxwell's equations in differential form 1.3 Constitutive relations and equation of continuity 1.4 Media and their characteristics 1.5 Conductors 1.6 Dielectrics 1.7 Magnetic materials 1.8 Conditions on interfaces 1.2 Potentials Scalar electric potential Magnetic vector potential Magnetic scalar potential 1.3 Mathematical models of electromagnetic fields
3 VI CONTENTS Static electric field Static magnetic field Quasistationary electromagneti с field General electromagnetic field Energy and forces in electromagnetic fields Energy of electric field Energy of magnetic field Forces in electric field Forces in magnetic field Power balance in electromagnetic fields Energy in electromagnetic field and its transformation Balance of power in linear electromagnetic field 24 2 Overview of Solution Methods Continuous models in electromagnetism Differential models Integral and integrodifferential models Methods of solution of the continuous models Analytical methods Numerical methods Methods based on the stochastic approach Specific methods Classification of the analytical methods Methods built on the basic laws of electromagnetics Methods based on various transforms Direct solution of the field equations Numerical methods and their classification Differential methods Difference methods Weighted residual methods Variational and other related methods Finite element method Discretization of the definition area and selection of the approximate functions Computation of the functional and its extremization Further prospectives Integral and integrodifferential methods Important mathematical aspects of numerical methods Stability Convergence Accuracy Numerical schemes for parabolic equations 78
4 CONTENTS VII Explicit scheme Implicit scheme 80 Solution of Electromagnetic Fields by Integral Expressions Introduction D integration area Review of typical problems Electric field generated by a solitary filamentary conductor of infinite length Electric field of charged thin circular ring Magnetic field generated by a solitary filamentary conductor of infinite length Magnetic field of thin circular current carrying loop Electric field generated by a system of uniformly charged parallel thin filaments of infinite length Magnetic field generated by a system of currents carrying parallel filamentary conductors of infinite length D integration area Review of typical problems Magnetic field of an infinitely long massive conductor carrying DC current Magnetic field of a massive ring of rectangular cross section Forces acting in the system of long massive conductors Self-inductance of a massive ring of rectangular cross section Radial force on a massive ring of rectangular cross section Cylindrical air-core coils and their parameters Electric field of an idealized thundercloud D integration area Review of typical problems Magnetic field around a helicoidal air-core coil 133 Integral and Integrodifferential Methods Integral versus differential models Theoretical foundations Electrostatic fields produced by charged bodies Eddy currents in linear homogeneous systems Planar and axisymmetric arrangements Static and harmonic problems in one dimension Electric field of a thin charged circular ring Current density in a harmonic current carrying massive hollow conductor 159
5 VIII CONTENTS Current density in a system consisting of a harmonic current carrying massive hollow cylindrical conductor a coaxial shielding pipe Static and harmonic problems in two dimensions Electric field of a thin rectangular plate Electric field of a charged cylinder Harmonic currents in a long conductor of arbitrary cross section Static problems in three dimensions Electric field of two charged cubes Electric field of two charged plates Time-dependent eddy current problems in one dimension and two dimensions Massive conductor carrying time-dependent current Pulse current in along conductor of rectangular profile Short-circuit effects in a three-phase system Static and 2D eddy current problems with motion Distribution of charge in a system of two moving conductors Indirect Solution of Electromagnetic Fields by the Boundary Element Method Introduction Fundamental concepts Green's functions of common differential operators BEM-based solution of differential equations Particular steps of the solution Illustrative example in one dimension Multidimensional problems Problems with ID integration area Two eccentrically placed charged cylinders Magnetic field in the air gap of a rotating machine Electric field near a high-voltage three-phase line Magnetic field of a massive conductor above a ferromagnetic plate Integral Equations in Solution of Selected Coupled Problems Continual induction heating of nonferrous cylindrical bodies Introduction Formulation of the technical problem Mathematical model and its solution Illustrative example Conclusion 255
6 6.2 Induction heating of a long nonmagnetic cylindrical billet rotating in a uniform magnetic field Introduction Formulation of the technical problem Continuous mathematical model of the problem Example of computation Conclusion Pulsed Induction Accelerator Introduction Formulation of the problem Continuous mathematical model Discretized model and its numerical solution Example of calculation Numerical Methods for Integral Equations Introduction Model problem Projection methods Collocation methods Optimal collocation points in one dimension Optimal basis functions in one dimension Efficient assembly of the collocation matrix Optimal collocation points in two dimensions Transformation of points from reference to physical elements Optimal basis functions in two dimensions Efficient assembly of the collocation matrix Galerkin methods Schur complement method for partially orthonormal basis Numerical example Basic features of the proposed higher-order technique Illustrative example 298 Appendix A: Basic Mathematical Tools 301 A.l Vectors, matrices, and systems of linear equations 301 A. 1.1 Vectors 301 A. 1.2 Matrices 304 A.1.3 Systems of linear equations 306 A. 1.4 Eigenvalues and eigenvectors of matrices 310 A.2 Vector analysis 311 A.2.1 Differential and integral operations with vectors in Cartesian coordinates 311
7 X CONTENTS A.2.2 Other orthogonal coordinate Systems 315 Appendix В: Special Functions 319 B.l Bessel functions 319 В.1.1 Bessel functions of the first kind 320 B.l.2 Bessel functions of the second kind 321 B.1.3 Hankel functions 321 B. 1.4 Modified Bessel functions 322 B.l.5 Asymptotic forms of Bessel functions 322 B.l.6 Some other useful relations 324 B. 1.7 Computation of Bessel and other related functions 324 B.2 Elliptic integrals 325 B.2.1 Incomplete and complete elliptic integrals of the first kind 325 B.2.2 Incomplete and complete elliptic integrals of the second kind 325 B.2.3 Incomplete and complete elliptic integrals of the third kind 326 B.2.4 Some other useful formulas 328 B.3 Special polynomials 329 B.3.1 Legendre polynomials of the first kind 329 B.3.2 Chebyshev polynomials of the first kind 330 Appendix C: Integration Techniques 333 C. 1 Analytical calculations of some integrals over typical elements 333 С 1.1 Rectangle 334 С 1.2 Triangle 338 C.l.3 A ring of rectangular cross section 344 С 1.4 A brick 345 C.2 Techniques of numerical integration 346 C.2.1 Numerical integration in one dimension 347 C.2.2 Numerical integration in two dimensions 355 C.2.3 Numerical integration in three dimensions 365 References 375 Topic Index 385
FUNDAMENTAL FINITE ELEMENT ANALYSIS AND APPLICATIONS
FUNDAMENTAL FINITE ELEMENT ANALYSIS AND APPLICATIONS With Mathematica and MATLAB Computations M. ASGHAR BHATTI WILEY JOHN WILEY & SONS, INC. CONTENTS OF THE BOOK WEB SITE PREFACE xi xiii 1 FINITE ELEMENT
AN INTRODUCTION TO NUMERICAL METHODS AND ANALYSIS
AN INTRODUCTION TO NUMERICAL METHODS AND ANALYSIS Revised Edition James Epperson Mathematical Reviews BICENTENNIAL 0, 1 8 0 7 z ewiley wu 2007 r71 BICENTENNIAL WILEY-INTERSCIENCE A John Wiley & Sons, Inc.,
THE FINITE ELEMENT METHOD IN MAGNETICS
MIKLÓS KUCZMANN AMÁLIA IVÁNYI THE FINITE ELEMENT METHOD IN MAGNETICS AKADÉMIAI KIADÓ, BUDAPEST This book was sponsored by the Széchenyi István University in Győr by the Pollack Mihály Faculty of Engineering,
Preface Acknowledgments Acronyms
Contents Preface Acknowledgments Acronyms xi xiii xv 1 Introduction 1 1.1 The history of Antennas and Antenna Analysis 1 1.2 Antenna Synthesis 5 1.3 Approximate Antenna Modeling 7 1.4 Organization of the
Numerical Analysis An Introduction
Walter Gautschi Numerical Analysis An Introduction 1997 Birkhauser Boston Basel Berlin CONTENTS PREFACE xi CHAPTER 0. PROLOGUE 1 0.1. Overview 1 0.2. Numerical analysis software 3 0.3. Textbooks and monographs
Edmund Li. Where is defined as the mutual inductance between and and has the SI units of Henries (H).
INDUCTANCE MUTUAL INDUCTANCE If we consider two neighbouring closed loops and with bounding surfaces respectively then a current through will create a magnetic field which will link with as the flux passes
Mean value theorem, Taylors Theorem, Maxima and Minima.
MA 001 Preparatory Mathematics I. Complex numbers as ordered pairs. Argand s diagram. Triangle inequality. De Moivre s Theorem. Algebra: Quadratic equations and express-ions. Permutations and Combinations.
SCHWEITZER ENGINEERING LABORATORIES, COMERCIAL LTDA.
Pocket book of Electrical Engineering Formulas Content 1. Elementary Algebra and Geometry 1. Fundamental Properties (real numbers) 1 2. Exponents 2 3. Fractional Exponents 2 4. Irrational Exponents 2 5.
WAVES AND FIELDS IN INHOMOGENEOUS MEDIA
WAVES AND FIELDS IN INHOMOGENEOUS MEDIA WENG CHO CHEW UNIVERSITY OF ILLINOIS URBANA-CHAMPAIGN IEEE PRESS Series on Electromagnetic Waves Donald G. Dudley, Series Editor IEEE Antennas and Propagation Society,
Mathematics (MAT) MAT 061 Basic Euclidean Geometry 3 Hours. MAT 051 Pre-Algebra 4 Hours
MAT 051 Pre-Algebra Mathematics (MAT) MAT 051 is designed as a review of the basic operations of arithmetic and an introduction to algebra. The student must earn a grade of C or in order to enroll in MAT
Assessment Plan for Learning Outcomes for BA/BS in Physics
Department of Physics and Astronomy Goals and Learning Outcomes 1. Students know basic physics principles [BS, BA, MS] 1.1 Students can demonstrate an understanding of Newton s laws 1.2 Students can demonstrate
A METHOD OF CALIBRATING HELMHOLTZ COILS FOR THE MEASUREMENT OF PERMANENT MAGNETS
A METHOD OF CALIBRATING HELMHOLTZ COILS FOR THE MEASUREMENT OF PERMANENT MAGNETS Joseph J. Stupak Jr, Oersted Technology Tualatin, Oregon (reprinted from IMCSD 24th Annual Proceedings 1995) ABSTRACT The
Domain Decomposition Methods. Partial Differential Equations
Domain Decomposition Methods for Partial Differential Equations ALFIO QUARTERONI Professor ofnumericalanalysis, Politecnico di Milano, Italy, and Ecole Polytechnique Federale de Lausanne, Switzerland ALBERTO
Calculation of Eigenmodes in Superconducting Cavities
Calculation of Eigenmodes in Superconducting Cavities W. Ackermann, C. Liu, W.F.O. Müller, T. Weiland Institut für Theorie Elektromagnetischer Felder, Technische Universität Darmstadt Status Meeting December
Frequency-dependent underground cable model for electromagnetic transient simulation
Frequency-dependent underground cable model for electromagnetic transient simulation Vasco José Realista Medeiros Soeiro Abstract A computation method for transients in a three-phase underground power-transmission
PHYS 1624 University Physics I. PHYS 2644 University Physics II
PHYS 1624 Physics I An introduction to mechanics, heat, and wave motion. This is a calculus- based course for Scientists and Engineers. 4 hours (3 lecture/3 lab) Prerequisites: Credit for MATH 2413 (Calculus
www.integratedsoft.com Electromagnetic Sensor Design: Key Considerations when selecting CAE Software
www.integratedsoft.com Electromagnetic Sensor Design: Key Considerations when selecting CAE Software Content Executive Summary... 3 Characteristics of Electromagnetic Sensor Systems... 3 Basic Selection
APPLIED MATHEMATICS ADVANCED LEVEL
APPLIED MATHEMATICS ADVANCED LEVEL INTRODUCTION This syllabus serves to examine candidates knowledge and skills in introductory mathematical and statistical methods, and their applications. For applications
Chapter 7: Polarization
Chapter 7: Polarization Joaquín Bernal Méndez Group 4 1 Index Introduction Polarization Vector The Electric Displacement Vector Constitutive Laws: Linear Dielectrics Energy in Dielectric Systems Forces
Eðlisfræði 2, vor 2007
[ Assignment View ] [ Print ] Eðlisfræði 2, vor 2007 30. Inductance Assignment is due at 2:00am on Wednesday, March 14, 2007 Credit for problems submitted late will decrease to 0% after the deadline has
MATHEMATICAL METHODS OF STATISTICS
MATHEMATICAL METHODS OF STATISTICS By HARALD CRAMER TROFESSOK IN THE UNIVERSITY OF STOCKHOLM Princeton PRINCETON UNIVERSITY PRESS 1946 TABLE OF CONTENTS. First Part. MATHEMATICAL INTRODUCTION. CHAPTERS
OpenFOAM Optimization Tools
OpenFOAM Optimization Tools Henrik Rusche and Aleks Jemcov [email protected] and [email protected] Wikki, Germany and United Kingdom OpenFOAM Optimization Tools p. 1 Agenda Objective Review optimisation
Numerical Analysis Introduction. Student Audience. Prerequisites. Technology.
Numerical Analysis Douglas Faires, Youngstown State University, (Chair, 2012-2013) Elizabeth Yanik, Emporia State University, (Chair, 2013-2015) Graeme Fairweather, Executive Editor, Mathematical Reviews,
The performance improvement by ferrite loading means - increasing, - increasing of ratio, implicitly related to the input impedance.
3.2.3. Ferrite Loading Magnetic ferrite loading can enhance a transmitting signal as high as 2 to 10 db for MHz [Devore and Bohley, 1977]. There is an optimum frequency range where ferrite loading is beneficial.
INTRODUCTION TO FLUID MECHANICS
INTRODUCTION TO FLUID MECHANICS SIXTH EDITION ROBERT W. FOX Purdue University ALAN T. MCDONALD Purdue University PHILIP J. PRITCHARD Manhattan College JOHN WILEY & SONS, INC. CONTENTS CHAPTER 1 INTRODUCTION
BOUNDARY INTEGRAL EQUATIONS FOR MODELING ARBITRARY FLAW
BOUNDARY INTEGRAL EQUATIONS FOR MODELING ARBITRARY FLAW GEOMETRIES IN ELECTRIC CURRENT INJECTION NDE A. P. Ewingl,2, C. Hall Barbosa3.4, T. A. Cruse 2, A. C. Brun03 and 1. P. Wikswo, Jr.l ldepartment of
Introduction to Engineering System Dynamics
CHAPTER 0 Introduction to Engineering System Dynamics 0.1 INTRODUCTION The objective of an engineering analysis of a dynamic system is prediction of its behaviour or performance. Real dynamic systems are
DEGREE: Bachelor's Degree in Industrial Electronics and Automation COURSE: 1º TERM: 2º WEEKLY PLANNING
SESSION WEEK COURSE: Physics II DEGREE: Bachelor's Degree in Industrial Electronics and Automation COURSE: 1º TERM: 2º WEEKLY PLANNING DESCRIPTION GROUPS (mark ) Indicate YES/NO If the session needs 2
Applied Linear Algebra
Applied Linear Algebra OTTO BRETSCHER http://www.prenhall.com/bretscher Chapter 7 Eigenvalues and Eigenvectors Chia-Hui Chang Email: [email protected] National Central University, Taiwan 7.1 DYNAMICAL
Numerical Methods for Engineers
Steven C. Chapra Berger Chair in Computing and Engineering Tufts University RaymondP. Canale Professor Emeritus of Civil Engineering University of Michigan Numerical Methods for Engineers With Software
The Quantum Harmonic Oscillator Stephen Webb
The Quantum Harmonic Oscillator Stephen Webb The Importance of the Harmonic Oscillator The quantum harmonic oscillator holds a unique importance in quantum mechanics, as it is both one of the few problems
Asymptotic Analysis of Fields in Multi-Structures
Asymptotic Analysis of Fields in Multi-Structures VLADIMIR KOZLOV Department of Mathematics, Linkoeping University, Sweden VLADIMIR MAZ'YA Department of Mathematics, Linkoeping University, Sweden ALEXANDER
Introduction to the Finite Element Method
Introduction to the Finite Element Method 09.06.2009 Outline Motivation Partial Differential Equations (PDEs) Finite Difference Method (FDM) Finite Element Method (FEM) References Motivation Figure: cross
Calculation of Eigenfields for the European XFEL Cavities
Calculation of Eigenfields for the European XFEL Cavities Wolfgang Ackermann, Erion Gjonaj, Wolfgang F. O. Müller, Thomas Weiland Institut Theorie Elektromagnetischer Felder, TU Darmstadt Status Meeting
Lecture Notes to Accompany. Scientific Computing An Introductory Survey. by Michael T. Heath. Chapter 10
Lecture Notes to Accompany Scientific Computing An Introductory Survey Second Edition by Michael T. Heath Chapter 10 Boundary Value Problems for Ordinary Differential Equations Copyright c 2001. Reproduction
Eðlisfræði 2, vor 2007
[ Assignment View ] [ Pri Eðlisfræði 2, vor 2007 28. Sources of Magnetic Field Assignment is due at 2:00am on Wednesday, March 7, 2007 Credit for problems submitted late will decrease to 0% after the deadline
Appendix 3 IB Diploma Programme Course Outlines
Appendix 3 IB Diploma Programme Course Outlines The following points should be addressed when preparing course outlines for each IB Diploma Programme subject to be taught. Please be sure to use IBO nomenclature
FRACTIONAL INTEGRALS AND DERIVATIVES. Theory and Applications
FRACTIONAL INTEGRALS AND DERIVATIVES Theory and Applications Stefan G. Samko Rostov State University, Russia Anatoly A. Kilbas Belorussian State University, Minsk, Belarus Oleg I. Marichev Belorussian
Finite Element Formulation for Beams - Handout 2 -
Finite Element Formulation for Beams - Handout 2 - Dr Fehmi Cirak (fc286@) Completed Version Review of Euler-Bernoulli Beam Physical beam model midline Beam domain in three-dimensions Midline, also called
NUMERICAL METHODS TOPICS FOR RESEARCH PAPERS
Faculty of Civil Engineering Belgrade Master Study COMPUTATIONAL ENGINEERING Fall semester 2004/2005 NUMERICAL METHODS TOPICS FOR RESEARCH PAPERS 1. NUMERICAL METHODS IN FINITE ELEMENT ANALYSIS - Matrices
State of Stress at Point
State of Stress at Point Einstein Notation The basic idea of Einstein notation is that a covector and a vector can form a scalar: This is typically written as an explicit sum: According to this convention,
Applied Computational Economics and Finance
Applied Computational Economics and Finance Mario J. Miranda and Paul L. Fackler The MIT Press Cambridge, Massachusetts London, England Preface xv 1 Introduction 1 1.1 Some Apparently Simple Questions
Graduate Courses in Mechanical Engineering
Graduate Courses in Mechanical Engineering MEEG 501 ADVANCED MECHANICAL ENGINEERING ANALYSIS An advanced, unified approach to the solution of mechanical engineering problems, with emphasis on the formulation
1. A wire carries 15 A. You form the wire into a single-turn circular loop with magnetic field 80 µ T at the loop center. What is the loop radius?
CHAPTER 3 SOURCES O THE MAGNETC ELD 1. A wire carries 15 A. You form the wire into a single-turn circular loop with magnetic field 8 µ T at the loop center. What is the loop radius? Equation 3-3, with
Finite Element Method (ENGC 6321) Syllabus. Second Semester 2013-2014
Finite Element Method Finite Element Method (ENGC 6321) Syllabus Second Semester 2013-2014 Objectives Understand the basic theory of the FEM Know the behaviour and usage of each type of elements covered
COMPUTATION OF THREE-DIMENSIONAL ELECTRIC FIELD PROBLEMS BY A BOUNDARY INTEGRAL METHOD AND ITS APPLICATION TO INSULATION DESIGN
PERIODICA POLYTECHNICA SER. EL. ENG. VOL. 38, NO. ~, PP. 381-393 (199~) COMPUTATION OF THREE-DIMENSIONAL ELECTRIC FIELD PROBLEMS BY A BOUNDARY INTEGRAL METHOD AND ITS APPLICATION TO INSULATION DESIGN H.
Differential Relations for Fluid Flow. Acceleration field of a fluid. The differential equation of mass conservation
Differential Relations for Fluid Flow In this approach, we apply our four basic conservation laws to an infinitesimally small control volume. The differential approach provides point by point details of
Online Courses for High School Students 1-888-972-6237
Online Courses for High School Students 1-888-972-6237 PHYSICS Course Description: This course provides a comprehensive survey of all key areas: physical systems, measurement, kinematics, dynamics, momentum,
5. Measurement of a magnetic field
H 5. Measurement of a magnetic field 5.1 Introduction Magnetic fields play an important role in physics and engineering. In this experiment, three different methods are examined for the measurement of
Feature Commercial codes In-house codes
A simple finite element solver for thermo-mechanical problems Keywords: Scilab, Open source software, thermo-elasticity Introduction In this paper we would like to show how it is possible to develop a
6 J - vector electric current density (A/m2 )
Determination of Antenna Radiation Fields Using Potential Functions Sources of Antenna Radiation Fields 6 J - vector electric current density (A/m2 ) M - vector magnetic current density (V/m 2 ) Some problems
Dispersion diagrams of a water-loaded cylindrical shell obtained from the structural and acoustic responses of the sensor array along the shell
Dispersion diagrams of a water-loaded cylindrical shell obtained from the structural and acoustic responses of the sensor array along the shell B.K. Jung ; J. Ryue ; C.S. Hong 3 ; W.B. Jeong ; K.K. Shin
Co-simulation of Microwave Networks. Sanghoon Shin, Ph.D. RS Microwave
Co-simulation of Microwave Networks Sanghoon Shin, Ph.D. RS Microwave Outline Brief review of EM solvers 2D and 3D EM simulators Technical Tips for EM solvers Co-simulated Examples of RF filters and Diplexer
TWO-DIMENSIONAL FINITE ELEMENT ANALYSIS OF FORCED CONVECTION FLOW AND HEAT TRANSFER IN A LAMINAR CHANNEL FLOW
TWO-DIMENSIONAL FINITE ELEMENT ANALYSIS OF FORCED CONVECTION FLOW AND HEAT TRANSFER IN A LAMINAR CHANNEL FLOW Rajesh Khatri 1, 1 M.Tech Scholar, Department of Mechanical Engineering, S.A.T.I., vidisha
NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES
Vol. XX 2012 No. 4 28 34 J. ŠIMIČEK O. HUBOVÁ NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES Jozef ŠIMIČEK email: [email protected] Research field: Statics and Dynamics Fluids mechanics
Simulation of Residual Stresses in an Induction Hardened Roll
2.6.4 Simulation of Residual Stresses in an Induction Hardened Roll Ludwig Hellenthal, Clemens Groth Walzen Irle GmbH, Netphen-Deuz, Germany CADFEM GmbH, Burgdorf/Hannover, Germany Summary A heat treatment
NEW YORK STATE TEACHER CERTIFICATION EXAMINATIONS
NEW YORK STATE TEACHER CERTIFICATION EXAMINATIONS TEST DESIGN AND FRAMEWORK September 2014 Authorized for Distribution by the New York State Education Department This test design and framework document
Overview. also give you an idea of ANSYS capabilities. In this chapter, we will define Finite Element Analysis and. Topics covered: B.
2. FEA and ANSYS FEA and ANSYS Overview In this chapter, we will define Finite Element Analysis and also give you an idea of ANSYS capabilities. Topics covered: A. What is FEA? B. About ANSYS FEA and ANSYS
820446 - ACMSM - Computer Applications in Solids Mechanics
Coordinating unit: 820 - EUETIB - Barcelona College of Industrial Engineering Teaching unit: 737 - RMEE - Department of Strength of Materials and Structural Engineering Academic year: Degree: 2015 BACHELOR'S
FLUX / GOT-It Finite Element Analysis of electromagnetic devices Maccon GmbH
FLUX / GOT-It Finite Element Analysis of electromagnetic devices Maccon GmbH Entwurfswerkzeuge für elektrische Maschinen MACCON GmbH 09/04/2013 1 Flux software Modeling electromagnetic and thermal phenomena
SIO 229 Gravity and Geomagnetism: Class Description and Goals
SIO 229 Gravity and Geomagnetism: Class Description and Goals This graduate class provides an introduction to gravity and geomagnetism at a level suitable for advanced non-specialists in geophysics. Topics
ANALYSIS OF STRUCTURAL MEMBER SYSTEMS JEROME J. CONNOR NEW YORK : ':,:':,;:::::,,:
ANALYSIS OF JEROME J. CONNOR, Sc.D., Massachusetts Institute of Technology, is Professor of Civil Engineering at Massachusetts Institute of Technology. He has been active in STRUCTURAL MEMBER teaching
Lecture 22. Inductance. Magnetic Field Energy. Outline:
Lecture 22. Inductance. Magnetic Field Energy. Outline: Self-induction and self-inductance. Inductance of a solenoid. The energy of a magnetic field. Alternative definition of inductance. Mutual Inductance.
MATHEMATICS (MATH) 3. Provides experiences that enable graduates to find employment in sciencerelated
194 / Department of Natural Sciences and Mathematics MATHEMATICS (MATH) The Mathematics Program: 1. Provides challenging experiences in Mathematics, Physics, and Physical Science, which prepare graduates
Finite Element Methods (in Solid and Structural Mechanics)
CEE570 / CSE 551 Class #1 Finite Element Methods (in Solid and Structural Mechanics) Spring 2014 Prof. Glaucio H. Paulino Donald Biggar Willett Professor of Engineering Department of Civil and Environmental
Elementary Differential Equations and Boundary Value Problems. 10th Edition International Student Version
Brochure More information from http://www.researchandmarkets.com/reports/3148843/ Elementary Differential Equations and Boundary Value Problems. 10th Edition International Student Version Description:
potential in the centre of the sphere with respect to infinity.
Umeå Universitet, Fysik 1 Vitaly Bychkov Prov i fysik, Electricity and Waves, 2006-09-27, kl 16.00-22.00 Hjälpmedel: Students can use any book. Define the notations you are using properly. Present your
Dirichlet forms methods for error calculus and sensitivity analysis
Dirichlet forms methods for error calculus and sensitivity analysis Nicolas BOULEAU, Osaka university, november 2004 These lectures propose tools for studying sensitivity of models to scalar or functional
Electromagnetism Laws and Equations
Electromagnetism Laws and Equations Andrew McHutchon Michaelmas 203 Contents Electrostatics. Electric E- and D-fields............................................. Electrostatic Force............................................2
Force on Moving Charges in a Magnetic Field
[ Assignment View ] [ Eðlisfræði 2, vor 2007 27. Magnetic Field and Magnetic Forces Assignment is due at 2:00am on Wednesday, February 28, 2007 Credit for problems submitted late will decrease to 0% after
An Overview of the Finite Element Analysis
CHAPTER 1 An Overview of the Finite Element Analysis 1.1 Introduction Finite element analysis (FEA) involves solution of engineering problems using computers. Engineering structures that have complex geometry
Inner Product Spaces
Math 571 Inner Product Spaces 1. Preliminaries An inner product space is a vector space V along with a function, called an inner product which associates each pair of vectors u, v with a scalar u, v, and
ISU Department of Mathematics. Graduate Examination Policies and Procedures
ISU Department of Mathematics Graduate Examination Policies and Procedures There are four primary criteria to be used in evaluating competence on written or oral exams. 1. Knowledge Has the student demonstrated
3-D WAVEGUIDE MODELING AND SIMULATION USING SBFEM
3-D WAVEGUIDE MODELING AND SIMULATION USING SBFEM Fabian Krome, Hauke Gravenkamp BAM Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205 Berlin, Germany email: [email protected]
Vehicle-Bridge Interaction Dynamics
Vehicle-Bridge Interaction Dynamics With Applications to High-Speed Railways Y. B. Yang National Taiwan University, Taiwan J. D. Yau Tamkang University, Taiwan Y. S. Wu Sinotech Engineering Consultants,
Effects of Cell Phone Radiation on the Head. BEE 4530 Computer-Aided Engineering: Applications to Biomedical Processes
Effects of Cell Phone Radiation on the Head BEE 4530 Computer-Aided Engineering: Applications to Biomedical Processes Group 3 Angela Cai Youjin Cho Mytien Nguyen Praveen Polamraju Table of Contents I.
Chapter 3: Mathematical Models and Numerical Methods Involving First-Order Differential Equations
Massasoit Community College Instructor: Office: Email: Phone: Office Hours: Course: Differential Equations Course Number: MATH230-XX Semester: Classroom: Day and Time: Course Description: This course is
Numerical Methods for Differential Equations
Numerical Methods for Differential Equations Course objectives and preliminaries Gustaf Söderlind and Carmen Arévalo Numerical Analysis, Lund University Textbooks: A First Course in the Numerical Analysis
ORDINARY DIFFERENTIAL EQUATIONS
ORDINARY DIFFERENTIAL EQUATIONS GABRIEL NAGY Mathematics Department, Michigan State University, East Lansing, MI, 48824. SEPTEMBER 4, 25 Summary. This is an introduction to ordinary differential equations.
Using the Theory of Reals in. Analyzing Continuous and Hybrid Systems
Using the Theory of Reals in Analyzing Continuous and Hybrid Systems Ashish Tiwari Computer Science Laboratory (CSL) SRI International (SRI) Menlo Park, CA 94025 Email: [email protected] Ashish Tiwari
A wave lab inside a coaxial cable
INSTITUTE OF PHYSICS PUBLISHING Eur. J. Phys. 25 (2004) 581 591 EUROPEAN JOURNAL OF PHYSICS PII: S0143-0807(04)76273-X A wave lab inside a coaxial cable JoãoMSerra,MiguelCBrito,JMaiaAlves and A M Vallera
ANALYSIS AND VERIFICATION OF A PROPOSED ANTENNA DESIGN FOR AN IMPLANTABLE. RFID TAG AT 915 MHz RAHUL BAKORE
ANALYSIS AND VERIFICATION OF A PROPOSED ANTENNA DESIGN FOR AN IMPLANTABLE RFID TAG AT 915 MHz By RAHUL BAKORE Bachelor of Engineering in Electronics and Communication University Of Rajasthan Jaipur, Rajasthan,
2. Permanent Magnet (De-) Magnetization 2.1 Methodology
Permanent Magnet (De-) Magnetization and Soft Iron Hysteresis Effects: A comparison of FE analysis techniques A.M. Michaelides, J. Simkin, P. Kirby and C.P. Riley Cobham Technical Services Vector Fields
Designer-Oriented Electric Field Analysis System for Power Cable Accessories
ANALYSIS TECHNOLOGY er-oriented Electric Field Analysis System for Power Cable Accessories Yuuichi NAKAMURA*, Tomohiro KEISHI and Miki USUI Sumitomo Electric has worked on electric for more than 30 years.
Electromagnetism - Lecture 2. Electric Fields
Electromagnetism - Lecture 2 Electric Fields Review of Vector Calculus Differential form of Gauss s Law Poisson s and Laplace s Equations Solutions of Poisson s Equation Methods of Calculating Electric
THEORETICAL MECHANICS
PROF. DR. ING. VASILE SZOLGA THEORETICAL MECHANICS LECTURE NOTES AND SAMPLE PROBLEMS PART ONE STATICS OF THE PARTICLE, OF THE RIGID BODY AND OF THE SYSTEMS OF BODIES KINEMATICS OF THE PARTICLE 2010 0 Contents
PREDICTION OF MACHINE TOOL SPINDLE S DYNAMICS BASED ON A THERMO-MECHANICAL MODEL
PREDICTION OF MACHINE TOOL SPINDLE S DYNAMICS BASED ON A THERMO-MECHANICAL MODEL P. Kolar, T. Holkup Research Center for Manufacturing Technology, Faculty of Mechanical Engineering, CTU in Prague, Czech
Application Note. So You Need to Measure Some Inductors?
So You Need to Measure Some nductors? Take a look at the 1910 nductance Analyzer. Although specifically designed for production testing of inductors and coils, in addition to measuring inductance (L),
جامعة البلقاء التطبيقية
AlBalqa Applied University تا سست عام 997 The curriculum of associate degree in Air Conditioning, Refrigeration and Heating Systems consists of (7 credit hours) as follows: Serial No. Requirements First
How To Understand The Physics Of A Single Particle
Learning Objectives for AP Physics These course objectives are intended to elaborate on the content outline for Physics B and Physics C found in the AP Physics Course Description. In addition to the five
Essential Mathematics for Computer Graphics fast
John Vince Essential Mathematics for Computer Graphics fast Springer Contents 1. MATHEMATICS 1 Is mathematics difficult? 3 Who should read this book? 4 Aims and objectives of this book 4 Assumptions made
Applied Linear Algebra I Review page 1
Applied Linear Algebra Review 1 I. Determinants A. Definition of a determinant 1. Using sum a. Permutations i. Sign of a permutation ii. Cycle 2. Uniqueness of the determinant function in terms of properties
Thnkwell s Homeschool Precalculus Course Lesson Plan: 36 weeks
Thnkwell s Homeschool Precalculus Course Lesson Plan: 36 weeks Welcome to Thinkwell s Homeschool Precalculus! We re thrilled that you ve decided to make us part of your homeschool curriculum. This lesson
METHODOLOGICAL CONSIDERATIONS OF DRIVE SYSTEM SIMULATION, WHEN COUPLING FINITE ELEMENT MACHINE MODELS WITH THE CIRCUIT SIMULATOR MODELS OF CONVERTERS.
SEDM 24 June 16th - 18th, CPRI (Italy) METHODOLOGICL CONSIDERTIONS OF DRIVE SYSTEM SIMULTION, WHEN COUPLING FINITE ELEMENT MCHINE MODELS WITH THE CIRCUIT SIMULTOR MODELS OF CONVERTERS. Áron Szûcs BB Electrical
Spacecraft Dynamics and Control. An Introduction
Brochure More information from http://www.researchandmarkets.com/reports/2328050/ Spacecraft Dynamics and Control. An Introduction Description: Provides the basics of spacecraft orbital dynamics plus attitude
Introduction to Robotics Analysis, Systems, Applications
Introduction to Robotics Analysis, Systems, Applications Saeed B. Niku Mechanical Engineering Department California Polytechnic State University San Luis Obispo Technische Urw/carsMt Darmstadt FACHBEREfCH
