Efficient numerical simulation of time-harmonic wave equations
|
|
|
- Jennifer Greene
- 9 years ago
- Views:
Transcription
1 Efficient numerical simulation of time-harmonic wave equations Prof. Tuomo Rossi Dr. Dirk Pauly Ph.Lic. Sami Kähkönen Ph.Lic. Sanna Mönkölä M.Sc. Tuomas Airaksinen M.Sc. Anssi Pennanen M.Sc. Jukka Räbinä Department of Mathematical Information Technology University of Jyväskylä, Jyväskylä, Finland
2 Collaboration The research group has active collaboration with, e.g., Dr. Erkki Heikkola (Numerola Oy) Dr. Jari Toivanen (University of Stanford) Prof. Roland Glowinski (University of Houston) Prof. Norbert Weck, Prof. Karl Josef Witsch, Prof. Axel Klawonn, Dr. Oliver Rheinbach (University of Duisburg-Essen)
3 On-going research project with Department of Physics, University of Jyväskylä: efficient simulation methods for modeling the fluid flow in porous materials. K. Mattila, J. Hyväluoma, T. Rossi, M. Aspnäs, J. Westerholm, An efficient swap algorithm for the lattice Boltzmann method, Computer Physics Communications (2007). K. Mattila, J. Hyväluoma, J. Timonen, T. Rossi, Comparison of implementations of the lattice-boltzmann method, Computers & Mathematics with Applications (2008).
4 Contents Physical phenomena Mathematical model (partial differential equations) Discretization methods Efficient solvers Simulation results
5 Applications on various fields of science and engineering Fluid dynamics: computational acoustics, echo sounding, Elastodynamics: deformation of elastic structures, seismic waves, Electromagnetics: tions, antenna applica- Medical and biological systems: modeling the structure of human tissue (medical imaging), cochlea in the inner ear.
6 Example of coupled time-harmonic wave equations: fluid-structure interaction Structure domain Ω s Fluid domain Ω f Ω s Γ Ω f ω 2 ρ s u s σ(u s ) = g s in Ω s, ω2 c 2 p 2 p = g f in Ω f, p + ω 2 ρ f u s n s = 0 n f on Γ, σ(u s )n s pn f = 0 on Γ.
7 Numerical simulation Simulation tools are used to avoid dangerous, expensive and time-consuming experiments. Computer simulation is an efficient tool in testing and optimizing of model parameters. The design process can be dramatically improved and the development cycle shortened with computer aided modeling. Solving problems arising from real life applications demands a considerable amount of time and memory need to use efficient methods, utilization of modern parallel computing platforms (Playstation 3 CELL-processors, Nvidia CUDA graphics processors).
8 Discretization methods Traditionally: low-order Finite Element Method (FEM), Especially for heterogeneous materials, sufficient accuracy requires dense discretization = large-scale systems to be solved. Solutions with high frequency suffer from numerical dispersion. For time-harmonic wave equations it is challenging to construct efficient iterative solution techniques. Novel approaches: element-based methods with higher-order polynomial basis, e.g., Spectral Element Method (SEM), Discrete Exterior Calculus (DEC).
9 Efficient solution techniques Fictitious domain, The computational domain is embedded into a larger and simpler domain. a tetrahedral finite element mesh, which is locally adapted to the boundary of the obstacle D [Börgers -90]. linear finite elements with mass lumping.
10 Wave scattering by a submarine, 200 wavelenghts per diameter, 20 nodes per wavelenght.
11 Domain decomposition, The computational domain is divided into subdomains. Instead of solving the whole PDE-system, the problems in the subdomains are solved separately. The sequence of the subproblems converge to the solution of the original problem.
12 Multigrid preconditioners Shifted-Laplacian operator (damped Helmholtz operator), B SL = 1 ρ(x) (β 1 + β 2 i) k(x)2, as a preconditioner. ρ(x) Vibrations in a crankshaft
13 Exact controllability Searching for the periodic solution of the time-dependent wave equations. Initial conditions e0 and e1 are the control variables, and we minimize J(e0, e1,y(e0, e1 )) = 1 T 1 YN e0 K YN e YN e1 t T M YN e1. t Y contains the nodal values and solves the system of wave equations in [0, T ].
14 Recent/selected journal publications T. Airaksinen, E. Heikkola, A. Pennanen, J. Toivanen, An algebraic multigrid based shifted-laplacian preconditioner for the Helmholtz equation, Journal of Computational Physics (2007). T. Airaksinen, E. Heikkola, J. Toivanen, Active noise control in a stochastic domain based on a finite element model, Journal of Sound and Vibration (submitted). T. Airaksinen, A. Pennanen, J. Toivanen, A damping preconditioner for time-harmonic wave equations in fluid and elastic material, Journal of Computational Physics (2009). T. Airaksinen, S. Mönkölä, Comparison between shifted-laplacian preconditioning and controllability method for computational acoustics, Journal of Computational and Applied Mathematics (to appear). R. Glowinski, T. Rossi, A mixed formulation and exact controllability approach for the computation of the periodic solutions of the scalar wave equation. (I) Controllability problem formulation and related iterative solution, C. R. Math. Acad. Sci. Paris, (2006). E. Heikkola, S. Mönkölä, A. Pennanen, T. Rossi, Controllability method for acoustic scattering with spectral elements, Journal of Computational and Applied Mathematics (2007). E. Heikkola, S. Mönkölä, A. Pennanen, T. Rossi, Controllability method for the Helmholtz equation with higher order discretizations, Journal of Computational Physics (2007). S. Mönkölä, Time-harmonic solution for acousto-elastic interaction with controllability and spectral elements, Journal of Computational and Applied Mathematics, (to appear). D. Pauly, Generalized Electro-Magneto Statics in Nonsmooth Exterior Domains, Analysis, (2007). D. Pauly, Complete Low Frequency Asymptotics for Time-Harmonic Generalized Maxwell Equations in Nonsmooth Exterior Domains, Asymptotic Analysis, (2008).
Domain Decomposition Methods. Partial Differential Equations
Domain Decomposition Methods for Partial Differential Equations ALFIO QUARTERONI Professor ofnumericalanalysis, Politecnico di Milano, Italy, and Ecole Polytechnique Federale de Lausanne, Switzerland ALBERTO
Calculation of Eigenmodes in Superconducting Cavities
Calculation of Eigenmodes in Superconducting Cavities W. Ackermann, C. Liu, W.F.O. Müller, T. Weiland Institut für Theorie Elektromagnetischer Felder, Technische Universität Darmstadt Status Meeting December
Fast Iterative Solvers for Integral Equation Based Techniques in Electromagnetics
Fast Iterative Solvers for Integral Equation Based Techniques in Electromagnetics Mario Echeverri, PhD. Student (2 nd year, presently doing a research period abroad) ID:30360 Tutor: Prof. Francesca Vipiana,
ME6130 An introduction to CFD 1-1
ME6130 An introduction to CFD 1-1 What is CFD? Computational fluid dynamics (CFD) is the science of predicting fluid flow, heat and mass transfer, chemical reactions, and related phenomena by solving numerically
CAE -Finite Element Method
16.810 Engineering Design and Rapid Prototyping Lecture 3b CAE -Finite Element Method Instructor(s) Prof. Olivier de Weck January 16, 2007 Numerical Methods Finite Element Method Boundary Element Method
Introduction to the Finite Element Method
Introduction to the Finite Element Method 09.06.2009 Outline Motivation Partial Differential Equations (PDEs) Finite Difference Method (FDM) Finite Element Method (FEM) References Motivation Figure: cross
Calculation of Eigenfields for the European XFEL Cavities
Calculation of Eigenfields for the European XFEL Cavities Wolfgang Ackermann, Erion Gjonaj, Wolfgang F. O. Müller, Thomas Weiland Institut Theorie Elektromagnetischer Felder, TU Darmstadt Status Meeting
Finite Element Method
16.810 (16.682) Engineering Design and Rapid Prototyping Finite Element Method Instructor(s) Prof. Olivier de Weck [email protected] Dr. Il Yong Kim [email protected] January 12, 2004 Plan for Today FEM Lecture
Benchmark Tests on ANSYS Parallel Processing Technology
Benchmark Tests on ANSYS Parallel Processing Technology Kentaro Suzuki ANSYS JAPAN LTD. Abstract It is extremely important for manufacturing industries to reduce their design process period in order to
Fluid structure interaction of a vibrating circular plate in a bounded fluid volume: simulation and experiment
Fluid Structure Interaction VI 3 Fluid structure interaction of a vibrating circular plate in a bounded fluid volume: simulation and experiment J. Hengstler & J. Dual Department of Mechanical and Process
CAE -Finite Element Method
16.810 Engineering Design and Rapid Prototyping CAE -Finite Element Method Instructor(s) Prof. Olivier de Weck January 11, 2005 Plan for Today Hand Calculations Aero Æ Structures FEM Lecture (ca. 45 min)
INTEGRAL METHODS IN LOW-FREQUENCY ELECTROMAGNETICS
INTEGRAL METHODS IN LOW-FREQUENCY ELECTROMAGNETICS I. Dolezel Czech Technical University, Praha, Czech Republic P. Karban University of West Bohemia, Plzeft, Czech Republic P. Solin University of Nevada,
An Additive Neumann-Neumann Method for Mortar Finite Element for 4th Order Problems
An Additive eumann-eumann Method for Mortar Finite Element for 4th Order Problems Leszek Marcinkowski Department of Mathematics, University of Warsaw, Banacha 2, 02-097 Warszawa, Poland, [email protected]
How High a Degree is High Enough for High Order Finite Elements?
This space is reserved for the Procedia header, do not use it How High a Degree is High Enough for High Order Finite Elements? William F. National Institute of Standards and Technology, Gaithersburg, Maryland,
HPC enabling of OpenFOAM R for CFD applications
HPC enabling of OpenFOAM R for CFD applications Towards the exascale: OpenFOAM perspective Ivan Spisso 25-27 March 2015, Casalecchio di Reno, BOLOGNA. SuperComputing Applications and Innovation Department,
High-fidelity electromagnetic modeling of large multi-scale naval structures
High-fidelity electromagnetic modeling of large multi-scale naval structures F. Vipiana, M. A. Francavilla, S. Arianos, and G. Vecchi (LACE), and Politecnico di Torino 1 Outline ISMB and Antenna/EMC Lab
Introduction to CFD Analysis
Introduction to CFD Analysis 2-1 What is CFD? Computational Fluid Dynamics (CFD) is the science of predicting fluid flow, heat and mass transfer, chemical reactions, and related phenomena by solving numerically
Finite Element Method (ENGC 6321) Syllabus. Second Semester 2013-2014
Finite Element Method Finite Element Method (ENGC 6321) Syllabus Second Semester 2013-2014 Objectives Understand the basic theory of the FEM Know the behaviour and usage of each type of elements covered
FEM Software Automation, with a case study on the Stokes Equations
FEM Automation, with a case study on the Stokes Equations FEM Andy R Terrel Advisors: L R Scott and R C Kirby Numerical from Department of Computer Science University of Chicago March 1, 2006 Masters Presentation
Lecture 16 - Free Surface Flows. Applied Computational Fluid Dynamics
Lecture 16 - Free Surface Flows Applied Computational Fluid Dynamics Instructor: André Bakker http://www.bakker.org André Bakker (2002-2006) Fluent Inc. (2002) 1 Example: spinning bowl Example: flow in
FRIEDRICH-ALEXANDER-UNIVERSITÄT ERLANGEN-NÜRNBERG
FRIEDRICH-ALEXANDER-UNIVERSITÄT ERLANGEN-NÜRNBERG INSTITUT FÜR INFORMATIK (MATHEMATISCHE MASCHINEN UND DATENVERARBEITUNG) Lehrstuhl für Informatik 10 (Systemsimulation) Massively Parallel Multilevel Finite
AN INTRODUCTION TO NUMERICAL METHODS AND ANALYSIS
AN INTRODUCTION TO NUMERICAL METHODS AND ANALYSIS Revised Edition James Epperson Mathematical Reviews BICENTENNIAL 0, 1 8 0 7 z ewiley wu 2007 r71 BICENTENNIAL WILEY-INTERSCIENCE A John Wiley & Sons, Inc.,
Josef Sifuentes, Ph.D.
Josef Sifuentes, Ph.D. TEXAS A&M UNIVERSITY MATH DEPARTMENT - MS 3368 COLLEGE STATION, TX 77843-3368 PHONE: (832) 754-4796 EMAIL: [email protected] URL: www.math.tamu.edu/ josefs EDUCATION AND ACADEMIC
TWO-DIMENSIONAL FINITE ELEMENT ANALYSIS OF FORCED CONVECTION FLOW AND HEAT TRANSFER IN A LAMINAR CHANNEL FLOW
TWO-DIMENSIONAL FINITE ELEMENT ANALYSIS OF FORCED CONVECTION FLOW AND HEAT TRANSFER IN A LAMINAR CHANNEL FLOW Rajesh Khatri 1, 1 M.Tech Scholar, Department of Mechanical Engineering, S.A.T.I., vidisha
Analysis and its Applications. A unique opportunity for fully funded PhD study in Edinburgh in all areas of analysis and its applications.
A unique opportunity for fully funded PhD study in Edinburgh in all areas of analysis and its applications. A collaborative programme with joint degree from both Edinburgh and Heriot-Watt Universities.
Electromagnetic Wave Simulation Software Poynting
Electromagnetic Wave Simulation Software Poynting V Takefumi Namiki V Yoichi Kochibe V Takatoshi Kasano V Yasuhiro Oda (Manuscript received March 19, 28) The analysis of electromagnetic behavior by computer
Paper Pulp Dewatering
Paper Pulp Dewatering Dr. Stefan Rief [email protected] Flow and Transport in Industrial Porous Media November 12-16, 2007 Utrecht University Overview Introduction and Motivation Derivation
Finite Element Analysis
Finite Element Analysis (MCEN 4173/5173) Instructor: Dr. H. Jerry Qi Fall, 2006 What is Finite Element Analysis (FEA)? -- A numerical method. -- Traditionally, a branch of Solid Mechanics. -- Nowadays,
HPC Deployment of OpenFOAM in an Industrial Setting
HPC Deployment of OpenFOAM in an Industrial Setting Hrvoje Jasak [email protected] Wikki Ltd, United Kingdom PRACE Seminar: Industrial Usage of HPC Stockholm, Sweden, 28-29 March 2011 HPC Deployment
Monifysikaalisten ongelmien simulointi Elmer-ohjelmistolla. Simulation of Multiphysical Problems with Elmer Software
Monifysikaalisten ongelmien simulointi Elmer-ohjelmistolla Simulation of Multiphysical Problems with Elmer Software Peter Råback Tieteen CSC 25.11.2004 Definitions for this presentation Model Mathematical
Co-simulation of Microwave Networks. Sanghoon Shin, Ph.D. RS Microwave
Co-simulation of Microwave Networks Sanghoon Shin, Ph.D. RS Microwave Outline Brief review of EM solvers 2D and 3D EM simulators Technical Tips for EM solvers Co-simulated Examples of RF filters and Diplexer
OpenFOAM Optimization Tools
OpenFOAM Optimization Tools Henrik Rusche and Aleks Jemcov [email protected] and [email protected] Wikki, Germany and United Kingdom OpenFOAM Optimization Tools p. 1 Agenda Objective Review optimisation
Giorgio Bornia. Research statement. Primary interests
Giorgio Bornia Research statement 2500 Broadway and Boston 79409-1042 Lubbock, TX +1 806 834 8754 +1 806 742 1112 [email protected] http://www.math.ttu.edu/~gbornia Primary interests My main research
Introduction to CFD Analysis
Introduction to CFD Analysis Introductory FLUENT Training 2006 ANSYS, Inc. All rights reserved. 2006 ANSYS, Inc. All rights reserved. 2-2 What is CFD? Computational fluid dynamics (CFD) is the science
Solved with COMSOL Multiphysics 4.3
Vibrating String Introduction In the following example you compute the natural frequencies of a pre-tensioned string using the 2D Truss interface. This is an example of stress stiffening ; in fact the
P013 INTRODUCING A NEW GENERATION OF RESERVOIR SIMULATION SOFTWARE
1 P013 INTRODUCING A NEW GENERATION OF RESERVOIR SIMULATION SOFTWARE JEAN-MARC GRATIEN, JEAN-FRANÇOIS MAGRAS, PHILIPPE QUANDALLE, OLIVIER RICOIS 1&4, av. Bois-Préau. 92852 Rueil Malmaison Cedex. France
Accelerating CFD using OpenFOAM with GPUs
Accelerating CFD using OpenFOAM with GPUs Authors: Saeed Iqbal and Kevin Tubbs The OpenFOAM CFD Toolbox is a free, open source CFD software package produced by OpenCFD Ltd. Its user base represents a wide
Simulation of Fluid-Structure Interactions in Aeronautical Applications
Simulation of Fluid-Structure Interactions in Aeronautical Applications Martin Kuntz Jorge Carregal Ferreira ANSYS Germany D-83624 Otterfing [email protected] December 2003 3 rd FENET Annual Industry
THE FINITE ELEMENT METHOD IN MAGNETICS
MIKLÓS KUCZMANN AMÁLIA IVÁNYI THE FINITE ELEMENT METHOD IN MAGNETICS AKADÉMIAI KIADÓ, BUDAPEST This book was sponsored by the Széchenyi István University in Győr by the Pollack Mihály Faculty of Engineering,
METHODOLOGICAL CONSIDERATIONS OF DRIVE SYSTEM SIMULATION, WHEN COUPLING FINITE ELEMENT MACHINE MODELS WITH THE CIRCUIT SIMULATOR MODELS OF CONVERTERS.
SEDM 24 June 16th - 18th, CPRI (Italy) METHODOLOGICL CONSIDERTIONS OF DRIVE SYSTEM SIMULTION, WHEN COUPLING FINITE ELEMENT MCHINE MODELS WITH THE CIRCUIT SIMULTOR MODELS OF CONVERTERS. Áron Szûcs BB Electrical
Estimating Acoustic Performance of a Cell Phone Speaker Using Abaqus
Estimating Acoustic Performance of a Cell Phone Speaker Using Abaqus C. Jackman 1, M. Zampino 1 D. Cadge 2, R. Dravida 2, V. Katiyar 2, J. Lewis 2 1 Foxconn Holdings LLC 2 DS SIMULIA Abstract: Consumers
A Load Balancing Tool for Structured Multi-Block Grid CFD Applications
A Load Balancing Tool for Structured Multi-Block Grid CFD Applications K. P. Apponsah and D. W. Zingg University of Toronto Institute for Aerospace Studies (UTIAS), Toronto, ON, M3H 5T6, Canada Email:
Back to Elements - Tetrahedra vs. Hexahedra
Back to Elements - Tetrahedra vs. Hexahedra Erke Wang, Thomas Nelson, Rainer Rauch CAD-FEM GmbH, Munich, Germany Abstract This paper presents some analytical results and some test results for different
Module 6 Case Studies
Module 6 Case Studies 1 Lecture 6.1 A CFD Code for Turbomachinery Flows 2 Development of a CFD Code The lecture material in the previous Modules help the student to understand the domain knowledge required
Introduction. 1.1 Motivation. Chapter 1
Chapter 1 Introduction The automotive, aerospace and building sectors have traditionally used simulation programs to improve their products or services, focusing their computations in a few major physical
Dispersion diagrams of a water-loaded cylindrical shell obtained from the structural and acoustic responses of the sensor array along the shell
Dispersion diagrams of a water-loaded cylindrical shell obtained from the structural and acoustic responses of the sensor array along the shell B.K. Jung ; J. Ryue ; C.S. Hong 3 ; W.B. Jeong ; K.K. Shin
ACCELERATING COMMERCIAL LINEAR DYNAMIC AND NONLINEAR IMPLICIT FEA SOFTWARE THROUGH HIGH- PERFORMANCE COMPUTING
ACCELERATING COMMERCIAL LINEAR DYNAMIC AND Vladimir Belsky Director of Solver Development* Luis Crivelli Director of Solver Development* Matt Dunbar Chief Architect* Mikhail Belyi Development Group Manager*
Applied mathematics and mathematical statistics
Applied mathematics and mathematical statistics The graduate school is organised within the Department of Mathematical Sciences.. Deputy head of department: Aila Särkkä Director of Graduate Studies: Marija
3-D WAVEGUIDE MODELING AND SIMULATION USING SBFEM
3-D WAVEGUIDE MODELING AND SIMULATION USING SBFEM Fabian Krome, Hauke Gravenkamp BAM Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205 Berlin, Germany email: [email protected]
Numerical Analysis An Introduction
Walter Gautschi Numerical Analysis An Introduction 1997 Birkhauser Boston Basel Berlin CONTENTS PREFACE xi CHAPTER 0. PROLOGUE 1 0.1. Overview 1 0.2. Numerical analysis software 3 0.3. Textbooks and monographs
6 J - vector electric current density (A/m2 )
Determination of Antenna Radiation Fields Using Potential Functions Sources of Antenna Radiation Fields 6 J - vector electric current density (A/m2 ) M - vector magnetic current density (V/m 2 ) Some problems
Express Introductory Training in ANSYS Fluent Lecture 1 Introduction to the CFD Methodology
Express Introductory Training in ANSYS Fluent Lecture 1 Introduction to the CFD Methodology Dimitrios Sofialidis Technical Manager, SimTec Ltd. Mechanical Engineer, PhD PRACE Autumn School 2013 - Industry
Mixed Precision Iterative Refinement Methods Energy Efficiency on Hybrid Hardware Platforms
Mixed Precision Iterative Refinement Methods Energy Efficiency on Hybrid Hardware Platforms Björn Rocker Hamburg, June 17th 2010 Engineering Mathematics and Computing Lab (EMCL) KIT University of the State
Mesh Generation and Load Balancing
Mesh Generation and Load Balancing Stan Tomov Innovative Computing Laboratory Computer Science Department The University of Tennessee April 04, 2012 CS 594 04/04/2012 Slide 1 / 19 Outline Motivation Reliable
FUNDAMENTAL FINITE ELEMENT ANALYSIS AND APPLICATIONS
FUNDAMENTAL FINITE ELEMENT ANALYSIS AND APPLICATIONS With Mathematica and MATLAB Computations M. ASGHAR BHATTI WILEY JOHN WILEY & SONS, INC. CONTENTS OF THE BOOK WEB SITE PREFACE xi xiii 1 FINITE ELEMENT
Numerical Methods for Differential Equations
Numerical Methods for Differential Equations Course objectives and preliminaries Gustaf Söderlind and Carmen Arévalo Numerical Analysis, Lund University Textbooks: A First Course in the Numerical Analysis
NUMERICAL SIMULATION OF BIOHEAT TRANSFER PROCESS IN THE HUMAN EYE USING FINITE ELEMENT METHOD
Scientific Research of the Institute of Mathematics and Computer Science NUMERICAL SIMULATION OF BIOHEAT TRANSFER PROCESS IN THE HUMAN EYE USING FINITE ELEMENT METHOD Marek Paruch Department for Strength
Iterative Solvers for Linear Systems
9th SimLab Course on Parallel Numerical Simulation, 4.10 8.10.2010 Iterative Solvers for Linear Systems Bernhard Gatzhammer Chair of Scientific Computing in Computer Science Technische Universität München
Computational Modeling of Wind Turbines in OpenFOAM
Computational Modeling of Wind Turbines in OpenFOAM Hamid Rahimi [email protected] ForWind - Center for Wind Energy Research Institute of Physics, University of Oldenburg, Germany Outline Computational
W009 Application of VTI Waveform Inversion with Regularization and Preconditioning to Real 3D Data
W009 Application of VTI Waveform Inversion with Regularization and Preconditioning to Real 3D Data C. Wang* (ION Geophysical), D. Yingst (ION Geophysical), R. Bloor (ION Geophysical) & J. Leveille (ION
Design and Optimization of OpenFOAM-based CFD Applications for Hybrid and Heterogeneous HPC Platforms
Design and Optimization of OpenFOAM-based CFD Applications for Hybrid and Heterogeneous HPC Platforms Amani AlOnazi, David E. Keyes, Alexey Lastovetsky, Vladimir Rychkov Extreme Computing Research Center,
AN INTERFACE STRIP PRECONDITIONER FOR DOMAIN DECOMPOSITION METHODS
AN INTERFACE STRIP PRECONDITIONER FOR DOMAIN DECOMPOSITION METHODS by M. Storti, L. Dalcín, R. Paz Centro Internacional de Métodos Numéricos en Ingeniería - CIMEC INTEC, (CONICET-UNL), Santa Fe, Argentina
Aeroacoustic Analogy for the Computation of Aeroacoustic Fields in Partially Closed Domains
INSTITUT FÜR MECHANIK UND MECHATRONIK Messtechnik und Aktorik Aeroacoustic Analogy for the Computation of Aeroacoustic Fields in Partially Closed Domains A. Hüppe 1, M. Kaltenbacher 1, A. Reppenhagen 2,
Large-Scale Reservoir Simulation and Big Data Visualization
Large-Scale Reservoir Simulation and Big Data Visualization Dr. Zhangxing John Chen NSERC/Alberta Innovates Energy Environment Solutions/Foundation CMG Chair Alberta Innovates Technology Future (icore)
Course Outline for the Masters Programme in Computational Engineering
Course Outline for the Masters Programme in Computational Engineering Compulsory Courses CP-501 Mathematical Methods for Computational 3 Engineering-I CP-502 Mathematical Methods for Computational 3 Engineering-II
STUDY OF DAM-RESERVOIR DYNAMIC INTERACTION USING VIBRATION TESTS ON A PHYSICAL MODEL
STUDY OF DAM-RESERVOIR DYNAMIC INTERACTION USING VIBRATION TESTS ON A PHYSICAL MODEL Paulo Mendes, Instituto Superior de Engenharia de Lisboa, Portugal Sérgio Oliveira, Laboratório Nacional de Engenharia
Finite Element Formulation for Beams - Handout 2 -
Finite Element Formulation for Beams - Handout 2 - Dr Fehmi Cirak (fc286@) Completed Version Review of Euler-Bernoulli Beam Physical beam model midline Beam domain in three-dimensions Midline, also called
LBM BASED FLOW SIMULATION USING GPU COMPUTING PROCESSOR
LBM BASED FLOW SIMULATION USING GPU COMPUTING PROCESSOR Frédéric Kuznik, frederic.kuznik@insa lyon.fr 1 Framework Introduction Hardware architecture CUDA overview Implementation details A simple case:
The Basics of FEA Procedure
CHAPTER 2 The Basics of FEA Procedure 2.1 Introduction This chapter discusses the spring element, especially for the purpose of introducing various concepts involved in use of the FEA technique. A spring
CUDA for Real Time Multigrid Finite Element Simulation of
CUDA for Real Time Multigrid Finite Element Simulation of SoftTissue Deformations Christian Dick Computer Graphics and Visualization Group Technische Universität München, Germany Motivation Real time physics
Heavy Parallelization of Alternating Direction Schemes in Multi-Factor Option Valuation Models. Cris Doloc, Ph.D.
Heavy Parallelization of Alternating Direction Schemes in Multi-Factor Option Valuation Models Cris Doloc, Ph.D. WHO INTRO Ex-physicist Ph.D. in Computational Physics - Applied TN Plasma (10 yrs) Working
AN APPROACH FOR SECURE CLOUD COMPUTING FOR FEM SIMULATION
AN APPROACH FOR SECURE CLOUD COMPUTING FOR FEM SIMULATION Jörg Frochte *, Christof Kaufmann, Patrick Bouillon Dept. of Electrical Engineering and Computer Science Bochum University of Applied Science 42579
Vista: A Multi-field Object Oriented CFD-package
Vista: A Multi-field Object Oriented CFD-package T. Kvamsdal 1, R. Holdahl 1 and P. Böhm 2 1 SINTEF ICT, Applied Mathematics, Norway 2 inutech GmbH, Germany Outline inutech & SINTEF VISTA a CFD Solver
CFD Application on Food Industry; Energy Saving on the Bread Oven
Middle-East Journal of Scientific Research 13 (8): 1095-1100, 2013 ISSN 1990-9233 IDOSI Publications, 2013 DOI: 10.5829/idosi.mejsr.2013.13.8.548 CFD Application on Food Industry; Energy Saving on the
TIME-ACCURATE SIMULATION OF THE FLOW AROUND THE COMPLETE BO105 WIND TUNNEL MODEL
TIME-ACCURATE SIMULATION OF THE FLOW AROUND THE COMPLETE BO105 WIND TUNNEL MODEL Walid Khier, Thorsten Schwarz, Jochen Raddatz presented by Andreas Schütte DLR, Institute of Aerodynamics and Flow Technology
Introduction to Computational Fluid Dynamics
Introduction to Computational Fluid Dynamics Instructor: Dmitri Kuzmin Institute of Applied Mathematics University of Dortmund [email protected] http://www.featflow.de Fluid (gas and liquid)
Modeling of inflatable dams partially filled with fluid and gas considering large deformations and stability
Institute of Mechanics Modeling of inflatable dams partially filled with fluid and gas considering large deformations and stability October 2009 Anne Maurer Marc Hassler Karl Schweizerhof Institute of
Customer Training Material. Lecture 2. Introduction to. Methodology ANSYS FLUENT. ANSYS, Inc. Proprietary 2010 ANSYS, Inc. All rights reserved.
Lecture 2 Introduction to CFD Methodology Introduction to ANSYS FLUENT L2-1 What is CFD? Computational Fluid Dynamics (CFD) is the science of predicting fluid flow, heat and mass transfer, chemical reactions,
The simulation of machine tools can be divided into two stages. In the first stage the mechanical behavior of a machine tool is simulated with FEM
1 The simulation of machine tools can be divided into two stages. In the first stage the mechanical behavior of a machine tool is simulated with FEM tools. The approach to this simulation is different
From CFD to computational finance (and back again?)
computational finance p. 1/21 From CFD to computational finance (and back again?) Mike Giles [email protected] Oxford University Mathematical Institute Oxford-Man Institute of Quantitative Finance
MATHEMATICAL METHODS OF STATISTICS
MATHEMATICAL METHODS OF STATISTICS By HARALD CRAMER TROFESSOK IN THE UNIVERSITY OF STOCKHOLM Princeton PRINCETON UNIVERSITY PRESS 1946 TABLE OF CONTENTS. First Part. MATHEMATICAL INTRODUCTION. CHAPTERS
Finite Element Methods (in Solid and Structural Mechanics)
CEE570 / CSE 551 Class #1 Finite Element Methods (in Solid and Structural Mechanics) Spring 2014 Prof. Glaucio H. Paulino Donald Biggar Willett Professor of Engineering Department of Civil and Environmental
Applications of the Discrete Adjoint Method in Computational Fluid Dynamics
Applications of the Discrete Adjoint Method in Computational Fluid Dynamics by René Schneider Submitted in accordance with the requirements for the degree of Doctor of Philosophy. The University of Leeds
Effects of Cell Phone Radiation on the Head. BEE 4530 Computer-Aided Engineering: Applications to Biomedical Processes
Effects of Cell Phone Radiation on the Head BEE 4530 Computer-Aided Engineering: Applications to Biomedical Processes Group 3 Angela Cai Youjin Cho Mytien Nguyen Praveen Polamraju Table of Contents I.
Parallel 3D Image Segmentation of Large Data Sets on a GPU Cluster
Parallel 3D Image Segmentation of Large Data Sets on a GPU Cluster Aaron Hagan and Ye Zhao Kent State University Abstract. In this paper, we propose an inherent parallel scheme for 3D image segmentation
MEL 807 Computational Heat Transfer (2-0-4) Dr. Prabal Talukdar Assistant Professor Department of Mechanical Engineering IIT Delhi
MEL 807 Computational Heat Transfer (2-0-4) Dr. Prabal Talukdar Assistant Professor Department of Mechanical Engineering IIT Delhi Time and Venue Course Coordinator: Dr. Prabal Talukdar Room No: III, 357
Domain Decomposition Methods for Elastic Materials with Compressible and Almost Incompressible Components
Domain Decomposition Methods for Elastic Materials with Compressible and Almost Incompressible Components Sabrina Gippert geboren in Neuss Fakultät für Mathematik Universität Duisburg-Essen November 01
Discrete mechanics, optimal control and formation flying spacecraft
Discrete mechanics, optimal control and formation flying spacecraft Oliver Junge Center for Mathematics Munich University of Technology joint work with Jerrold E. Marsden and Sina Ober-Blöbaum partially
Design of 2D waveguide networks for the study of fundamental properties of Quantum Graphs
Design of 2D waveguide networks for the study of fundamental properties of Quantum Graphs Introduction: what is a quantum graph? Areas of application of quantum graphs Motivation of our experiment Experimental
Nonlinear Analysis Using Femap with NX Nastran
Nonlinear Analysis Using Femap with NX Nastran Chip Fricke, Principal Applications Engineer, Agenda Nonlinear Analysis Using Femap with NX Nastran Who am I? Overview of Nonlinear Analysis Comparison of
A New Unstructured Variable-Resolution Finite Element Ice Sheet Stress-Velocity Solver within the MPAS/Trilinos FELIX Dycore of PISCEES
A New Unstructured Variable-Resolution Finite Element Ice Sheet Stress-Velocity Solver within the MPAS/Trilinos FELIX Dycore of PISCEES Irina Kalashnikova, Andy G. Salinger, Ray S. Tuminaro Numerical Analysis
